2020年高考数学试卷--全国2(文科)
2020年全国高考数学2卷文科试卷

2020年全国统一高考数学试卷(文科)(新课标Ⅱ)学校:___________姓名:___________班级:___________考号:___________一、选择题1.(2020全国2文)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2}D .{–2,2}【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D.2.(2020全国2文)(1–i )4=( ) A .–4 B .4 C .–4iD .4i【详解】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-. 故选:A.3.(2020全国2文)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .15【详解】根据题意可知,原位大三和弦满足:3,4k j j i -=-=.∴1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===.原位小三和弦满足:4,3k j j i -=-=.∴1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===.故个数之和为10. 故选:C .4.(2020全国2文)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名B .18名C .24名D .32名【详解】由题意,第二天新增订单数为50016001200900+-=, 故需要志愿者9001850=名. 故选:B5.(2020全国2文)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b +B .2a b +C .2a b -D .2a b -【详解】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意; B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意;D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.6.(2020全国2文)记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( ) A .2n –1B .2–21–nC .2–2n –1D .21–n –1【详解】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-. 故选:B.7.(2020全国2文)执行右面的程序框图,若输入的k =0,a =0,则输出的k 为( )A .2B .3C .4D .5【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值 模拟程序的运行过程0,0k a ==第1次循环,2011a =⨯+=,011k =+=,110>为否 第2次循环,2113a =⨯+=,112k =+=,310>为否第3次循环,2317a =⨯+=,213k =+=,710>为否 第4次循环,27115a =⨯+=,314k =+=,1510>为是 退出循环 输出4k =. 故选:C.8.(2020全国2文)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C .5D .5【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--==圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=. 故选:B.9.(2020全国2文)设O 为坐标原点,直线x =a 与双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的两条渐近线分别交于D,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .32【详解】∵ C:x 2a −y 2b =1(a >0,b >0)∴双曲线的渐近线方程是y =±ba x ∵直线x =a 与双曲线C:x 2a2−y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限 联立{x =a y =b a x ,解得{x =a y =b故D(a,b)联立{x =a y =−b a x ,解得{x =ay =−b故E(a,−b) ∴ |ED|=2b∴ △ODE 面积为:S △ODE =12a ×2b =ab =8 ∵双曲线C:x 2a2−y 2b 2=1(a >0,b >0)∴其焦距为2c =2√a 2+b 2≥2√2ab =2√16=8 当且仅当a =b =2√2取等号 ∴ C 的焦距的最小值:8 故选:B.10.(2020全国2文)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减【详解】因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-,所以函数()f x 为奇函数.又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .11.(2020全国2文)已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32C .1D 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC21224a ∴⨯=,解得:3a =,2233r ∴===∴球心O 到平面ABC 的距离1d ===.故选:C.12.(2020全国2文)若2233x y x y ---<-,则( ) A .ln(1)0y x -+> B .ln(1)0y x -+< C .ln ||0x y -> D .ln ||0x y -<【详解】由2233x y x y ---<-得:2323x x y y ---<-, 令()23t t f t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A.二、填空题13.(2020全国2文)若2sin 3x =-,则cos2x =__________. 【详解】22281cos 212sin 12()1399x x =-=-⨯-=-=. 故答案为:19.14.(2020全国2文)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________. 【详解】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-= 可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d = 解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+=∴1025S =.故答案为:25.15.(2020全国2文)若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.【详解】不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩,因此2z x y =+的最大值为:2238+⨯=. 故答案为:8.16.(2020全国2文)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝ 【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内, 同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线, 直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题. 综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.