三角与向量综合
2015年高考数学复习学案:三角与向量的综合问题

一、复习要点1.掌握三角函数的图象、性质和恒等变换,会运用正、余弦定理解三角形;2.理解平面向量的代数和几何意义,会解决平面向量与解三角形、三角函数交汇的综合问题. 二、考点展示1.(13·四川)设),2(,sin 2sin ππααα∈-=,则=α2tan .2.(13·山东)将函数)2sin(ϕ+=x y 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 .3. (13·福建)如图,在ABC ∆中,已知点D 在BC 边上,AC AD ⊥,322sin =∠BAC ,23=AB ,3=AD ,则BD 的长为 .4. (13·浙江) 设21,e e 为单位向量,非零向量21e y e x +=, R y x ∈,.若21,e e 的夹角为6π的最大值等于 .三、典型例题例1. (1) (12·江苏) 如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.(2) (13·湖南) 已知a ,b 是单位向量,a ·b =0,若向量c 满足|c -a -b |=1, 则|c |的取值范围是 .变式1 (1) (13·济南模拟)已知A B C ∆的外接圆半径为1,圆心为O ,且3+4+5=0,则⋅的值为 .(2) 已知a ,b ,c 均为单位向量,且a·b =0,(c -a )·(c -b )≤0,则|a +b -c |的最大值为 .例2.已知向量)23sin ,23(cosx x a =,)2sin ,2(cos x x b -=,且]2,0[π∈x .⑴ 求⋅+⑵ 若x f -⋅=2)(23-,求λ的值.变式 2 已知二次函数)(x f 对任意R x ∈,都有)1()1(x f x f -=+成立. 设向量)2,(sin x =,)21,sin 2(x =,)1,2(cos x =,)2,1(=.当],0[π∈x 时,解不等式)()(f f ⋅>⋅.四、课堂总结五、巩固练习1.(13·安徽)若非零向量,b +==,则与b 夹角的余弦值为 .2.(13·全国Ⅱ)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知2=b ,6π=B ,4π=C ,则ABC ∆的面积为 .3. 若向量a ,b ,c , d 满足:|a |=1,|b |=2,b 在a 方向上的投影为12,(a -c )·(b -c )=0,|d -c |=1,则|d |的最大值为________.4.(13·重庆)在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→. 若|OP →|<12,则|OA →|的取值范围是 .5. 如图所示,向量i , j ,e 1, e 2均为单位向量,且i ⊥j ,e 1⊥e 2 . ⑴ 用i , j 表示e 1, e 2;⑵若→OP=x i +y j ,且xy=1; →OP=x 1 e 1+y 1 e 2 .当θ= π4时,求关于x 1 、y 1的表达式,并说明方程表达的曲线形状.6. 设平面向量→a = (3,-1) ,→b = (12 ,32),若存在实数m (m ≠0)和角θ(θ∈(-2π,2π)),使向量→c =→a +(tan 2θ-3)→b ,→d =-m →a +(tan θ)→b ,且→c ⊥→d . ⑴ 试求函数m =f (θ)的关系式;⑵ 令t = tan θ,求出函数m = g (t )的极值.1 e i。
向量与三角形四心的关系

向量与三角形四心的关系三角形中的“四心”的向量表示向量既反映数量关系,又体现位置关系,从而能数形结合地用代数方法来研究几何问题,即把几何代数化,从而用代数运算解几何问题。
作为处理几何问题的一种工具,向量方法兼有几何的直观性,表述的简洁性和方法的一般性。
使用向量的第一步,是要在图中指定基向量(基底),这组基底一般是线性无关的。
