第4章 机械振动38页PPT
合集下载
大学物理——第4章-振动和波

A sin1 + A sin2 2 tan = 1 A cos1 + A cos2 1 2
合成初相 与计时起始时刻有关.
v A 2
ω
v A
2
O
x2
1
v A 1
x1
xx
分振动初相差2 1与计时起始时刻无关,但它对合成振幅 是相长还是相消合成起决定作用.
20
讨 论
2 A = A2 + A2 + 2A A2 cos(2 1) 1 1
F = kx
3
l0
k
m
A
F = kx = ma
k 令ω = m
2
A x = Acos(ωt +)
o
x
积分常数,根据初始条件确定
a = ω2 x
dx = ω2 x dt 2
2
dx υ = = Aω sin( ωt +) dt
dx 2 a = 2 = Aω cos(ωt +) dt
4
2
x = Acos(ωt +)
15
π
例 4-3 有两个完全相同的弹簧振子 A 和 B,并排的放在光滑 的水平面上,测得它们的周期都是 2s ,现将两个物体从平衡 位置向右拉开 5cm,然后先释放 A 振子,经过 0.5s 后,再释 放 B 振子,如图所示,如以 B 释放的瞬时作为时间的起点, (1)分别写出两个物体的振动方程; (2)它们的相位差是多少?分别画出它们的 x—t 图.
5cm
O
x
16
解: (1)振动方程←初始条件
x0 = 0.05m, υ0 = 0 , T = 2s
2π ω= = π rad/s T
2 υ0 2 A = x0 + 2 = 0.05m ω υ0 对B振子: tan B = = 0 B = 0 x0ω
合成初相 与计时起始时刻有关.
v A 2
ω
v A
2
O
x2
1
v A 1
x1
xx
分振动初相差2 1与计时起始时刻无关,但它对合成振幅 是相长还是相消合成起决定作用.
20
讨 论
2 A = A2 + A2 + 2A A2 cos(2 1) 1 1
F = kx
3
l0
k
m
A
F = kx = ma
k 令ω = m
2
A x = Acos(ωt +)
o
x
积分常数,根据初始条件确定
a = ω2 x
dx = ω2 x dt 2
2
dx υ = = Aω sin( ωt +) dt
dx 2 a = 2 = Aω cos(ωt +) dt
4
2
x = Acos(ωt +)
15
π
例 4-3 有两个完全相同的弹簧振子 A 和 B,并排的放在光滑 的水平面上,测得它们的周期都是 2s ,现将两个物体从平衡 位置向右拉开 5cm,然后先释放 A 振子,经过 0.5s 后,再释 放 B 振子,如图所示,如以 B 释放的瞬时作为时间的起点, (1)分别写出两个物体的振动方程; (2)它们的相位差是多少?分别画出它们的 x—t 图.
5cm
O
x
16
解: (1)振动方程←初始条件
x0 = 0.05m, υ0 = 0 , T = 2s
2π ω= = π rad/s T
2 υ0 2 A = x0 + 2 = 0.05m ω υ0 对B振子: tan B = = 0 B = 0 x0ω
机械振动案例分析最全PPT

高架桥上的吸声屏障
高架桥上的吸声 与隔振组合屏障
在坦克炮塔内,陀螺仪、加速度计及角度传 感器不断地测定各种运动载荷,车载计算机根 据这些信息计算并发出抵消这些运动的控制指 令,通过伺服系统使炮塔相对于底盘水平转动、 火炮相对于炮塔高低俯仰,从而使坦克即使在 不断颠簸的运动中也能将火炮准确地对准目标。
在振动力学研究兴起之前,有两个典型的振动问题引起注 意,即弦线振动和单摆摆动。弦线振动是无穷多自由度连 续系统的振动,单摆摆动是单自由度离散系统的振动,振幅 不大时都可认为是线性的.单摆振动比较简单,对后来线性 振动的发展影响不大。