三、解答题17.(2020全国2文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若b c -=,证明:△ABC 是直角三角形. 【详解】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又3b c -=②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =, 故222b a c =+, 即ABC 是直角三角形.18.(2020全国2文)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.【详解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(,)i ix y(i=1,2,…,20)的相关系数为20()()0.943i ix x y yr--===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.19.(2020全国2文)已知椭圆C1:22221x ya b+=(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴重直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.解:(1)因为椭圆1C的右焦点坐标为:(c,0)F,所以抛物线2C的方程为24y cx=,其中c不妨设,A C在第一象限,因为椭圆1C的方程为:22221x ya b+=,所以当x c=时,有222221c y bya b a+=⇒=±,因此,A B的纵坐标分别为2ba,2ba-;又因为抛物线2C的方程为24y cx=,所以当x c=时,有242y c c y c=⋅⇒=±,所以,C D的纵坐标分别为2c,2c-,故22||bABa=,||4CD c=.由4||||3CD AB=得2843bca=,即2322()c ca a⋅=-,解得2ca=-(舍去),12ca=.所以1C的离心率为12.(2)由(1)知2a c=,b=,故22122:143x yCc c+=,所以1C的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.20.(2020全国2文)如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积. 【详解】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥ 1//MN BBMN BC ⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H , 画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP = //AO NP ∴又//NO AP∴6AO NP ==O 为111A B C △的中心.∴1111sin 606sin 6033ON AC =︒=⨯⨯︒=故:ON AP ==3AM AP ==,平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F又在等边ABC 中EF APBC AM=即2AP BC EF AM ⋅===由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形 111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN 的距离sin 603MH =︒=,∴1243243V =⨯⨯=.21.(2020全国2文)已知函数f (x )=2ln x +1. (1)若f (x )≤2x +c ,求c 的取值范围; (2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.【详解】(1)函数()f x 的定义域为:(0,)+∞()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*,设()2ln 12(0)h x x x c x =+-->,则有22(1)()2x h x x x-'=-=, 当1x >时,()0,()h x h x '<单调递减, 当01x <<时,()0,()h x h x '>单调递增, 所以当1x =时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ==+-⨯-=--, 要想不等式()*在(0,)+∞上恒成立, 只需max ()0101h x c c ≤⇒--≤⇒≥-;(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a+---==>--且)x a ≠因此22(ln ln )()()x a x x x a g x x x a --+'=-,设()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<,()m x 单调递减,因此有()()0m x m a <=,即()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>,()m x 单调递增,因此有()()0m x m a <=,即()0g x '<,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.22.(2020全国2文)已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:()404x y x +=≤≤;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭; 设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=.23.(2020全国2文)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.。
2020年高考全国II卷文科数学试题(含解析)

2020年全国统一高考数学试卷(文科)(全国新课标II )一、选择题1.已知集合{||3,}A x x x Z =<∈,{||1,}B x x x Z =>∈,则A B ⋂= ( )A.∅B.{3,2,2,3}--C.{2,0,2}-D.{2,2}-【答案】D【解析】{|1||3,}{2,2}A B x x x Z ⋂=<<∈=-,故选D . 2.4(1)i -= ( )A.4-B.4C.4i -D.4i【答案】A【解析】42(1)(2)4i i -=-=-,故选A .3.如图,将钢琴上的12个键依次记为1212,,...,a a a ,设112i j k ≤<<≤.若3k j -=且4j i -=,则称,,i j k a a a 为原位大三和弦;若4k j -=且3j i -=,则称,,i j k a a a 为原位小三和弦,用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 ( )A. 5B. 8C.10D. 15【答案】C【解析】原位大三和弦:1i =,5j =,8k =;2i =,6j =,9k =;3i =,7j =,10k =;4i =,8j =,11k =;5i =,9j =,12k =共5个;原位小三和弦:1i =,4j =,8k =;2i =,5j =,9k =;3i =,6j =,10k =;4i =,7j =,11k =;5i =,8j =,12k =共5个;总计10个.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 ( )A.10名B.18名C.24名D.32名【答案】B【解析】积压500份订单未配货,次日产生新订单超过1600份的概率为0.05,其中1200份不需要志愿者配货,志愿者只需负责400份配货,也就是需要志愿者配货的为900份,故需要18名志愿者.5.