一旦确定了基向量,在整个问题的解决过程中,以此为依据而进行计算。
在确定点的位置时,经常用向量的线性关系(这是向量的重要性质,贯穿在整个向量法中)来解决;在处理垂直关系,长度关系及交角等问题时,一般用向量的数量积来解决。
一、线共点问题。
解决线共点问题转化为向量共线问题来解决。
=例1、用向量法求证:△ABC 的三条高共点.分析:得BC 与AC 边上的高AD 与BE 交于H ,连接CH ,只要证明CH ⊥AB 即可。
因此,关键是选好基向量. 设l =,m =,n =,则 由⊥,⊥得 ()()()⎩⎨⎧=-⋅=-⋅⋅=⋅=-⋅000l m n l n m n l n l 即由此得 ∴CH ⊥AB ,同理,BC AH ⊥得证。
类似方法,还可以证明:(1)三角形的三条内角平分线交于一点。
(2)三角形的三条中线交与一点。
二、三角形的四心——重心、垂心、外心、内心的向量表示例2、已知O 是△ABC 所在平面内一点,若-=+,则点O 是△ABC 的重心。
分析:利用-=+及加法的平行四边形法则可证。
拓展:若()AC AB OA OP ++=λ,λ∈(0,+∞),则点P 的的轨迹一定是△ABC 的_______心。
(重心)例3、已知O 是△ABC 所在平面内一点,若·=·=·,则点O 是△ABC 的垂心。
分析:·=·得·==0,∴OB ⊥AC 同理OA ⊥BC ,OC ⊥AB 可证。
拓展1:已知O 是△ABC 平面上一定点,若=+λ⎫⎛+C AC B AB cos cos ,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的_______心。
三角函数和向量的综合

三角函数和向量的综合复习要点:1、 熟练应用三角恒等变换和向量数量积等公式2、 三角函数和向量综合问题的处理思路典例剖析:1、已知向量.1,43),1,1(-=⋅=且的夹角为与向量向量π (1)求向量n ;(2)设向量)sin ,,(cos ),0,1(x x ==向量,其中R x ∈,若0=⋅,试求||+的取值范围.2、已知向量552sin ,(cos ,sin ,cos =-==b a ββαα)( (1)求)cos(βα-的值 (2)若02,20<<-<<βππα且135sin -=β,求αsin 的值3、 已知向量⎥⎦⎤⎢⎣⎡∈-==2,0)2sin ,2(cos ),23sin ,23(cos πx x x b x x a 且向量。
求(1)+⋅;(2)若x f +-⋅=2)(的最小值是23-,求实数λ的值。
4、已知函数2()2cos2sin cos 1(0)f x x x x x ωωωω=++∈R >,的最小正周期是2π. (Ⅰ)求ω的值; (Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.17题、如图,函数y=2sin(πx+ϕ),(x ∈R)(其中0≤ϕ≤2π)的图象与y 轴交于点(0,1);①、求ϕ的值;②、设P 为图象上的最高点,M ,N是图象与x 轴的交点,求→PM 与→PN 的夹角。
课后作业:1、已知向量(sin ,cos ),(1,2)m A A n ==- ,且0.m n ⋅=(Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.2、已知向量)1,2sin 2(cos .22x x a -=)sin ,1(.x b =,函数f (x )=b a ⋅ (Ⅰ)求函数f (x )的最小正周期;(Ⅱ)当x 0∈(0,4π)且f (x 0)=524时,求f (x 0+6π)的值.3、(山东17)(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫ ⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.4.