复习20150113
2015届高考数学一轮总复习 11-3推理与证明

2015届高考数学一轮总复习11-3推理与证明基础巩固强化一、选择题1.(文)观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为()A.01B.43C.07D.49[答案] B[解析]75=16807,76=117649,又71=07,观察可见7n(n∈N*)的末二位数字呈周期出现,且周期为4,∵2011=502×4+3,∴72011与73末两位数字相同,故选B.(理)(2012·江西理,6)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.199[答案] C[解析]本题考查了归纳推理能力,∵1+3=4,3+4=7,4+7=11,7+11=18,11+18=29,…,47+76=123,故选C.[点评]解答本题时,可能因为分析不出右边数字与前两式的数字关系,从而无从下手,导致无法解题或错选,要注意训练观察分析、归纳概括能力.2.(2013·烟台质检)命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误[答案] C[解析]三段论的大前提必须是全称命题,此推理过程是三段论,但大前提是特称命题.3.(文)将正整数排成下表:则在表中数字2014出现在( )A .第44行第78列B .第45行第78列C .第44行第77列D .第45行第77列 [答案] B[解析] 第n 行有2n -1个数字,前n 行的数字个数为1+3+5+…+(2n -1)=n 2.∵442=1936,452=2025,且1936<2014,2025>2014,∴2014在第45行.2014-1936=78,∴2014在第78列,选B.(理)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1) [答案] B[解析] 依题意,把“整数对”的和相同的分为一组,不难得知每组中每个“整数对”的和为n +1,且每组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10(10+1)2<60<11(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位臵,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7),选B.4.(2012·长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S (x )=a x -a-x,C (x )=a x +a -x ,其中a >0,且a ≠1,下面正确的运算公式是( )①S (x +y )=S (x )C (y )+C (x )S (y ); ②S (x -y )=S (x )C (y )-C (x )S (y ); ③2S (x +y )=S (x )C (y )+C (x )S (y ); ④2S (x -y )=S (x )C (y )-C (x )S (y ). A .①② B .③④ C .①④ D .②③[答案] B[解析] 经验证易知①②错误.依题意,注意到2S (x +y )=2(a x +y -a-x -y),S (x )C (y )+C (x )S (y )=2(a x +y -a-x -y),因此有2S (x +y )=S (x )C (y )+C (x )S (y );同理有2S (x -y )=S (x )C (y )-C (x )S (y ).综上所述,选B.5.(文)n 个连续自然数按规律排成下表:根据规律,从2012到2014的箭头方向依次为()A.↓→B.→↑C.↑→D.→↓[答案] A[解析]观察图例可见,位序相同的数字都是以4为公差的等差数列,故从2012至2014,其位序应与012相同,故选A.(理)已知函数f(x)=sin x+e x+x2010,令f1(x)=f′(x),f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),则f2014(x)=()A.sin x+e x B.cos x+e xC.-sin x+e x D.-cos x+e x[答案] C[解析]f1(x)=f′(x)=cos x+e x+2010x2009,f2(x)=f1′(x)=-sin x+e x+2010×2009x2008,f3(x)=f2′(x)=-cos x+e x+2010×2009×2008x2007,f4(x)=f3′(x)=sin x+e x+2010×2009×2008×2007x2006,由此可以看出,该函数前2项的和成周期性变化,周期T=4;而f2014(x)=f′2013(x),此时其最后一项的导数已变为0.故求f2014(x)的值,只需研究该函数前2项和的变化规律即可,于是,f2014(x)=f(2+4×503)(x)=-sin x +e x.6.(文)定义某种新运算“⊗”:S=a⊗b的运算原理为如图的程序框图所示,则式子5⊗4-3⊗6=()A.2 B.1C.3 D.4[答案] B[解析]由题意知5⊗4=5×(4+1)=25,3⊗6=6×(3+1)=24,所以5⊗4-3⊗6=1.