已知单位向量a ,b 的夹角为60︒,则在下列向量中, 与b 垂直的是 ( )A.2a b +B.2a b +C.2a b -D.2a b -【答案】D【解析】21(2)2211102a b b a b b -⋅=⋅-=⨯⨯⨯-=,故选D . 6.记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a = ( )A.21n- B.122n--C.122n -- D.121n--【答案】 B 【解析】设等比数列{}n a 的通项公式为11n n a a q -=,根据5312a a -=,6424a a -=.解得11a =,2q =,故12n n a -=,122112nn n S -==--,可得122n n n S a -=- ,故选B .7.执行右面的程序框图,若输入0k =,0a =,则输出的k 为 ( )A.2B.3C.4D.5【答案】C【解析】当0k =,0a =运行后:1a =,1k =,再次运行后: 3a =,2k =,再次运行后: 7a =,3k =,再次运行后:15a =,4k =,此时达到输出条件,所以输出4k =,故选C .8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( )A.5B.5C.5D.5【答案】B【解析】依题意,因为点(2,1)在直线230x y --=上,结合题意可设圆心坐标为(,)a a ,则222(2)(1)a a a -+-=,即2650a a -+=,所以1a =,或5a =,所以圆心坐标为(1,1)或(5,5),当圆心坐标为(1,1)时,其到直线230x y --==标为(5,5)时,其到直线230x y --==,综上,可知B 正确. 9.设O 为坐标原点,直线x a =与双曲线22221(0,0)x ya b a b-=>>的两边渐近线分别交于D ,E 两点.若ODE ∆的面积为8,则C 的焦距的最小值为( )A.4B.8C.16D.32【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==立,所以min 4c =,焦距min (2)8c =. 10.设函数331()f x x x=-,则()f x ( )A.是奇函数,且在(0,)+∞单调递增B.是奇函数,且在(0,)+∞单调递减C.是偶函数,且在(0,)+∞单调递增D.是偶函数,且在(0,)+∞单调递减【答案】A【解析】因为331()f x x x=-,所以()333311()()()0f x f x x x x x +-=-+--=-,所以函数()f x 是奇函数.又因为331()f x x x =-由函数31y x =(为(0,)+∞增函数)加上函数231y x =-(为(0,)+∞增函数)得到,所以函数331()f x x x =-为(0,)+∞增函数,故选A . 判断单调性时也可以这样处理:因为当(0,)x ∈+∞,243()30f x x x '=+>,所以()f x 在(0,)+∞上是单调递增的.11.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 ( )B.32C.1【答案】C【解析】2ABC S AB ∆==3AB =.设球O 的半径为R ,则2416R ππ=,解得2R =.设O 在ABC ∆内的射影为'O ,'O 是ABC ∆的重心,故2'3O A ==O 到平面ABC 的距离1h ==,故选C .12. 若2233x y x y ---<-,则( )A.ln(1)0y x -+>B.ln(1)0y x -+<C.ln ||0x y ->D.ln ||0x y -<【答案】A【解析】11223323232233xyxy x x y y x y x y -----<-⇒-<-⇒-<-.设1()23xx f x =-,已知()f x 是定义在R 上的增函数,故由112233xyx y -<-可得x y <,所以011y x y x ->⇒-+>,从而ln(1)0y x -+>,故选A .二、填空题 13.若2sin 3x =-,则cos2x = . 【答案】19【解析】22281cos 212sin 12()1399x x =-=--=-=. 14.记n S 为等差数列{}n a 的前n 项和,若12a =-,262a a +=,则10S =______. 【答案】25【解析】由262a a +=,可得1152a d a d +++=,因为12a =-,可求出1d =,由数列的前n 项和公式得1010(101)21012045252S ⨯-=-⨯+⨯=-+=. 15.若x ,y 满足约束条件1121x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是_______.【答案】8【解析】方法一:如图当2x =,3y =时,max 8z =.方法二:联立11x y x y +=-⎧⎨-=-⎩,得(1,0)-,联立121x y x y +=-⎧⎨-=⎩,得(0,1)-,联立121x y x y -=-⎧⎨-=⎩,得(2,3),代入验证可得当2x =,3y =时,max 8z =. 16.设有下列四个命题:1:p 两两相交且不过同一点的三条直线必在同一平面内.2:p 过空间中任意三点有且仅有一个平面. 3:p 若空间两条直线不相交,则这两条直线平行. 4:p 若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下列命题中所有真命题的序号是 . ①14p p ∧ ②21p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 【答案】①③④【解析】对于1:p 可设1l 与2l 相交,所得平面为α.若3l 与1l 相交,则交点A 必在α内,同理,3l 与2l 交点B 也在α内,故AB 直线在α内,即3l 在α内,故1p 为真命题. 对于2:p 过空间中任意三点,若三点共线,可形成无数多平面,故2p 为假命题. 对于3:p 空间中两条直线的位置关系有相交、平行、异面,故3p 为假命题. 对于4:p 若m ⊥平面α,则m 垂直于平面α内的所有直线,故m l ⊥,故4p 为真命题.综上可知:14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题,故正确的有:①③④.三、解答题17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)3b c a -=,证明:ABC ∆是直角三角形. 【解析】(1)由25cos ()cos 24A A π++=可得:25sin cos 4A A +=,2214cos 4cos 10(2cos 1)0cos 2A A A A -+=⇒-=⇒=,∵(0,)A π∈,∴3A π=.(2)解法1:由b c -=可得)a b c =-,又2221cos 22b c a A bc +-==,即222b c a bc +-=,∴2223()b c b c bc +--=,(2)(2)0b c b c ⇒--=,∴2b c =或2c b=(舍),∴a =,即222a c b +=,故三角形为直角三角形.解法2:因为b c -=,由正弦定理得1sin sin 2B C A -==,由于A B C π++=,于是1sin()sin 32C C π+-=,又因为1sin()sin sin sin 32C C C C C π+-=+-1sin sin()23C C C π=-=-,又因为(,)333C πππ-∈-,于是36C ππ-=,6C π=,所以()2B AC ππ=-+=,故三角形为直角三角形.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,1,2(,...,0)2)(i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160ii x==∑,2011200i i y ==∑,2021()80ii x x =-=∑,2021()9000i i y y =-=∑,201()()800i i i x x y y =--=∑,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本,1,2(,...,0)2)(i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:()()niix x y y r --=∑1.414≈【解析】(1) 由题意可知,1个样区这种野生动物数量的平均数12006020==,故这种野生动物数量的估计值6020012000=⨯=;(2)由参考公式得()()0.94niix x yy r --===≈∑;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.19.