(上海18)(本题满分15分)已知函数f (x )=sin2x ,g (x )=cos π26x ⎛⎫+⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图像分别交于M 、N 两点.(1)当π4t =时,求|MN |的值; (2)求|MN |在π02t ⎡⎤∈⎢⎥⎣⎦,时的最大值.5、如图在长方体ABCD 中,,,AB a AD b N == 是CD 的中点,M 是线段AB 上的点,2,1a b == ,(1)若M 是AB 的中点,求证:AN 与CM 共线;(2)在线段AB 上是否存在点M ,使得BD 与CM 垂直?若不存在请说明理由,若存在请求出M 点的位置;(3)若动点P 在长方体ABCD 上运动,试求AP AB ⋅ 的最大值及取得最大值时P点的位置。
向量与三角函数的综合应用

2
解法4 解法4: 3 6 1 2 (sin θ + cos θ ) = sin θ + cos θ =± sin θ ⋅ cos θ = 2 2 ∴ ∴ 4 (sin θ − cos θ )2 = 1 sin θ − cos θ =± 2 sin 2 θ + cos 2 θ = 1 2 2 6+ 2 6− 2 sin θ = sin θ = 4 4 或 ∴ cos θ = 6 − 2 cos θ = 6 + 2 4 4 6+ 2 6− 2 sin θ = − sin θ = − 4 4 或 6− 2 cos θ = − cos θ = − 6 + 2 4 4
例2:已知 a = (cos 2α , sin α ), b = (1,2 sin α − 1), α ∈ ( , π ) : 2 2 π a ⋅ b = , 求 cos( α + ) 解: a ⋅ b = cos 2α + sin α ( 2 sin α − 1) 2 = 1 − sin α = 5 4 π 3 ∴ sin α = ,因为 α ∈ ( , π ) ∴ cos α = − 5 2 5 π π π ∴ cos(α + ) = cos α cos − sin α sin
∴ tan θ = 2 ± 3
小结:1.向量的坐标运算。 小结:1.向量的坐标运算。 向量的坐标运算 2.三角函数的化简 计算。 三角函数的化简、 2.三角函数的化简、计算。 三角恒等变换、齐次式问题) (三角恒等变换、齐次式问题) 转化思想方法的应用。 3. 转化思想方法的应用。
本节目标: 本节目标
• 1.向量运算与三角函数求值的综合。 向量运算与三角函数求值的综合。 向量运算与三角函数求值的综合 • 2.向量运算与三角函数化简的综合。 2.向量运算与三角函数化简的综合 向量运算与三角函数化简的综合。 • 3.转化思想方法的应用。 转化思想方法的应用。 转化思想方法的应用
专题二 三角函数与平面向量的综合应用

的参数 A,ω ,φ,从图象的特征上寻找答案,A 主要由最值 确定,ω 是由周期确定,周期通过特殊点观察求得,如相邻 两个最大、最小值点相差半个周期,φ 可由点在函数图象上 求得,确定 φ 值时,注意它的不惟一性.如果函数的最大值 与最小值不互为相反数,说明解析式为 y=Asin( ω x+φ)+k 的形式.设最大值为 m,最小值为 n,则 A+k=m,-A+k m-n m+n =n,从而 A= 2 ,k= 2 .
π 由图象最高点为 , 3得 6
(2)由 (1)知,函数的最小值为- 3; π π π 由 2x+ =2kπ- ,k∈Z,得 x=kπ- ,k∈ Z, 6 2 3 π ∴函数取得最小值时自变量 x 的集合为x|x=kπ- , k∈ Z. 3
探究提高
确定函数关系式 y=Asin( ω x+φ)就是确定其中
题型分类 深度剖析
题型一 三角函数的化简求值问题 3 1 1 例1 求 2 - 2 · 的值. sin 140° cos 140° 2sin 10°
思维启迪 从角、函数名称、式子结构入手找其
特征,构造“相消”、“约分”或构造特殊角.