(理)若定义在区间D 上的函数f (x ),对于D 上的任意n 个值x 1、x 2、…、x n ,总满足f (x 1)+f (x 2)+…+f (x n )≥nf ⎝⎛⎭⎫x 1+x 2+…+x n n ,则称f (x )为D 上的凹函数,现已知f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,则在锐角三角形ABC 中,tan A +tan B +tan C 的最小值是( )A .3 B.23C .3 3 D. 3[答案] C[解析] 根据f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,再结合凹函数定义得,tan A +tan B +tan C ≥3tan ⎝⎛⎭⎫A +B +C 3=3tan π3=3 3.故所求的最小值为3 3.二、填空题7.(文)(2013·青岛模拟)如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x nn ).若y =sin x 在区间(0,π)上是凸函数,那么在△ABC中,sin A +sin B +sin C 的最大值是________.[答案]332[解析] 由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x nn ),∴sin A +sin B +sin C ≤3sin A +B +C3=3sin π3=332.(理)设f (x )定义如表,数列{x n }满足x 1=5,x n +1=f (x n ),则x 2014的值为________.[答案] 1[解析] 由条件知x 1=5,x 2=f (x 1)=f (5)=6,x 3=f (x 2)=f (6)=3,x 4=f (x 3)=f (3)=1,x 5=f (x 4)=f (1)=4,x 6=f (x 5)=f (4)=2,x 7=f (x 6)=f (2)=5=x 1,可知{x n }是周期为6的周期数列,∴x 2014=x 4=1.8.(文)(2012·陕西文,12)观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74,……照此规律,第五个...不等式为__________________. [答案] 1+122+132+142+152+162<116[解析] 本题考查了归纳的思想方法.观察可以发现,第n (n ≥2)个不等式左端有n +1项,分子为1,分母依次为12,22,32,…,(n +1)2;右端分母为n +1,分子成等差数列,因此第n 个不等式为1+122+132+…+1(n +1)2<2n +1n +1,所以第五个不等式为: 1+122+132+142+152+162<116. (理)(2013·龙江模拟)已知f (n )=1+12+13+…+1n (n ↔N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72.则有________________.[答案] f (2n )≥n +22(n ≥2,n ↔N *)[解析] 因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n )>n +22.故填f (2n )>n +22(n ≥2,n ∈N *).9.(文)(2013·山西四校联考)已知x ↔(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +axn ≥n +1(n ↔N *),则a =________.[答案] n n[解析] 第一个式子是n =1的情况,此时a =11=1,第二个式子是n =2的情况,此时a =22=4,第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n .(理)椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2a 2.那么对于双曲线则有如下命题:AB 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB=________.[答案] b 2a2[解析] 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则有⎩⎨⎧x 0=x 1+x 22,y 0=y 1+y22.将A ,B 代入双曲线x 2a 2-y 2b2=1中得,x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 两式相减得x 21-x 22a 2=y 21-y 22b2,即(x 1-x 2)(x 1+x 2)a 2=(y 1-y 2)(y 1+y 2)b 2,即(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=b 2a 2, 即k OM ·k AB =b 2a 2.三、解答题10.(文)已知:a >0,b >0,a +b =1.求证:a +12+b +12≤2. [证明] 要证a +12+b +12≤2, 只需证a +12+b +12+2(a +12)(b +12)≤4,又a +b =1,故只需证(a +12)(b +12)≤1,只需证(a +12)(b +12)≤1,只需证ab ≤14.∵a >0,b >0,1=a +b ≥2ab ,∴ab ≤14,故原不等式成立.(理)(2013·鹤岗模拟)设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么? [解析] (1)证明:假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2,即q =0, 这与公比q ≠0矛盾,所以数列{S n }不是等比数列.