1678年Hooke提出弹性定律,建立了弹性体变形与恢复 力间的线性关系,引入了振动系统的基本组成部分——弹 簧,1678年,Newton在其划时代的《自然哲学之数学 原理》中建立了运动变化与受力间的关系,使振动问题的 动力学研究成为可能,他也定义了振动系统的另一基本组 成部分——质量,假设了介质阻力与速度及速度平方成正 比,形成阻尼概念的雏形。
机械振动,是指物体(系)在平衡位置(或平 均位置)附近来回往复的运动。
●引起噪声污染;
●影响精密仪器设备的功能,降低机械加工 的精度和光洁度; ●消耗机械系统的能量,降低机器效率;
●使结构系统发生大变形而破坏,甚至造成 灾难性的事故,有些桥梁等建筑物就是由 于振动而塌毁;
●机翼的颤振、机轮的摆振和航空发动机的 异常振动,曾多次造成飞行事故;
车载火炮稳定系统
振动引起的转子系统破坏
如果在加工时有强迫振动,又称为激励振动,它是由周期变 化的激振力所引起的,例如主轴回转不平衡、电机振动、传 限制有害的振动,利用有益的振动
1678年Hooke提出弹性定律,建立了弹性体变形与恢复力间的线性关系,引入了振动系统的基本组成部分——弹簧,1678年,Newton
第四章振动和波动_1机械振动

A=
x02
v0
2
求A,然后由
x0=Acos v0=-Aωsin 两者的共同部分求 。
[例1]:一弹簧振子系统,弹簧的劲度系数为k=0.72N/m, 物体的质量为m=20g。今将物体从平衡位置沿桌面向右拉长 到0.04m处释放,求振动方程。
解:要确定弹簧振子系统的振动方程,只要确定A、ω和即可。
由题可知,k=0.72N/m,m=20g=0.02kg,x0=0.04m,v0=0, 代入公式可得
= k 0.72 6rad s1
m 0.02
A
x02
v02
2
0.042
02 62
0.04m
又因为x0为正,初速度v0=0,可得
0
因而简谐振动的方程为:
x 0.04cos(6t) (m)
一、简谐运动 1、弹簧振子
2、弹簧振子运 动的定性分析
B→O:弹性力向右,加速度向右,加速;
O→C:
向左,
向左,减速;
C→O:
向左,
向左,加速;
O→B:
向右,
向右,减速。
物体在B、C之间来回往复运动
3、物体作简谐运动的条件
物 体 的 惯 性 ——阻止系统停留在平衡位置 作用在物体上的弹性力——驱使系统回复到平衡位置
v dx Asin( t )
dt
a
d2x dt 2
2 Acos(
t
)
说明:
• 物体在简谐运动时,其位移、速度、加速度都是周期性
变化的
• 简谐运动不仅是周期性的,而且是有界的,只有正弦函 数、余弦函数或它们的组合才具有这种性质,这里我们采
大学物理-机械振动

交通工具的不舒适
机械振动也会影响交通工具的舒适 度,如火车、汽车等在行驶过程中 产生的振动,会让乘客感到不适。
机械振动在工程中的应用
振动输送
利用振动原理实现物料的输送,如振动筛、振动输送机等。
振动破碎
利用振动产生的冲击力破碎硬物,如破碎机、振动磨等。
振动减震
在建筑、桥梁等工程中,采用减震措施来减小机械振动对结构的影 响,提高结构的稳定性和安全性。
感谢您的观看
THANKS
机械振动理论的发展可以追溯到 古代,如中国的编钟和古代乐器 的制作。
近代发展
随着物理学和工程学的发展,人 们对机械振动的认识不断深入, 应用范围也不断扩大。
未来展望
随着科技的不断进步,机械振动 在新能源、新材料、航空航天等 领域的应用前景将更加广阔。
02
机械振动的类型与模型
简谐振动
总结词
简谐振动是最基本的振动类型,其运动规律可以用正弦函数或余弦函数描述。
机械振动在科研中的应用
振动谱分析
01