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C 、D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为12,求1C 与2C 的标准方程.【解析】(1)由题意知:222242232b p a p c a b c ⎧=⋅⎪⎪⎪=⎨⎪=+⎪⎪⎩,∴ 24243b c a =⋅,∴ 2232()ac a c =-,即222320c ac a +-=,∴22320e e +-=,∴12e =或2e =-,∵01e <<,即1C 的离心率为12. (2)设1C 的四个顶点到2C 的准线距离为1d ,2d ,3d ,4d ,则:∵123422d a c d a c p d c p d c =-⎧⎪=+⎪⎪⎨==⎪⎪==⎪⎩,又∵ 123412d d d d +++=∴122a c a c c c pc -++++=⎧⎪⎨=⎪⎩ ∴6a c += ∵12c a = ∴26c c +=∴216a =,24c =,24p c == ∴212b =∴221:11612x y C +=,22:8C y x =.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F (1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C ∆的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.【解析】(1)证明∵M ,N 分别为BC ,11B C 的中点,底面为正三角形,∴1B N BM =,四边形1BB NM 为矩形,∴1//BB MN ,而11//AA BB ,∴1//AA MN ,可得1,,,A A M N 共面,由四边形1BB NM 为矩形,得11MN B C ⊥,由11B N NC =,得111A N B C ⊥,又1MN A N N ⋂=,得11B C ⊥面1A AMN ,11B C ⊂面11EB C F ∴面1A AMN ⊥面11EB C F ;(2)因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA平面11EB C F NP =,所以//AO NP ,又因为//NO AP ,所以四边形AONP 为平行四边形,6AO NP ==,ON AP ==M 做MH 垂直于NP ,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH⊥平面11EB C F,由PM =,6AO =,MN =,得PM MNMH PN⋅==11111()242EB C FS B C EF NP =+⋅=,由//BC 平面11EB C F,所以11111113B EB F M EBC FB C C E F V V S MH --==⋅⋅= 21.已知函数()2ln 1f x x =+,(1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.【解析】(1)()2f x x c ≤+等价于2ln 21x x c -≤-,设()2ln 2h x x x =-,22(1)'()2x h x x x-=-=, 当01x <<时,()0h x '>,所以()h x 在(0,1)上递增, 当1x >时,()0h x '<,所以()h x 在(1,)+∞递减,故max ()(1)2h x h ==-,所以12c -≥-.即1c ≥-,所以c 的取值范围是[1,)-+∞; (2)2(ln ln )()(0,,0)x a g x x x a a x a-=>≠>-,所以2222()2ln 2ln 2ln 2ln 2'()()()a x a x a x a x x g x x a x a --+--++==--,令2()2ln 2ln 2(0)a w x x a x x =--++>,则22222()'()a a x w x x x x -=-=, 令'()0w x >得0x a <<,'()0w x <得x a >,所以()w x 在(0,)a 上单调递增,在(,)a +∞上单调递减,所以,()()0w x w a ≤=,即'()0g x <,所以,()g x 在(0,)a 和(,)a +∞上单调递减.四、选做题22.已知1C ,2C 的参数方程分别为2124cos :4sin x C y θθ⎧=⎨=⎩,(θ为参数),21:1x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,(t 为参数)(1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由题:1C 的普通方程为:40x y +-=,(0,0)x y ≥≥; 因为222222212:12x t t C y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,故2C 的普通方程为:224x y -=;联立1C ,2C ,22404x y x y +-=⎧⎨-=⎩解得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P 坐标为:53(,)22P ,设以设所求圆圆心为(,0)Q a ,半径为a ,故圆心(,0)Q a 到53(,)22P 的距离a =,得1710a =,所以圆Q 的圆心为17(,0)10Q ,半径为1710,圆Q 的直角坐标方程为:2221717()1010()x y -+=,即221705x y x +-=,所以所求圆的极坐标方程为:17cos 5ρθ=.23.已知函数2()|||21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【解析】当2a =时,()|4||3|f x x x =-+-,即 ()27,31,3427,4x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩所以()4f x ≥的解集为32x ≤或112x ≥. (2)222()|||21||(21)||(1)|f x x a x a x a x a a =-+-+≥---+=-,又()4f x ≥,所以2|(1)|4a -≥,则3a ≥或1a ≤-.。
2020年高考全国二卷文科数学试卷

2020年普通高等学校招生全国统一考试(II 卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符 合题目要求的。
1. 已知集合},3||{Z ∈<=x x x A ,},1||{Z ∈>=x x x B ,则=B AA. ∅B. }3,2,2,3{--C. }2,0,2{-D. }2,2{-2. =-4)i 1(A. -4B. 4C. -4iD. 4i3. 如图,将钢琴上的12个键依次记为1221,,,a a a ,设121≤<<≤k j i ,若3=-j k 且4=-i j ,则称k j i a a a ,,为原位大三和弦;若4=-j k 且3=-i j ,则称k j i a a a ,,为原位小三和弦。
用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 A. 5 B. 8 C. 10 D. 154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订 单量大幅增加,导致订单积压。