(2)当q =1时,{S n }是等差数列;当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2),得q =0,这与公比q ≠0矛盾.能力拓展提升一、选择题11.(文)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )[答案] D[解析] 观察所给例子可看出偶函数求导后都变成了奇函数,∵f (-x )=f (x ),∴f (x )为偶函数,∵g (x )=f ′(x ),∴g (-x )=-g (x ),选D.(理)甲、乙两位同学玩游戏,对于给定的实数a 1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a 1乘以2后再加上12;如果出现一个正面朝上,一个反面朝上,则把a 1除以2后再加上12,这样就可得到一个新的实数a 2.对实数a 2仍按上述方法进行一次操作,又得到一个新的实数a 3.当a 3>a 1时,甲获胜,否则乙获胜.若甲获胜的概率为34,则a 1的取值范围是( )A .[-12,24]B .(-12,24)C .(-∞,-12)∪(24,+∞)D .(-∞,-12]∪[24,+∞) [答案] D[解析] 因为甲、乙同时各掷一枚均匀的硬币,出现的可能情形有4种:(正,正)、(正,反)、(反,正)、(反,反),所以每次操作后,得到两种新数的概率是一样的.故由题意得即4a 1+36,a 1+18,a 1+36,14a 1+18出现的机会是均等的,由于当a 3>a 1时甲胜,且甲胜的概率为34,故在上面四个表达式中,有3个大于a 1,∵a 1+18>a 1,a 1+36>a 1,故在其余二数中有且仅有一个大于a 1,由4a 1+36>a 1得a 1>-12,由14a 1+18>a 1得,a 1<24,故当-12<a 1<24时,四个数全大于a 1,当a 1≤-12或a 1≥24时,有且仅有3个大于a 1,故选D.12.(文)已知2+23=223,3+38=338,4+415=4415,…,若7+a t=7a t,(a 、t 均为正实数),则类比以上等式,可推测a 、t 的值,a +t =( )A .48B .55C .41D .30 [答案] B[解析] 类比所给等式可知a =7,且7t +a =72·a ,即7t +7=73,∴t =48.∴a +t =55. (理)在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”,类似地,我们在复数集C 上也可以定义一个称为“序”的关系,记为“⊳”.定义如下:对于任意两个复数z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1、b 1、a 2、b 2↔R ,i 为虚数单位),当且仅当“a 1>a 2”或“a 1=a 2且b 1>b 2时,z 1⊳z 2”.下列命题为假命题的是( )A .1⊳i ⊳0B .若z 1⊳z 2,z 2⊳z 3,则z 1⊳z 3C .若z 1⊳z 2,则对于任意z ↔C ,z 1+z ⊳z 2+zD .对于复数z ⊳0,若z 1 ⊳z 2,则z ·z 1⊳z ·z 2 [答案] D[解析] 对于A ,注意到1=1+0×i ,i =0+1×i,0=0+0×i,1>0,则1⊳i,0=0且1>0,则i ⊳0,因此有1⊳i ⊳0,A 正确.对于B ,由z 1⊳z 2得“a 1>a 2”或“a 1=a 2且b 1>b 2”;由z 2⊳z 3得“a 2>a 3”或“a 2=a 3且b 2>b 3”,于是有“a 1>a 3”或“a 1=a 3且b 1>b 3”,即有z 1⊳z 3,选项B 正确.对于C ,设z =a +b i ,由z 1⊳z 2得“a 1>a 2”或“a 1=a 2且b 1>b 2”,所以“a 1+a >a 2+a ”或“a 1+a =a 2+a 且b 1+b >b 2+b ”,即有z 1+z ⊳z 2+z ,因此选项C 正确.对于D ,取z =1-2i ⊳0,z 1=3,z 2=3i ,此时z ·z 1=3-6i ,z ·z 2=6+3i ,z ·z 2⊳z ·z 1,因此选项D 不正确.综上所述,选D.二、填空题13.(文)(2013·山东省实验中学一模)以下是对命题“若两个正实数a 1,a 2满足a 21+a 22=1,则a 1+a 2≤2”的证明过程:证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.根据上述证明方法,若n 个正实数a 1、a 2、…、a n 满足a 21+a 22+…+a 2n =1时,你能得到的结论为____________________(不必证明).[答案] a 1+a 2+…+a n ≤n(理)(2013·长沙模拟)已知P (x 0,y 0)是抛物线y 2=2px (p >0)上的一点,过P 点的切线方程的斜率可通过如下方式求得:在y 2=2px 两边同时对x 求导,得2yy ′=2p ,则y ′=py ,所以过P 的切线的斜率k =p y 0.类比上述方法求出双曲线x 2-y 22=1在P (2,2)处的切线方程为________.[答案] 2x -y -2=0[解析] 将双曲线方程化为y 2=2(x 2-1),类比上述方法两边同时对x 求导得2yy ′=4x ,则y ′=2x y ,即过P 的切线的斜率k =2x 0y 0,由于P (2,2),故切线斜率k =222=2,因此切线方程为y -2=2(x -2),整理得2x -y -2=0.14.