3cos2140° - sin2140° 1 解 原式= · sin2140° cos2140° 2sin 10° 3cos240° - sin240° 1 = · sin240° cos240° 2sin 10° ( 3cos 40° - sin 40° )( 3cos 40° + sin 40° ) 1 = · 1 2 2sin 10° sin 80° 4 2sin(60° - 40° )· 2sin(60° + 40° ) 1 = · 1 2 2sin 10° cos 10° 4 8sin 20° sin 100° 16sin 10° · cos210° = = = 16. cos210° · sin 10° cos210° · sin 10° π 探究提高 若 α+β=π,则 sin α=sin β;若 α+β=2,
三角函数与向量综合题

题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,得到函数y =Asin(ωx +ϕ)(A >0,ω>0,|ϕ|=π2)的图象,则ϕ和B 的值依次为 ( )A .π12,-3B .π3,3C .π3,-3D .-π12,3 【分析】 根据向量的坐标确定平行公式为⎩⎨⎧ x =x '+π6y =y '+3,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】 由平移向量知向量平移公式⎩⎨⎧ x '=x -π6y '=y -3,即⎩⎨⎧ x =x '+π6y =y '+3,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C. 【解析2】 由向量→a =(-π6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA),则sin 2A =34, 又A 为锐角,所以sinA =32,则A =π3. (Ⅱ)y =2sin 2B +cos C -3B 2=2sin 2B +cos (π-π3-B)-3B 2=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B =32sin2B -12cos2B +1=sin(2B -π6)+1. ∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2. 【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值. 【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果. 【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0.由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12. ∵α∈(3π2,2π),tanα<0,故t anα=12(舍去).∴tanα=-43. (Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255, ∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法. 题型四 三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=255.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cos αcos β+sin αsin β)+12=45,∴cos(α-β)=-35. (Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π, 由cos(α-β)=-35,得sin(α-β)=45, 又sin β=-513,∴cos β=1213, ∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365. 点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx ,由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1. (Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1, 当sin(x +π4)=-1时,f(x)的最小值为1- 2. 点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),a =23,且→m·→n =12. (Ⅰ)若△ABC 的面积S =3,求b +c 的值.(Ⅱ)求b +c 的取值范围.【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12, ∴-cos 2A 2+sin 2A 2=12,即-cosA =12, 又A ∈(0,π),∴A =2π3. 又由S △ABC =12bcsinA =3,所以bc =4, 由余弦定理得:a 2=b 2+c 2-2bc·cos 2π3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4. (Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3, ∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3),∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4]. [点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.。
(完整版)向量与三角,不等式等知识综合应用