为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某 日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能 完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少 需要志愿者A. 10名B. 18名C. 24名D. 32名 5. 已知单位向量a 、b 的夹角为︒60,则在下列向量中,与b 垂直的是A. a + 2bB. 2a + bC. a - 2bD. 2a - b 6. 记n S 为等比数列}{n a 的前n 项和。
若1235=-a a ,2446=-a a ,则=nna S A. 12-n B. n --122 C. 122--n D. 121--n 7. 执行右面的程序框图,若输入的k = 0,a = 0,则输出的k 为A. 2B. 3C. 4D. 5 8. 若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A.55B.552 C.553 D.5549. 设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于D 、E 两点。
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)

2020年全国统一高考数学试卷(文科)(新课标Ⅱ)一、单选题(本大题共12小题,共60.0分)1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A. ⌀B. {−3,−2,2,3}C. {−2,0,2}D. {−2,2}【答案】D【解析】【分析】本题考查集合的运算,属于基础题.根据集合的交集运算即可.【解答】解:A∩B={x||x|<3,x∈Z}∩{x||x|>1,x∈Z}={x|1<|x|<3,x∈Z}={−2,2}故选:D.2.(1−i)4=()A. −4B. 4C. −4iD. 4i【答案】A【解析】【分析】本题考查复数的运算,属于基础题.根据复数的运算法则计算即可.【解答】解:,故选:A.3.如图,将钢琴上的12个键依次记为a1,a2,⋯,a12,设1≤i<j<k≤12.若k−j=3且j−i=4,则称a i,a j,a k为原位大三和弦;若k−j=4且j−i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A. 5B. 8C. 10D. 15【答案】C【解析】【分析】根据新定义,用列举法.【解答】解:令k−j=3且j−i=4,相加得k−i=7,又1≤i<j≤12,故8≤k≤12,所以原位大三和弦(i,j,k)有(1,5,8)(2,6,9)(3,7,10)(4,8,11)(5,9,12),共5种;同理原位小三和弦(i,j,k)有(1,4,8)(2,5,9)(3,6,10)(4,7,11)(5,8,12),共5种;所以用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为10.故选:C4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10名B. 18名C. 24名D. 32名【答案】B【解析】本题考查对概率的理解,属于基础题.通过条件容易得出第二天需配送的总订单数,进而可求出所需至少人数.【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为1600+500−120050=18名.故选B.5.已知单位向量a⃗,b⃗ 的夹角为60°,则在下列向量中,与b⃗ 垂直的是()A. a⃗+2b⃗B. 2a⃗+b⃗C. a⃗−2b⃗D. 2a⃗−b⃗ 【答案】D【解析】【分析】本题考查平面向量的数量积,向量垂直的充要条件,属于基础题.由a⃗⋅b⃗ =|a⃗||b⃗ |cos 60∘=12,逐一验证选项即可.【解答】解:∵a⃗⋅b⃗ =|a⃗||b⃗ |cos 60∘=12∴A选项:b⃗ ⋅(a⃗+2b⃗ )=b⃗ ⋅a⃗+2b⃗ 2=12+2=52B选项:b⃗ ⋅(2a⃗+b⃗ )=2b⃗ ⋅a⃗+b⃗ 2=1+1=2C选项:b⃗ ⋅(a⃗−2b⃗ )=b⃗ ⋅a⃗−2b⃗ 2=12−2=−32D选项:b⃗ ⋅(2a⃗−b⃗ )=2b⃗ ⋅a⃗−b⃗ 2=1−1=0得,6.记S n为等比数列{a n}的前n项和.若a5−a3=12,a6−a4=24,则S na n=()A. 2n−1B. 2−21−nC. 2−2n−1D. 21−n−1【答案】B【解析】【分析】本题考查等比数列的前n项和公式,等比数列的通项公式,属于基础题.由等比数列的通项公式,前n项和公式计算即可.【解答】解:∵a5−a3=12①,a6−a4=24②∴②÷①得q=2,∴S na n =a1(1−q n)1−qa1⋅q n−1=1−q n(1−q)q n−1=1−2n−2n−1=2−21−n故选:B7.执行右图的程序框图,若输入的k=0,a=0,则输出的k为()A. 2B. 3C. 4D. 5【解析】【分析】本题考查程序框图中的循环结构,属于基础题.【解答】解:运用程序框图,第一次循环,a=2a+1=1,k=1,此时a>10不成立,第二次循环,a=2a+1=3,k=2,此时a>10不成立,第三次循环,a=2a+1=7,k=3,此时a>10不成立,第四次循环,a=2a+1=15,k=4,此时a>10成立,结束循环,输出k=4,故选:C.8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A. √55B. 2√55C. 3√55D. 4√55【答案】B【解析】【分析】本题考查直线与圆的位置关系及点到直线的距离计算,属基础题.由圆与坐标轴相切,可得圆心坐标及半径,再用点到直线的距离公式求解即可.【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(2−a)2+(1−a)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是d=2√55.故选B.9.设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若△ODE的面积为8,则C的焦距的最小值为()A. 4B. 8C. 16D. 32【答案】B【解析】【分析】本题主要考查双曲线的几何性质及双曲线的渐近线.得出双曲线的渐近线方程,由于直线x=a与双曲线的两条渐近线分别交于D、E两点,得到|DE|=2b,然后由三角形的面积和基本不等式即可求解.【解答】解:双曲线C的两条渐近线分别为y=±bax,由于直线x=a与双曲线的两条渐近线分别交于D、E两点,则易得到|DE|=2b,则S▵ODE=ab=8,c2=a2+b2≥2ab=16,即c≥4,焦距2c≥8.故选B.10.设函数f(x)=x3−1x3,则f(x)()A. 是奇函数,且在(0,+∞)单调递增B. 是奇函数,且在(0,+∞)单调递减C. 是偶函数,且在(0,+∞)单调递增D. 是偶函数,且在(0,+∞)单调递减【答案】A【解析】【分析】本题考查函数奇偶性和单调性的判断,属于综合题.由奇偶性的定义判断函数的奇偶性,由导数判断函数的单调性即可.【解答】解:函数的定义域是{x|x∈R且x≠0},f(−x)=(−x)3−1(−x)3=−(x3−1x3)=−f(x),∴f(x)为奇函数.又当x∈(0,+∞)时,y=x3,y=−1x均为增函数,∴f(x)在(0,+∞)上单调递增,故选:A.11.已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的表面上,若球O的表面积为16π,则球O到平面ABC的距离为()A. √3B. 32C. 1 D. √32【答案】C【解析】【分析】本题主要考查点到平面的距离求法,属于中档题.根据正三角形▵ABC是面积为9√34得到△ABC的外接圆半径r=√3,根据球O的表面积为16π得到球的半径R=2,利用勾股定理即可得到答案.【解答】解:设△ABC的外接圆圆心为O1,设OO1=d,圆O1的半径为r,球O的半径为R,△ABC的边长为a,则S△ABC=√34a2=9√34,可得a=3,由asinA =2r,于是r=√3=√3,由题意知,球O的表面积为16π,则R=2,OO1⊥面ABC,由R2=r2+d2,求得d=1,即O到平面ABC的距离为1.故选C.12.