(文)黑白两种颜色的正方形地砖依照下图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.[答案] 503503603[解析] 按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第n 个图形中有白色地砖3(2n +1)-n 块,因此第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是503603.(理)(2013·福州模拟)对一个边长为1的正方形进行如下操作:第一步,将它分割成3×3方格,接着用中心和四个角的5个小正方形,构成如图①所示的几何图形,其面积S 1=59;第二步,将图①的5个小正方形中的每个小正方形都进行与第一步相同的操作,得到图②;依此类推,到第n 步,所得图形的面积S n =(59)n .若将以上操作类比推广到棱长为1的正方体中,则到第n 步,所得几何体的体积V n =________.[答案] (13)n[解析] 将棱长为1的正方体分割成3×3×3=27个全等的小正方体,拿去分别与中间小正方体的六个面重合的6个小正方体和分别与中间小正方体有1条棱重合的12个小正方体,则余下的9个小正方体体积V 1=13,第二步,将余下的9个小正方体作同样的操作,则余下的9×9个小正方体的体积V 2=(13)2,故到第n 步,所得几何体的体积V n =(13)n .15.(文)经过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为:经过椭圆x 2a 2+y 2b2=1上一点P (x 0,y 0)的切线方程为________.[答案]x 0x a 2+y 0yb 2=1 [解析] 过圆上一点M (x 0,y 0)的切线方程是把圆的方程中的x 2、y 2中的一个x 和一个y 分别用x 0、y 0代替,圆和椭圆都是封闭曲线,类比圆上一点的切线方程可以得到,过椭圆上一点P (x 0,y 0)的切线方程也是把椭圆方程中的x 2、y 2中的一个x 和一个y 分别用x 0、y 0代替,即得到切线方程为x 0xa 2+y 0y b2=1. 例如过椭圆x 24+y 2=1上一点(1,32)的切线方程为x 4+32y =1,即x +23y -4=0.(理)已知命题:若数列{a n }为等差数列,且a m =a ,a n =b (m ≠n ,m 、n ↔N *),则a m +n =bn -amn -m ;现已知等比数列{b n }(n ↔N *),b m =a ,b n =b (m ≠n ,m 、n ↔N *),类比上述结论,得出在等比数列{b n }中,b n +m =________.[答案] n -m b na m[解析] 等差数列中的bn 和am 可以类比等比数列中的b n 和a m ,等差数列中的bn -am 可以类比等比数列中的b na m ,数列中的bn -am n -m可以类比等比数列中的n -m b n a m ,故b m +n =n -m b na m.证明如下:设b n =b 1q n -1,则b n +m =b 1q n+m -1,∵b m =a ,b n =b ,∴b n a m =b nn b m m =(b 1q n -1)n (b 1q m -1)m =b n -m 1·q n (n -1)-m (m -1)=b n -m 1·q (n -m )(n +m -1), ∴n -m b na m =b 1q n +m -1=b m +n . 三、解答题16.(文)观察①sin 210°+cos 240°+sin10°cos40°=34;②sin 26°+cos 236°+sin6°cos36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.[解析] 观察40°-10°=30°,36°-6°=30°,由此猜想:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34. 证明:sin 2α+cos 2(30°+α)+sin α·cos(30°+α) =1-cos2α2+1+cos (60°+2α)2+12[sin(30°+2α)-sin30°]=1+12[cos(60°+2α)-cos2α]+12sin(30°+2α)-12=1+12[-2sin(30°+2α)sin30°]+12⎣⎡⎦⎤sin (30°+2α)-12 =34-12sin(30°+2α)+12(sin30°+2α)=34. (理)(2012·福建理,17)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解析] (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34. (2)推广后的三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α=34. 解法二:(1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos2α2+1+cos (60°-2α)2-sin α(cos30°cos α+sin30°sin α) =12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.考纲要求1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.4.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.5.