第19讲 向量与三角、不等式等知识综合应用常熟市中学 蔡祖才一、高考要求平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透. 二、考点解读考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练1.把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( )(A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=02.函数y =sin x 的图象按向量a =(32π-,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +23.已知向量a = (1,sin θ),b = (1,cos θ),则 | a - b | 的最大值为.4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,M 、N 是图象与x 轴的交点,则PM PN u u u u r u u u r与的夹角余弦值为 .四、典型例题例1 已知a =(3sin ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数f (x )= a · b ,且f (x )的最小正周期是π,则ω= ( )(A) ω=1 (B) ω=2 (C) 21=ω ( D) 32=ω 例2 在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ ( )(A)6π (B) 4π (C) 3π (D) 2π例3 设向量a r =(sin x ,cos x ),b r =(cos x ,cos x ),x ∈R ,函数f(x)=a r ·(a r +b r).使不等式f (x )≥23成立的x 的取值集合为 .例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅u u u r u u u r u u u r+的最小值是 .例5 已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (4π,1),且当x ∈[0, 4π]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由.例6 已知向量m =(cos ,sin )θθ和n =sin ,cos ),(,2)θθθππ∈,且| m + n |=,5求cos()28θπ+的值.第19讲 向量与三角、不等式等知识综合应用 过关练习1.已知i r ,j r 为互相垂直的单位向量,2a i j =-r r r ,b i j λ=+r r r ,且||||a b r r与的夹角为锐角,则实数λ的取值范围是( )(A )),21(+∞ (B ))21,2()2,(-⋃--∞ (C )),32()32,2(+∞⋃- (D ))21,(-∞2.在直角坐标系中,O 是原点,OQ =(-2+cos θ,-2+sin θ) (θ∈R),动点P 在直线x =3上运动,若从动点P 向Q 点的轨迹引切线,则所引切线长的最小值为 ( )(A ) 4 (B ) 5 (C ) 26 (D )263.已知||2||0a b =≠r r ,且关于x 的方程2||0x a x a b ++⋅=r r r 有实根,则a r 与b r 的夹角的取值范围是 ( )(A )[0,6π] (B )[,]3ππ (C )2[,]33ππ (D )[,]6ππ 4.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=u u u r u u u r,若OP AB PA PB ⋅≥⋅u u u r u u u r u u u r u u u r,则实数λ的取值范围是 ( )(A )112λ≤≤ (B )11λ-≤≤(C )1122λ≤≤+ (D )1122λ-≤≤+ 5. 已知向量a r =(cos α,sin α),b r =(cos β,sin β),且a b ≠±r r ,那么a b +r r 与a b-r r的夹角的大小是 .6. 已知向量].2,0[),2sin ,2(cos ),23sin,23(cos π∈-==x x x x x 且若||2)(x f +-⋅=λ的最小值为32-,则λ的值为 .7.已知A 、B 、C 是ABC ∆三内角,向量(m =-u r(cos ,sin ),n A A =r 且 1.m n ⋅=u r r(Ⅰ)求角A ; (Ⅱ)若221sin 23cos sin BB B+=--,求tanC . 8.设函数f (x )=a b ⋅r r ,其中向量a r =(2cos x ,1),b r=(cos x ,3sin2x ),x ∈R .(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c r =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值.第19讲 向量与三角、不等式等知识综合应用 参考答案课前训练部分1.C2.D3.4.1517典型例题部分例1 A例2 1111sin cos (1cos )(1sin )222ABC S θθθθ∆=----- 当2θπ=即2πθ=时,面积最大.例3 3,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭例4 如图,OM OA OC OB OA -≥-=⋅⋅=+⋅2)(=.222-=⋅- 即)(+⋅的最小值为:-2.例5 (Ⅰ)由题意知⎩⎨⎧=+=+,1,1b a c a ∴b =c =1-a , ∴f (x )=a +2(1-a )sin(2x +4π).∵x∈[0,4π], ∴2x +4π∈[4π,4π3].当1-a >0时,由a +2(1-a )=22-1, 解得a =-1; 当1-a <0时, a +2(1-a )·22=22-1,无解; 当1-a =0时,a =22-1,相矛盾. 综上可知a =-1. ∴f (x )=-1+22sin(2x +4π). (Ⅱ)∵g (x )=22sin2x 是奇函数,将g (x )的图象向左平移8π个单位,再向下平移一个单位就可以得到f (x )的图象. 因此,将f (x )的图象向右平移8π个单位,再向上平移一个单位就可以得到奇函数g(x )=22sin2x 的图象.故m u r =(8π,1)是满足条件的一个向量.例6 (cos sin sin )m n θθθθ+=-++u r rm n +=u r r由已知m n +=u r r ,得7cos()425πθ+=又2cos()2cos ()1428πθπθ+=+- 过关练习部分1.B2.C3.B4.B 5、2π6. 217(Ⅰ)∵1m n ⋅=u r r∴(()cos ,sin 1A A -⋅= cos 1A A -=12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭ ∵50,666A A ππππ<<-<-<∴66A ππ-= ∴3A π= (Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --= ∴cos 0B ≠ ∴2tan tan 20B B --= ∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去 ∴tan 2B =8.(Ⅰ)依题设可知,函数的解析式为f (x )=a b ⋅r r =2cos 2x +3sin2x =1+2sin(2x +6π).由1+2sin(2x +6π)=1-3,可得三角方程sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π. (Ⅱ)函数y =2sin2x 的图象按向量c r=(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f(x)的图象.由(1)得 f(x)=2sin2(x +12π)+1. ∵|m |<2π,∴12m π=-, 1.n =。