若2x−2y<3−x−3−y,则()A. ln(y−x+1)>0B. ln(y−x+1)<0C. ln|x−y|>0D. ln|x−y|<0【答案】A【解析】【分析】本题主要考查对数函数与指数函数,考查函数的单调性,属于中档题.利用指数函数的单调性得到复合函数的单调性,从而得到x和y的大小,根据对数函数的性质即可而得到答案.【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,y=2x,y=−3−x=−(13)x,在R上均为增函数.所以函数f(x)在R上单调递增,因为f(x)<f(y),所以x<y,则y−x+1>1,ln(y−x+1)>0.故选A.二、单空题(本大题共4小题,共20.0分)13.设sin x=−23,则cos 2x=.【答案】【解析】【分析】本题考查了二倍角公式的应用,属于基础题. 利用题干信息,结合二倍角公式直接求解即可. 【解答】解:∵sin x =−23,∴cos 2x =1−2sin 2x =1−2×(−23)2=19.故答案为:19.14. 记S n 为等差数列{a n }的前n 项和,若a 1=−2,a 2+a 6=2,则S 10=________.【答案】25 【解析】 【分析】本题考查了等差数列的通项公式与前n 项和,属于基础题. 由题意求出数列的公差,由求和公式可得答案. 【解答】解:∵数列{a n }为等差数列,设公差为d , ∵a 1=−2,a 2+a 6=2,∴−2+d +(−2)+5d =2,解得d =1, ∵S n 为{a n }的前n 项和, 故S 10=10a 1+10×92d =10×(−2)+45=25.故答案为:25.15. 若x,y 满足约束条件{x +y ≥−1x −y ≥−12x −y ≤1,则z =x +2y 的最大值是________. 【答案】8 【解析】 【分析】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的思想是解决此类问题的基本方法,属于一般题. 【解答】解:作出不等式组{x +y ≥−1x −y ≥−12x −y ≤1对应的可行域,如下图阴影部分,由z =x +2y ,得y =−12x +z2, 平移直线y =−12x +z2,可知当直线y =−12x +z2经过图中的点A 时,直线的截距最大,此时z 最大, 由{x −y =−12x −y =1,可得A (2,3), ∴z =x +2y 的最大值为2+2×3=8. 故答案为:8.16.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p4【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于p1:可设l1与l2,所得平面为α.若l3与l1相交,则交点A必在平面α内.同理l2与l3的交点B在平面α内,故直线AB在平面α内,即l3在平面α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数个平面,故p2为假命题.对于p3:空间中两条直线的位置关系有平行,相交,异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知,p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为①③④.三、解答题(本大题共7小题,共80.0分)17.△ABC的内角A,B,C的对边分别为a,b,c,已知cos2(π2+A)+cos A=54.(1)求A;(2)若b−c=√33a,证明:△ABC是直角三角形.【答案】解:(1)∵cos2(π2+A)+cosA=54,化简得cos2A−cosA+14=0,解得cosA=12,又A是ΔABC的内角,故A=π3.(2)证明:∵b−c=√33a,A=π3,由正弦定理可得sinB−sinC=√33sinA=12,又B=π−A−C=2π3−C,∴sin(2π3−C)−sinC=12,化简可得√32cosC−12sinC=12,即可得cos(C+π6)=12,又C∈(0,2π3),得C+π6∈(π6,5π6),故可得C+π6=π3,即C=π6,故A+C=π3+π6=π2,∴ΔABC是直角三角形.【解析】本题考查了正弦定理的应用以及两角和差的正余弦公式的应用,考查了诱导公式和辅助角公式,属于中档题.(1)利用诱导公式和同角的三角函数关系对已知式进行化简,得到cosA=12,再结合A 为三角形的一内角,即可求出角A;(2)利用正弦定理把b−c=√33a中的边化成角,得到sinB−sinC=√33sinA=12,再结合A+C=2π3,对式子进行化简,最后结合辅助角公式以及角C的范围,求出角C,即可证得三角形为直角三角形.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i =6020i=1,∑y i =120020i=1,∑(x i −x )2=8020i=1,∑(y i −y )2=900020i=1,∑(x i −x )(y i −y )=8020i=10.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,√2≈1.414.【答案】解:(1)由题可知,每个样区这种野生动物数量的平均数为120020=60,所以该地区这种野生动物数量的估计值为60×200=12000. (2)根据公式得r =i −x)(y i −y)n i=1√∑(x i −x)∑(y i −y)i=1i=1=√80×9000=3√2≈0.94,(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时, 为了提高样本的代表性,减小抽样误差,选用分层抽样法更加合理.【解析】本题考查平均数的计算、相关系数、抽样方法,属于基础题(1)根据题目数据,计算每个样区这种野生动物数量的平均数,从而求出地区这种野生动物数量的估计值;(2)根据相关系数公式计算即可;(3)由样本数据的特征,可采用系统抽样进行样本统计.19.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【答案】解:(1)∵F为椭圆C1的右焦点,且AB垂直x轴,∴F(c,0),|AB|=2b2a,设抛物线C2方程为y2=2px(p>0),∵F为抛物线C2的焦点,且CD垂直x轴,∴F(p2,0),|CD|=2p,∵|CD|=43|AB|,C1与C2的焦点重合,∴{c=p22p=43×2b2a整理得4c=8b23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,解得e=12或e=−2(舍)故椭圆C1的离心率为12(2)由(1)知a=2c,b=√3c,p=2c,∴C1:x24c2+y23c2=1,C2:y2=4cx,∴C1的四个顶点坐标分别为(2c,0),(−2c,0),(0,√3c),(0,−√3c),C2的准线为x=−c,由已知得3c+c+c+c=12,即c=2.所以C1与C2的标准方程分别为x216+y212=1,y2=8x【解析】本题主要考查椭圆和抛物线的简单几何性质、直线与椭圆的位置关系、直线与抛物线的位置关系,属于中等题.(1)根据题意,列出椭圆a,b,c之间的齐次方程,求出离心率;(2)由(1)可设C1与C2的标准方程,求出顶点坐标,列出方程即可求出c的值,从而得到C1与C2的标准方程。
2020年高考全国二卷文科数学试卷

.2020年普通高等学校招生全国统一考试(II 卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符 合题目要求的。
1. 已知集合},3||{Z ∈<=x x x A ,},1||{Z ∈>=x x x B ,则=B AA. ∅B. }3,2,2,3{--C. }2,0,2{-D. }2,2{-2. =-4)i 1(A. -4B. 4C. -4iD. 4i3. 如图,将钢琴上的12个键依次记为1221,,,a a a ,设121≤<<≤k j i ,若3=-j k 且4=-i j ,则称k j i a a a ,, 为原位大三和弦;若4=-j k 且3=-i j ,则称k j i a a a ,,为原位小三和弦。