了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点.补充说明1.推理的概念根据一个或几个已知的判断得出一个新判断,这种思维方式叫推理,推理一般有两部分组成:前提和结论.2.合情推理根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理形式,它是前提为真时,结论可能为真的推理,这种推理叫做叫合情推理,数学中常见的合情推理是归纳推理和类比推理.3.假言推理假言推理的规则是:“若p⇒q,p真,则q真”.它的本质是,通过验证结论的充分条件为真,从而判断结论为真.4.关系推理推理规则是:“如果aRb,bRc,则aRc”(其中R表示具有传递性的关系),这种推理叫关系推理,如:由a∥b,b∥c,推出a∥c,若a≥b,b≥c,则a≥c,都是关系推理.5.直接证明直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理、法则等,直接推证结论的真实性.6.分析法的特点是:从“未知”看需知,逐步靠拢“已知”,其每步推理都是寻求使每一步结论成立的充分条件,直到最后把要证明的结论归纳为判定一个明显成立的条件为止.综合法的特点是:从“已知”看“可知”,逐步推向“未知”,其每步推理都是寻找使每一步结论成立的必要条件.7.反证法一般地,由证明p⇒q,转向证明綈q⇒r⇒…⇒t,而t与已知矛盾或与某个真命题矛盾,从而判定綈q为假,推出q为真的证明方法叫做反证法.反证法是从否定命题的结论出发,通过正确、严密的逻辑推理,由此引出一个新的结论,而这个新结论与已知矛盾,从而肯定原结论是正确的一种间接证明方法.这里所谓的“与已知矛盾”主要是指:(1)与假设自相矛盾.(2)与数学公理、定理、公式、法则、定义或已被证明了的结论矛盾.(3)与公认的简单事实矛盾.(4)使用反证法证明问题时,准确地做出反设(即否定结论),是正确运用反证法的前提,常见的“结论词”与“反设词”列表如下:(5)用反证明证题时,要首先搞清证题的思路步骤;否定原命题时要准确无误;原命题的反面不只一种情形时,要逐个排除.备选习题1.(2013·临沂二模)对于大于或等于2的自然数n 的二次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,…,根据上述分解规律,对任意自然数n ,当n ≥2时,有____________.[答案] n 2=1+3+5+…+(2n -1)2.(2013·温州第一次适应性测试)已知cos π3=12, cos π5cos 2π5=14, cos π7cos 2π7cos 3π7=18, ……(1)根据以上等式,可猜想出的一般结论是________;(2)若数列{a n }中,a 1=cos π3,a 2=cos π5cos 2π5,a 3=cos π7cos 2π7cos 3π7,…,前n 项和S n =10231024,则n =________.[答案] (1)cos π2n +1cos 2π2n +1·…·cos n π2n +1=12n (n ↔N *) (2)10 [解析] (1)从题中所给的几个等式可知,第n 个等式的左边应有n 个余弦相乘,且分母均为2n+1,分子分别为π,2π,…,n π,右边应为12n ,故可以猜想出结论为cos π2n +1·cos 2π2n +1·…·cos n π2n +1=12n (n ∈N *). (2)由(1)可知a n =12n ,故S n =12[1-(12)n ]1-12=1-12n =2n -12n =10231024,解得n =10.3.(2012·温州适应性测试)若数列{a n }的各项按如下规律排列:21,31,32,41,42,43,51,52,53,54,…,n +11,n +12,…,n +1n,…,则a 2012=________. [答案] 6459[解析] 依题意得,将该数列中分子相同的项分成一组,第n 组中的数出现的规律是:第n 组中的数共有n 个,并且每个数的分子均是n +1,相应的分母依次由1增大到n .由于1953=62×(62+1)2<2012<63×(63+1)2=2016,又2012=1953+59,因此题中的数列中的第2012项应位于第63组中的第59个数,则题中的数列中的第2012项的分子等于64,相应的分母等于59,即a 2012=6459.。
【精品】2015初一下学期期末数学复习

∴_____ ∥_____(_________________) (2)你在 (1)的证明过程中用了哪两个互逆的真命题 ?
第 9题
10、解答题:( 1)如图, A 50 , BDC 70 , DE ∥ BC ,交 AB 于点 E , BD 是 ABC 的 角平分线.求 BDE 各内角的度数.
A
E
D
B
3x y 10
x 2 y 20 D.
3x y 30
3、某种出租车的收费标准: 起步价 7 元(即行驶距离不超过 3 千米都需付 7 元车费) ,超过 3 千米后, 每增加 1 千米,加收 2.4 元(不足 1 千米按 1 千米计).某人乘这种出租车从甲地到乙地共付车费
19 元,那么甲地到乙地路程的最大值是(
).
A. 5 千米
B .7 千米
C. 8 千米
D . 15 千米
x3
4、( 1)若
是关于 x、 y 的方程 2x- 5y+ 4k= 0 的一组解,则 k=
.
y2
( 2)若 x, y 满足, x y 1 x y 3 2 0则 x 2 y2 ___________
5、解方程组: 新 - 课- 标- 第 -一 - 网
离为 5,则直线 a 到直线 b 的距离为
.