通过对物质在不同频率下的振动响应进行分析,可以研究物质
的分子结构和性质。
振动控制
02
通过控制机械振动的参数,实现对机械系统性能的优化和控制,
如振动减震、振动隔离等。
振动实验
03
利用振动实验来研究机械系统的动态特性和响应,如振动台实
验、共振实验等。
05
机械振动的实验与测量
根据实验需求设定振动频率、幅度和波形等 参数。
启动实验
启动振动台和数据采集器,开始记录数据。
数据处理
将采集到的数据导入计算机,进行滤波、去 噪和整理,以便后续分析。
绘制图表
将处理后的数据绘制成图表,如时域波形图、 频谱图等,以便观察和分析。
机械振动也会影响交通工具的舒适 度,如火车、汽车等在行驶过程中 产生的振动,会让乘客感到不适。
机械振动在工程中的应用
振动输送
利用振动原理实现物料的输送,如振动筛、振动输送机等。
振动破碎
利用振动产生的冲击力破碎硬物,如破碎机、振动磨等。
振动减震
在建筑、桥梁等工程中,采用减震措施来减小机械振动对结构的影 响,提高结构的稳定性和安全性。
感谢您的观看
THANKS
机械振动理论的发展可以追溯到 古代,如中国的编钟和古代乐器 的制作。
近代发展
随着物理学和工程学的发展,人 们对机械振动的认识不断深入, 应用范围也不断扩大。
未来展望
随着科技的不断进步,机械振动 在新能源、新材料、航空航天等 领域的应用前景将更加广阔。
02
机械振动的类型与模型
简谐振动
总结词
简谐振动是最基本的振动类型,其运动规律可以用正弦函数或余弦函数描述。
机械振动在科研中的应用
振动谱分析
01
通过对物质在不同频率下的振动响应进行分析,可以研究物质
的分子结构和性质。
振动控制
02
通过控制机械振动的参数,实现对机械系统性能的优化和控制,
如振动减震、振动隔离等。
振动实验
03
利用振动实验来研究机械系统的动态特性和响应,如振动台实
验、共振实验等。
05
机械振动的实验与测量
根据实验需求设定振动频率、幅度和波形等 参数。
启动实验
启动振动台和数据采集器,开始记录数据。
数据处理
将采集到的数据导入计算机,进行滤波、去 噪和整理,以便后续分析。
绘制图表
将处理后的数据绘制成图表,如时域波形图、 频谱图等,以便观察和分析。
4机械振动PPT课件

X
k=mg/ l
令向下有位移 x, 则 f=mg-k(l +x)=-kx
作谐振动 设振动方程为 xA cos t (0)
k m
gl
9.8 1r0a/d s 0.098
由初条件得
1r0a/d s
A x02(v0)2 0.09m 8 0 arc(tgvx00 )0,
m
O
x
由x0=Acos0=-0.098<0 cos0<0, 取0=
解:由初始条件:
A
x02
v02
2
0.3 2 9.42 2
4 2
0.42(m 4)
A
0.2 2
x
A
4
0
tg1( v0
x0
由旋转矢量
)tg1(1)
4
质点运动方程:
x0.42c4o2s(t)0.42c4o1s0(t)m ( )
0.2 4
4
(2)由旋转矢量可知:
从t=0到第一次返回x=x0处,相位角的改
对同一谐振动取不同的计时起点不同,但、A不变
例:如图所示,振动系统由一倔强系数为k的 轻弹簧、 一半径为R、转动惯量为I的 定滑轮和一质量为m的 物体所组成。使物体略偏离平衡位置后放手,任其振 动,试证物体作简谐振动,并求其周期T.
解:取位移轴ox,m在平 衡位置时,设弹簧伸长量
为l,则
m gkl0
0 是t =0时刻的位相—初位相
t0时x0A co 0s
v0Asin0
tan0
v0
x0
位相差 两振动位相之差。
21
当=2k ,k=0,±1,±2…,两振动步调相同,称同相 当=(2k+1) , k=0,±1,±2...