三角函数与向量的基本概念及综合应用

向量和三角函数的基本概念与应用一、 向量的基本概念:1、 向量、平行向量(共线向量)、零向量、单位向量、相等向量:2、 向量的表示:→AB 、→a 、区别于|→AB|、|→a |3、 向量的加法、减法:平行四边形法则和三角形法则★ 例题1、一艘船从A 点出发以2 3 km/h 的速度向垂直于对岸的方向行驶,同时河水的速为2km/h ;求船实际航行的速度大小和方向。
(答案:4km/h ,方向与水流方向成60°角)★【※题2】①设O 为平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足→OP=→OA+λ(→AB+→AC),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( D )A 外心B 垂心C 内心D 重心 ②将上题中的条件改为→OP=→OA+λ( →AB |→AB| + →AC|→AC|)则应选( C )★ 例题3:(1)、化简下列各式:①→MN+→NM ;②→FD+→DE-→EF ;③→AB+→BC+→CA ;④(→AB-→DC )+(→DA-→CB )其中结果为0的有①③④( 2)、在平行四边形ABCD 中,→AB=→a ,DB=→b ,则有:→AD=→a -→b ,→AC=→a +→a -→b4、 实数与向量的积、平面向量基本定理、平面向量的坐标表示:① 注意点的坐标和向量的坐标的差别:②向量的平等行和垂直坐标公式:5、向量的数量积的概念,以及向量平行、垂直、长度、夹角:★例1、已知平行四边形OADB 中,→OA=→a ,→OB=→b ,AB 与OD 相交于点C ,且|BM|=13|BC|,|CN|=13|CD|,用→a 、→b 表示→OM 、→ON 、和→MN 。
★ 例2、求证;G 为△ABC 的重心的充要条件是:→GA+→GB+→GC=0★例3、已知AD 、BE 分别是△ABC 的边BC 、AC 上的中线,→AD=→a ,→BE=→b ,则→BC=____★ 例4、①已知等差数列{a n }的前n 项之和为S n ,若M,N,,P 三点共线,O 为坐标原点,且→ON=a 31→OM+a 2→OP(直线MP 不过点O ),则S 32等于多少?②(2006年江西高考)已知等差数列{a n }的前n 项之和为S n ,若→OB=a 1→OA+a 200→OC,且=A,B,C 三点共线(该直线不过点O ),则S 200等于( )A 100B 101C 200D 201★例5、①若→a 的起点和终点坐标分别为(1,3),(4,7),则|→a |=_____② 已知→a =(1,2),→b =(x,1),且→a +2→b 与2→a -→b 平行,则x 之值为____③ 已知→a =(3,4),→a ⊥→b ,且→b 的起点坐标为(1,2),终点坐标为 (x,3x),则→b 等于_____ ④ 已知点M (3,-2),N (-5,-1),且→MP=12→MN ,则点P 的坐标是____(答案:(-1,-32)巩固练习:(一)平面向量的坐标运算规律:①设→a =(x 1,y 1),→b =(x 2,y 2),则→a +→b =_________;→a -→b =__________,λ→a =______;②|→a |=→a 2 =x 12+y 12;又→a ²→b =|→a |²|→b |²cos<→a ,→b >=x 1x 2+y 1y 2则cos<→a ,→b >= →a ²→b |→a ||→b = x 1x 2+y 1y 2 x 12+y 12 ²x 22+y 22 ; ③若→a ∥→b ⇔x 1y 2-x 2y 1=0; 若→a ⊥→b ⇔x 1x 2+y 1y 2=0,★例1、 ① 已知→a =(3,5) → b=(2,3),→c =(1,-2),求(→a ²→b )²→c (答案:(21,-42))②已知→a =(3,-1),→b =(-1,2),则-3→a -2→b 的坐标为_____(答案:(-7,-1)) ③已知|→a |=4,|→b |=3,(2→a -3→b )²(2→a +→b )=61,求→a 与→b 的夹角.(为120°) ④已知|→a |=2,|→b |=9, →a ²→b =-542,求→a 与→b 的夹角.(为135°)★ 例2、①已知→a =(1,2),→b =(x,1)且→a +2→b 与2→a -→b 平行,则x=_____(答案:21)②已知|→a |=2,|→b |=1, →a 与→b 的夹角为3π,求向量2→a +3→b 与3→a -→b 的夹角的余弦值.(答案:2837 ²31 );③已知向量→a =(cos α,sin α),→b =(cos β,sin β),且→a ≠±→b ,则→a +→b 与→a -→b 的夹角大小是____(90°)④已知向量→a 与→b 的夹角为120°,且|→a |=3,|→a +→b |=13 ,则|→b |=_____★例3已知→a =(1,2),→b =(-3,2),当k 为何值时,①k →a +→b 与→a -3→b 垂直?②k →a +→b 与→a -3→b 平行,平行时它们是同向还是反向?(解:①k=19; ②k=-1/3,反向.)★例4:①若向量→a +3→b 垂直于向量7→a -5→b ,且向量→a -4→b 垂直于向量7→a -2→b ,求向量→a 与→b 的夹角大小.(答案:60°)②已知向量→a =(2,7),→b =(x,-3),当→a 与→b 的夹角为钝角时,求出x 的取值范围;若→a 与→b 的夹角为锐角时,问x 的取值范围又为多少?(答案:为钝角时x<212≠-67; 为锐角时x>212)★例5、已知→a =(cos x 2,sin x 2),→b =(sin 3x 2,cos 3x2),x ∈[0,2π],①求→a ²→b ;②求|→a +→b |,③设函数ƒ(x)=→a ²→b+2|→a +→b |,求出ƒ(x )的最大值和最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.考查三角函数的性质与图像,特别是y=Asin(x+)的性质和图像及其图像变换.