9、 (1)已知 :如图 ,点 CD , AB,AC ,BC 在同一直线上, DE∥BC,∠1=∠2.求证 : AB∥EF ,
∵EC ∥FD (
已
知
)
∴∠F =∠___
(
________________)
∵∠F =∠E(
已
知
)
∴∠__= ∠E(________________)
11
2015年高考数学总复习(人教A版,理科)配套教案:第十二章 推理证明、算法、复数 12.1

§12.1 随机事件的概率1.随机事件和确定事件(1)在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为相对于条件S 的确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C …表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An 为事件A 出现的频率.(2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. 3.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B ) 相等关系 若B ⊇A 且A ⊇BA =B 并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并A ∪B (或A +B )事件(或和事件)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB) 互斥事件若A∩B为不可能事件,则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅P(A∪B)=P(A)+P(B)=14.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).②若事件B与事件A互为对立事件,则P(A)=1-P(B).1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.(×)(2)随机事件和随机试验是一回事.(×)(3)在大量重复试验中,概率是频率的稳定值.(√)(4)两个事件的和事件是指两个事件都得发生.(×)2.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是() A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶答案 D3.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为() A.0.5 B.0.3 C.0.6 D.0.9答案 A解析依题意知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.4.下列事件中,随机事件为________,必然事件为________.(填序号)①冬去春来②某班一次数学测试,及格率低于75%③体育彩票某期的特等奖号码④三角形内角和为360°⑤骑车到十字路口遇到交警答案 ②③⑤ ①5.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.题型一 随机事件的关系例1 某城市有甲、乙两种报纸供居民们订阅,记事件A 为“只订甲报纸”,事件B 为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D 为“不订甲报纸”,事件E 为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.(1)A 与C ;(2)B 与E ;(3)B 与C ;(4)C 与E .思维启迪 判断事件之间的关系可以紧扣事件的分类,结合互斥事件,对立事件的定义进行分析.解 (1)由于事件C “至多订一种报纸”中有可能“只订甲报纸”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B “至少订一种报纸”与事件E “一种报纸也不订”是不可能同时发生的,故B 与E 是互斥事件.由于事件B 不发生可导致事件E 一定发生,且事件E 不发生会导致事件B 一定发生,故B 与E 还是对立事件.(3)事件B “至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C “至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件. (4)由(3)的分析,事件E “一种报纸也不订”是事件C 的一种可能,即事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.思维升华 对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件的关系.对飞机连续射击两次,每次发射一枚炮弹.设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},其中彼此互斥的事件是________,互为对立事件的是________. 答案 A 与B ,A 与C ,B 与C ,B 与D B 与D解析 设I 为对飞机连续射击两次所发生的所有情况,因为A ∩B =∅,A ∩C =∅,B ∩C =∅,B ∩D =∅.故A 与B ,A 与C ,B 与C ,B 与D 为彼此互斥事件,而B ∩D =∅,B ∪D =I ,故B 与D 互为对立事件.题型二 随机事件的频率与概率例2 某企业生产的乒乓球被2012年伦敦奥运会指定为乒乓球比赛专用球,目前有关部门对抽取球数n 50 100 200 500 1 000 2 000 优等品数m45 92 194 470 954 1 902 优等品频率mn(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)思维启迪 可以利用公式计算频率,在试验次数很大时,用频率来估计概率.解 (1)依据公式f =mn ,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值不同,但随着抽取球数的增多,频率在常数0.950的附近摆动,所以质量检查为优等品的概率约为0.950.思维升华 频率是个不确定的数,在一定程度上频率可以反映事件发生的可能性大小,但无法从根本上刻画事件发生的可能性大小.但从大量重复试验中发现,随着试验次数的增多,事件发生的频率就会稳定于某一固定的值,该值就是概率.某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (1)完成如下的频率分布表: 近20降雨量 70110 140 160 200 220 频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.解 (1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3(2)由已知可得Y =X2+425,故P (“发电量低于490万千瓦时或超过530万千瓦时”) =P (Y <490或Y >530)=P (X <130或X >210) =P (X =70)+P (X =110)+P (X =220) =120+320+220=310. 故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310. 题型三 互斥事件、对立事件的概率例3 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C ,求: (1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.思维启迪 明确事件的特征、分析事件间的关系,根据互斥事件或对立事件概率公式求解.解 (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A 、B 、C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 (1)解决此类问题,首先应结合互斥事件和对立事件的定义分析出是不是互斥事件或对立事件,再选择概率公式进行计算.(2)求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;二是间接求法,先求此事件的对立事件的概率,再用公式P (A )=1-P (A )计算.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,黑球或黄球的概率是512,绿球或黄球的概率也是512.求从中任取一球,得到黑球、黄球和绿球的概率分别是多少?解 从袋中任取一球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为A ,B ,C ,D ,则事件A ,B ,C ,D 彼此互斥,所以有P (B +C )=P (B )+P (C )=512,P (D+C )=P (D )+P (C )=512,P (B +C +D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14.故从中任取一球,得到黑球、黄球和绿球的概率分别是14,16,14.用正难则反思想求互斥事件的概率典例:(12分)(2012·湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机一次购物量 1至4件5至8件 9至12件13至16件17件及以上顾客数(人) x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思维启迪 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解. 