用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 A. 5 B. 8 C. 10 D. 154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订 单量大幅增加,导致订单积压。
为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某 日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能 完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少 需要志愿者A. 10名B. 18名C. 24名D. 32名 5. 已知单位向量a 、b 的夹角为︒60,则在下列向量中,与b 垂直的是A. a + 2bB. 2a + bC. a - 2bD. 2a - b 6. 记n S 为等比数列}{n a 的前n 项和。
若1235=-a a ,2446=-a a ,则=nna S A. 12-nB. n --122C. 122--nD. 121--n7. 执行右面的程序框图,若输入的k = 0,a = 0,则输出的k 为A. 2B. 3C. 4D. 5 8. 若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A.55B.552 C.553 D.5549. 设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于D 、E 两点。
2020年高考全国二卷文科数学试卷

2020年普通高等学校招生全国统一考试(II 卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合},3||{Z ∈<=x x x A ,},1||{Z ∈>=x x x B ,则=B AA 。
B 。
}3,2,2,3{--C . }2,0,2{-D 。
}2,2{-2. =-4)i 1(A 。
—4B. 4 C . -4i D 。
4i3. 如图,将钢琴上的12个键依次记为1221,,,a a a ,设121≤<<≤k j i ,若3=-j k 且4=-i j ,则称k j i a a a ,,为原位大三和弦;若4=-j k 且3=-i j ,则称k j i a a a ,, 为原位小三和弦。
用这12个键可以构成的原位大三和 弦与原位小三和弦的个数之和为 A 。
5 B. 8 C 。
10 D. 154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压。
为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0。
05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A. 10名B. 18名C. 24名D. 32名5. 已知单位向量a 、b 的夹角为︒60,则在下列向量中,与b 垂直的是A 。
a + 2bB 。
2a + bC 。
a — 2b D. 2a — b6. 记为等比数列}{n a 的前n 项和。
若1235=-a a ,2446=-a a ,则=nna S A. 12-n B. n --122 C 。
122--n D 。
121--n2020.7A. 2 B . 3 C . 4 D 。
58. 若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A 。
2020年高考全国二卷文科数学试卷

2020年普通高等学校招生全国统一考试(II 卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符 合题目要求的。
1. 已知集合},3||{Z ∈<=x x x A ,},1||{Z ∈>=x x x B ,则=B AA. ∅B. }3,2,2,3{--C. }2,0,2{-D. }2,2{-2. =-4)i 1(A. -4B. 4C. -4iD. 4i3. 如图,将钢琴上的12个键依次记为1221,,,a a a ,设121≤<<≤k j i ,若3=-j k 且4=-i j ,则称k j i a a a ,,为原位大三和弦;若4=-j k 且3=-i j ,则称k j i a a a ,,为原位小三和弦。
用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 A. 5 B. 8 C. 10 D. 154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订 单量大幅增加,导致订单积压。
为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某 日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能 完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少 需要志愿者A. 10名B. 18名C. 24名D. 32名 5. 已知单位向量a 、b 的夹角为︒60,则在下列向量中,与b 垂直的是A. a + 2bB. 2a + bC. a - 2bD. 2a - b 6. 记n S 为等比数列}{n a 的前n 项和。
若1235=-a a ,2446=-a a ,则=nna S A. 12-n B. n --122 C. 122--n D. 121--n 7. 执行右面的程序框图,若输入的k = 0,a = 0,则输出的k 为A. 2B. 3C. 4D. 5 8. 若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A.55B.552 C.553 D.5549. 设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于D 、E 两点。
2020年高考试题——数学(文)(全国卷II)

2020年普通高等学校招生全国统一考试(全国卷Ⅱ)数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=A.∅B.{-3,-2,2,3}C.{-2,0,2}D.{-2,2}2.(1-i)4=A.-4B.4C.-4iD.4i3.如图,将钢琴上的12个键依次记为a1,a2,…a12,设1≤i≤j≤k≤12。
若k-j=3且j-i=4,则称a i,a j,a k为原位大三和弦;若k-j=4且j-i=3,则称a i,a j,a k为原位小三和弦。
用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名5.已知单位向量a,b的夹角为60°,则下列向量中,与b垂直的是A.a+2bB.2a+bC.a-2bD.2a-b6.记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则nnSa=A.2n-1B.2-21-nC.2-2n-1D.21-n-17.执行右面的程序框图,若输入k=0,a=0,则输出的k为A.2B.3C.4D.58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为 525 35 459.设O 为坐标原点,直线x =a 与双曲线C :22221(0,0)x y a b a b-=>>的两条渐近线分别交于D ,E 两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学试卷--全国2(文科)
一、选择题:本题共12小题,每小题5分,共60分.
1.(20•全国2文)已知集合A={x│∣x∣<3,x∈Z},B={x│∣x∣>1,x∈Z},则A ∩B=( )【D】
A. B.{-3,-2,2,3} C.{-2,0,2} D.{-2,2}
2.(20•全国2文)(1-i)4=( )【A】
A.-4
B.4
C.-4i
D.4i
3.(20•全国2文)如图,将钢琴上的12个键依次记为a
1,a2,…,a12. 设1≤i<j <k≤12,若k-j=3且j-i=4,则称
a i,a j,a k为原位大三和弦;若k-j=4且
j-i=3,则称a
i,a j,a k为原位小三和弦.