3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.
4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.
题型三 三角函数与平面向量垂直的综合
此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.
【例3】已知向量=(3sinα,cosα),=(2sinα,5sinα-4cosα),α∈( ,2π),且⊥.
5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.
6.考查利用正弦定理、余弦定理解三角形问题.
【典例分析】
题型二 三角函数与平面向量平行(共线)的综合
此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.
【例2】已知A、B、C为三个锐角,且A+B+C=π.若向量 =(2-2sinA,cosA+sinA)与向量 =(cosA-sinA,1+sinA)是共线向量.
(Ⅰ)求角A;
(Ⅱ)求函数y=2sin2B+cos 的最大值.
【分析】首先利用向量共线的充要条件建立三角函数等式,由于可求得A角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A、B、C三个角的关系,结合三角民恒等变换公式将函数转化为关于角B的表达式,再根据B的范围求(+)的值.
【分析】第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan 的值,再利用两角和与差的三角公式求得最后的结果.
【解】(Ⅰ)∵ ⊥,∴· =0.而 =(3sinα,cosα), =(2sinα,5sinα-4cosα),
(Ⅱ)∵-<β<0<α< ,∴0<α-β<π,
由cos(α-β)=-,得sin(α-β)=,
又sinβ=-,∴cosβ=,
∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ= .
点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化| -|为向量运算| - |2=(- )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.
∴cos(+ )=cos cos-sin sin=- × - × =-
【点评】本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法.
∵B∈(0, ),∴2B- ∈(- , ),∴2B- =,解得B= ,ymax=2.
【点评】本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.
三角与向量综合
———————————————————————————————— 作者:
———————————————————————————————— 日期:
归纳总结高考题型解题策略
专题一:三角与向量的交汇题型分析及解题策略
【考点透视】
向量具有代数运算性与几何直观性的“双重身份”,即可以象数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换.而三角函数是以“角”为自变量的函数,函数值体现为实数,因此平面向量与三角函数在“角”之间存在着密切的联系.同时在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.主要考点如下:
【分析】利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cosβ即可.
【解】(Ⅰ)∵| -|= ,∴2-2 · + 2=,
将向量 =(cosα,sinα), =(cosβ,sinβ)代入上式得
12-2(cosαcosβ+sinαsinβ)+12= ,∴cos(α-β)=- .
故·=6sin2α+5sinαcosα-4cos2α=0.
由于cosα≠0,∴6tan2α+5tanα-4=0.解之,得tanα=- ,或tanα= .
∵α∈(,2π),tanα<0,故tanα=(舍去).∴tanα=-.
(Ⅱ)∵α∈( ,2π),∴ ∈( ,π).
由tanα=-,求得tan =-,tan =2(舍去).∴sin =,cos=- ,
题型四三角函数与平面向量的模的综合
此类题型主要是利用向量模的性质| |2=2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.
【例3】已知向量=(cosα,sinα),=(cosβ,sinβ),|- |= .(Ⅰ)求cos(α-β)的值;(Ⅱ)若-<β<0<α<,且sinβ=-,求sinα的值.
【解】(Ⅰ)∵、 共线,∴(2-2sinA)(1+sinA)=(cosA+sinA)(cosA-sinA),则sin2A=,
又A为锐角,所以sinA= ,则A= .
(Ⅱ)y=2sin2B+cos=2sin2B+cos
=2sin2B+cos( -2B)=1-cos2B+cos2B+sin2B
= sin2B- cos2B+1=sin(2B-)+1.