规范解答解 (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[6分](2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.[9分]P (A )=1-P (A 1)-P (A 2)=1-15-110=710.[11分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[12分]温馨提醒 (1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征的含义. (2)正确判定事件间的关系,善于将A 转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式. 易错提示:(1)对统计表的信息不理解,错求x ,y 难以用样本平均数估计总体.(2)不能正确地把事件A 转化为几个互斥事件的和或转化为B +C 的对立事件,导致计算错误.方法与技巧1.对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ). 2.从集合角度理解互斥和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件A 的对立事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集. 失误与防范1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.需准确理解题意,特别留心“至多……”,“至少……”,“不少于……”等语句的含义.A 组 专项基础训练1.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是 ( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有二个红球 答案 D2.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.3答案 C解析 事件“抽到的不是一等品”与事件A 是对立事件,由于P (A )=0.65,所以由对立事件的概率公式得“抽到的不是一等品”的概率为P =1-P (A )=1-0.65=0.35.3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.08答案 C解析 记抽验的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而抽验的产品是正品(甲级)的概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92,故选C.4.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是 ( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡答案 A解析 至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.5.甲、乙两人下棋,两人和棋的概率是12,乙获胜的概率是13,则乙不输的概率是 ( )A.56B.23C.12D.13 答案 A解析 乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为12+13=56.6.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件.答案③②①7.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的概率为0.28,若红球有21个,则黑球有________个.答案15解析1-0.42-0.28=0.30,21÷0.42=50,50×0.30=15.8.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案0.25解析20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.三、解答题9已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′+D′.根据互斥事件的加法公式,有P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)方法一由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.方法二因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有P(A′+C′)=P(B′+D′)=1-P(B′+D′)=1-0.64=0.36.10(1)求次品出现的频率(次品率);(2)记“任取一件衬衣是次品”为事件A,求P(A);(3)为了保证买到次品的顾客能够及时更换,销售1 000件衬衣,至少需进货多少件?解(1)次品率依次为0,0.02,0.06,0.054,0.045,0.05,0.05.(2)由(1)知,出现次品的频率mn在0.05附近摆动,故P(A)=0.05.(3)设进衬衣x件,则x(1-0.05)≥1 000,解得x≥1 053,故至少需进货1 053件.B组专项能力提升1.甲:A1、A2是互斥事件;乙:A1、A2是对立事件.那么() A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件答案 B解析根据互斥事件和对立事件的概念可知互斥事件不一定是对立事件,对立事件一定是互斥事件.2.在一次随机试验中,彼此互斥的事件A、B、C、D的概率分别是0.2、0.2、0.3、0.3,则下列说法正确的是()A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C .A +C 与B +D 是互斥事件,但不是对立事件 D .A 与B +C +D 是互斥事件,也是对立事件 答案 D解析 由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件, 故其事件的关系可由如图所示的Venn 图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.故选D.3.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.答案 815 1415解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P =715+115=815.(2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.4. 某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.答案 35 1315解析 “至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为 P =11+10+7+86+7+8+8+10+10+11=35.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”. 故他属于不超过2个小组的概率是P =1-86+7+8+8+10+10+11=1315.5. 如图所示茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为________.答案 45解析 记其中被污损的数字为x ,依题意得甲的五次综合测评的平均成绩是15(80×2+90×3+8+9+2+1+0)=90,乙的五次综合测评的平均成绩是15(80×3+90×2+3+3+7+x +9)=15(442+x ),令90>15(442+x ),解得x <8,所以x 的可能取值是0~7,因此甲的平均成绩超过乙的平均成绩的概率为810=45.6.如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计40分钟内不能..赶到火车站的概率; (2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解 (1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人, 所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 L 1的频率 0.1 0.2 0.3 0.2 0.2 L 2的频率0.10.40.40.1(3)设A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站.由(2)知P (A 1)=0.1+0.2+0.3=0.6, P (A 2)=0.1+0.4=0.5, ∵P (A 1)>P (A 2),∴甲应选择L 1. 同理,P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9, ∵P (B 1)<P (B 2),∴乙应选择L 2.。
2015高考数学大二轮总复习课件:第1部分专题7第2讲

,没有一个统一的模式,它可以在数与数、形与形、数与形 之间进行转换.在实际解题过程中,实施化归与转化时,我
们要遵循以下五项基本原则:(1)化繁为简的原则;(2)化生为 熟的原则;(3)等价性原则;(4)正难则反原则;(5)形象具体化 原则.