《机械振动》张义民—第4章第1、2节ppt

第四章 两自由度系统的振动
◆当振动系统需要两个独立坐标描述其运动时, 那么这个系统就是两个自由度系统。
◆两自由度系统是最简单的多自由度系统。 ◆两自由度系统的振动微分方程一般由两个联立 的微分方程组成。 ◆两自由度系统有两个固有频率及固有振型。
◆在任意初始条件下的自由振动一般由这两个固 有振型叠加,只有在特殊的初始条件下系统才按某 一个固有频率作固有振动。
大象体积庞大,走起路来 更是别具一格,四只脚移动 时分别各自相差90度的位移 差。没有一只脚做的是相同 位移的移动。
◆四只脚动物可以看作是“四个振动体耦合在一起的 系统”吗?事实上,四个振动体组成的系统的基本运动 模式,确实与所提到的那四种走路方式一模一样。
◆可是动物们为什么会按照耦合振动体的方式来行走 呢?虽说现在关于这个问题还没有定论。生物学家们认 为,掌管运动的脑神经网(由数突连接起来的神经细胞) 看起来更接近“耦合振动体”一些。有推测认为,正是 脑神经网的动力学特性,使得动物走起路来才会表现出 振动体的特点。
1998年匈牙利的物理学家塔 马斯·维塞克在布达佩斯音乐学 院举行的一场音乐会上意外地发 现了同步化的现象。
演出相当成功,落幕后观众们热烈的掌声长达 3分钟之久,而维塞克博士便在这里发现了有趣 的东西。音乐会刚一结束,观众们雷鸣暴雨般的 掌声响起,然而过了一段时间之后,观众们的热 烈的掌声显然同步化了,变成了同一种节奏的拍 手。为了答谢观众们的热情,演奏者重新走上台 来谢幕,这时的掌声又突然之间失去了刚才的节 奏,雨点般疯狂地响起。在最后长达3分钟的鼓 掌声中,狂热的掌声和同步的掌声依次交替出现。
◆强迫简谐振动发生在激励频率,而这两个坐标 的振幅将在这两个固有频率下趋向最大值。共振时 的振型就是与固有频率相应的固有振型。
◆当振动系统需要两个独立坐标描述其运动时, 那么这个系统就是两个自由度系统。
◆两自由度系统是最简单的多自由度系统。 ◆两自由度系统的振动微分方程一般由两个联立 的微分方程组成。 ◆两自由度系统有两个固有频率及固有振型。
◆在任意初始条件下的自由振动一般由这两个固 有振型叠加,只有在特殊的初始条件下系统才按某 一个固有频率作固有振动。
大象体积庞大,走起路来 更是别具一格,四只脚移动 时分别各自相差90度的位移 差。没有一只脚做的是相同 位移的移动。
◆四只脚动物可以看作是“四个振动体耦合在一起的 系统”吗?事实上,四个振动体组成的系统的基本运动 模式,确实与所提到的那四种走路方式一模一样。
◆可是动物们为什么会按照耦合振动体的方式来行走 呢?虽说现在关于这个问题还没有定论。生物学家们认 为,掌管运动的脑神经网(由数突连接起来的神经细胞) 看起来更接近“耦合振动体”一些。有推测认为,正是 脑神经网的动力学特性,使得动物走起路来才会表现出 振动体的特点。
1998年匈牙利的物理学家塔 马斯·维塞克在布达佩斯音乐学 院举行的一场音乐会上意外地发 现了同步化的现象。
演出相当成功,落幕后观众们热烈的掌声长达 3分钟之久,而维塞克博士便在这里发现了有趣 的东西。音乐会刚一结束,观众们雷鸣暴雨般的 掌声响起,然而过了一段时间之后,观众们的热 烈的掌声显然同步化了,变成了同一种节奏的拍 手。为了答谢观众们的热情,演奏者重新走上台 来谢幕,这时的掌声又突然之间失去了刚才的节 奏,雨点般疯狂地响起。在最后长达3分钟的鼓 掌声中,狂热的掌声和同步的掌声依次交替出现。
◆强迫简谐振动发生在激励频率,而这两个坐标 的振幅将在这两个固有频率下趋向最大值。共振时 的振型就是与固有频率相应的固有振型。
机械振动机械波复习PPT教学课件

(2)共振曲线
(3)共振的利用和防止:利用共振的有:共 振筛、转速计、微波炉、打夯机、跳板跳水、 打秋千……;防止共振的有:机床底座、航 海、军队过桥、高层建筑、火车车厢……
[例题] 如图,四个摆的摆长分别为 l1=2m,l2= 1.5m, l3=1m, l4=0.5m,它们悬挂于同一根水 平横线上。今用周期为2s的驱动力以垂直于摆 线方向水平作用在横线上,使它们作受迫振动, 那么它们的振动稳定时
(x、y)表示x处质点某时刻的 偏离平衡位置的位移为y
描述的是某一时刻各个质点偏 离平衡位置的位移
为瞬时图象,时刻选择不同, 图象会变化,但变化中有规律
五.波的图像的应用
(1)波的传播方向和介质中质点的振动方向的关系.
y
CB x
A
a.由v判断质点的振动方向 b.由质点的振动方向判断v的方向(例4)
A、四个摆的周期相同;B、四个摆的周期不同;
C、摆3振幅最大;
答案:C
D、摆1振幅最大.