用这12个键可以构成的原位大三和
弦与原位小三和弦的个数之和为( )
【C】
A.5
B.8
C.10
D.15
4.(20•全国2文)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预
计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )【B】
A.10名
B.18名
C.24名
D.32名
5.(20•全国2文)已知单位向量→a,→b的夹角为60°,则在下列向量中,与→b 垂直的是( )【D】
A.→a+2→b
B.2→a+→b
C.→a-2→b
D.2→a-→b
6.(20•全国2文)记S n为等比数列{a n}的前n项和. 若a
5-a3=12, a6-a4=24,
则S n
a n
=( )【B】
A.2n-1
B.2-21-n
C.2-2n-1
D.21-n-1
7.(20•全国2文)执行右面的程序框图,若输入的k=0,a=0,则输出的k为( )【C】
A.2
B.3
C.4
D.5
8.(20•全国2文)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为( )【B】
A.
5
5
B.
25
5
C.355
D.455
9.(20•全国2文)设O 为坐标原点,直线x=a 与双曲线C:x 2a 2-y 2
b 2=1(a >0,b >
0)的两条渐近线分别交于D ,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( )【C 】
A.4
B.8
C.16
D.32
10.设函数f(x)=x 3-1
x
3,则f(x)( )【A 】
A.是奇函数,且在(0,+∞)单调递增
B.是奇函数,且在(0,+∞)单调递减
C.是偶函数,且在(0,+∞)单调递增
D.是偶函数,且在(0,+∞)单调递减
11.(20•全国2文)已知△ABC 是面积为93
4的等边三角形,且其顶点都在球O
的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )【C 】 A.3 B.32 C.1 D.3
2
12.(20•全国2文)若2x -2y <3-x -3-y ,则( )【A 】 A.ln(y-x+1)>0 B.ln(y-x+1)<0 C.ln │x-y │>0 D.ln │x-y │<0
二、填空题:本题共4小题,每小题5分,共20分. 13.(20•全国2文)若sinx=-2
3
,则cos2x=_____.【19】
14.(20•全国2文)记S n 为等差数列{a n }的前n 项和,若a 1=-2,a 2+a 6=2,则S 10=____.【25】
15.(20•全国2文)若x,y 满足约束条件⎩⎨⎧x+y ≥-1
x-y ≥-12x-y ≤1
,则z=x+2y 的最大值是____.
【8】
16.(20•全国2文)设有下列4个命题:
p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线 ⊂平面α,直线m ⊥平面α,则m ⊥ .
则下述命题中所有真命题的序号是_____.【①③④】 ①p 1÷p 4;②p 1÷p 2;③⌝p 2≠p 3;④⌝p 3≠⌝p 4.
三、解答题:共70分. 第17~21题为必考题,第22、23题为选考题. 必考题,共60分.
17.(20•全国2文)(12分)△ABC 的内角A,B,C 的对边分别为a,b,c ,已知
cos 2
(π
2+A)+cosA=54
.
(1)求A ; (2)若b-c=
3
3
a ,证明:△ABC 是直角三角形. 【(1)A=60°;(2)B=90°】
18.(20•全国2文)(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分为面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到
样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得
()()()()2
2
202020
20
20
i
i
i
i
i
i
i=1
i=1
i=1
i=1
i=1
x =60y =1200x -x =80y -y =9000x -x y -y =800∑∑∑∑∑,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由。
【(1)12000;(2)0.94;(3)分层抽样】
19.(20•全国2文)(12分)已知椭圆C 1:x 2a 2+y 2
b 2=1(a >b >0)的右焦点F 与抛物
线C 2的焦点重合,C 1的中心与C 2的顶点重合. 过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且│CD │=4
3
│AB │.
(1)求C 1的离心率;
(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 【(1)12;(2)C 1:x 216+y 2
12=1,C 2:y 2=8x 】
20.(20•全国2文)如图,已知三棱柱ABC-A 1B 1C 1
的底面是正三角形,侧面BB 1C 1C 是矩形,M 、N 分别为BC 、B 1C 1的中点,P 为AM 上一点,B 1C 1和P 的平面
交AB 于E ,交AC 于F.
(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面E B 1C 1F ;
(2)设O 为△A 1B 1C 1的中心,若AO=AB=6,AO ∥平面E B 1C 1F ,且∠MPN=60°,求四棱锥B-EB 1C 1F 的体积. 【(1);(2)24】
21.(20•全国2文)(12分)已知函数f(x)=2lnx+1. (1)若f(x)≤2x+c ,求c 的取值范围;
(2)设a >0,讨论函数g(x)=f(x)-f(a)x-a 的单调性.
【(1)c ≥-1;(2)在(0,a)和(a,+∞)上递减】
选考题:共10分,请考生在22、23题中任选一题作答.
22.(20•全国2文) (10分)已知曲线C 1,C 2的参数方程分别为C 1:⎩⎨⎧x =4cos 2θ
y =4sin 2θ
(θ
为参数),C 2: ⎩
⎨⎧x =t+
1t
y =t-1t
(t 为参数).
(1)将C 1,C 2的参数方程化为普通方程:
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. 设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. 【(1)C 1:x+y-4=0(x ≥0,y ≥0), C 1:x 2-y 2=4;(2)ρ=
17
5
cos θ】 23.(20•全国2文)(10分)已知函数f(x)=│x-a 2│+│x-2a+1│.
(1)当a=2时,求不等式f(x)≥4的解集;
(2)若f(x)≥4,求a的取值范围.【(1)x∈R;(2)a≤-3或a≥1或a=-1】。