[例题] 把一个筛子用四根弹簧支起来,筛子上装一个电
动偏心轮,它每转一周,给筛子一个驱动力,这就做成
了一个共振筛。不开电动机让这个筛子自由振动时,完
成20次全振动用15s;在某电压下,电动偏心轮的转速
是88r/min。已知增大电动偏心轮的电压可以使其转速
(3)两个重要物理量
①振幅A是描述振动强弱的物理量。(注意振幅跟位移的区别, 在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变 的) ②周期T是描述振动快慢的物理量。周期由振动系统本身的因 素决定,叫固有周期。T=1/f
(4)简谐运动的过程特点:
1、变化特点:抓住两条线
第一:从中间到两端:
波的图象
研究对象 研究内容
(3)共振的利用和防止:利用共振的有:共 振筛、转速计、微波炉、打夯机、跳板跳水、 打秋千……;防止共振的有:机床底座、航 海、军队过桥、高层建筑、火车车厢……
[例题] 如图,四个摆的摆长分别为 l1=2m,l2= 1.5m, l3=1m, l4=0.5m,它们悬挂于同一根水 平横线上。今用周期为2s的驱动力以垂直于摆 线方向水平作用在横线上,使它们作受迫振动, 那么它们的振动稳定时
(x、y)表示x处质点某时刻的 偏离平衡位置的位移为y
描述的是某一时刻各个质点偏 离平衡位置的位移
为瞬时图象,时刻选择不同, 图象会变化,但变化中有规律
五.波的图像的应用
(1)波的传播方向和介质中质点的振动方向的关系.
y
CB x
A
a.由v判断质点的振动方向 b.由质点的振动方向判断v的方向(例4)
A、四个摆的周期相同;B、四个摆的周期不同;
C、摆3振幅最大;
答案:C
D、摆1振幅最大.
[例题] 把一个筛子用四根弹簧支起来,筛子上装一个电
动偏心轮,它每转一周,给筛子一个驱动力,这就做成
了一个共振筛。不开电动机让这个筛子自由振动时,完
成20次全振动用15s;在某电压下,电动偏心轮的转速
是88r/min。已知增大电动偏心轮的电压可以使其转速
(3)两个重要物理量
①振幅A是描述振动强弱的物理量。(注意振幅跟位移的区别, 在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变 的) ②周期T是描述振动快慢的物理量。周期由振动系统本身的因 素决定,叫固有周期。T=1/f
(4)简谐运动的过程特点:
1、变化特点:抓住两条线
第一:从中间到两端:
波的图象
研究对象 研究内容
机械振动基础--第四章--多自由度系统PPT课件

.
5
例 4.1 求图示的简化的汽车4自由度模型的刚度矩阵。
解:取yA,yB,y1,y2为描述系统运动的广义坐标,即 {x}={yA,yB,y1,y2}T
各个自由度原点均取静平衡位置,向上为正。
.
6
(1) 求[K]的第一列:设yA沿坐标正方向有一个单位位 移,其余广义坐标位移为零,则只有k2被伸长,此时: 外力{f}=???
x2 ) c3 x2
[M ]{x} [C]{x} [K]{x} {F(t)}
.
1
本章内容:
1) 多自由度系统振动的基本理论,多自由度系统的固有 频率和振型的理论;
2) 分析多自由度系统动力响应常用的振型迭加方法; 3) 用变换方法求多自由度系统动力(态)响应的问题。
.
2
§4.1 运动微分方程
kij
2U xix j
2U x jxi
k ji
质量矩阵、阻尼矩阵和刚度. 矩阵均是对称矩阵。 9
针对本例:系统的动能为杆的平动 动能和转动动能与两个质量的动能 之和,设杆的质心在杆的中点,质 量为M。系统的动能为:
ET
M 2
y A
2
yB
2
I 2
yB
L
y A
2
1 2
m1 y12
1 2
在静力学中,各自由度的位移{x}、系统的刚度矩阵[K]、 各自由度上所受到的外力关系为:
{ f } [K]{x}
——如系统第j个自由度沿其坐标正方向有一个单位位移, 其余各个自由度的位移保持为零,为保持系统这种变形状 态需要在各个自由度施加外力,其中在第i个自由度上施 加的外力就是kij。
.
4
系统第j个自由度有一个正向单位位移,其余自由度位移 为零这种变形状态可以由向量{x}={ej}描述。