热思点想聚概焦述 ·题应型用 第五页,编归辑于纳星期总五:结十五·点思六分。
∴πa2=2kπ+π2(k∈Z).
∴a2=2k+12(k∈Z),k 只取 0,此时 a2=12,
∵-1<a<0,∴a=-
2 2.
答案
1,-
2 2
热思点想聚概焦述 ·题应型用 第八页,编归辑于纳星期总五:结十五·点思六分。
探究提高 (1)分段函数在自变量不同取值范围内,对应关系不 同,必需进行讨论.由数学定义引发的分类讨论一般由概念内 涵所决定,解决这类问题要求熟练掌握并理解概念的内涵与外 延.(2)在数学运算中,有时需对不同的情况作出解释,就需要 进行讨论,如解二次不等式涉及到两根的大小等.
热思点想聚概焦述 ·题应型用 第九页,编归辑于纳星期总五:结十五·点思六分。
[微题型 2] 由图形或图象位置不同引起的分类讨论 【例 1-2】 设 F1,F2 为椭圆x92+y42=1 的两个焦点,P 为椭圆 上一点.已知 P,F1,F2 是一个直角三角形的三个顶点,且|PF1| >|PF2|,求||PPFF12||的值. 解 若∠PF2F1=90°. 则|PF1|2=|PF2|2+|F1F2|2, 又∵|PF1|+|PF2|=6,|F1F2|=2 5, 解得|PF1|=134,|PF2|=43,
则 a 的所有可能值为________.
热思点想聚概焦述 ·题应型用 第七页,编归辑于纳星期总五:结十五·点思六分。
解析 (1)f(1)=e0=1,即 f(1)=1.
2015高考数学大二轮总复习课件:第1部分专题3第2讲

综上,对于 n∈N*,cn+1=2cn 都成立, 即 an+1-1=2(an-1)都成立, 即数列{an-1}是等比数列, 其首项为 1,公比为 2. 所以 an-1=1×2n-1,所以 an=2n-1+1. (2)由 Sn=an+1+n-2,得 Sn-n+2=an+1=2n+1, 故 Sn-n+1=2n,所以 bn=32nn. 所以 Tn=b1+b2+…+bn-1+bn=32+3×22 2+…+32nn ,①
热点聚焦 ·题型突 第十八页,编归辑于纳星总期五结:十·五思点 五分。
解 (1)设函数 f(x)=ax2+bx(a≠0), 则 f′(x)=2ax+b,由 f′(x)=6x-2, 得 a=3,b=-2,所以 f(x)=3x2-2x. 又因为点(n,Sn)(n∈N*)在函数 y=f(x)的图象上, 所以 Sn=3n2-2n. 当 n≥2 时,an=Sn-Sn-1 =(3n2-2n)-[3(n-1)2-2(n-1)] =6n-5. 当 n=1 时,a1=S1=3×12-2×1=1=6×1-5, 所以,an=6n-5(n∈N*).
热点聚焦 ·题型突 第十一页,编归辑于纳星总期五结:十·五思点 五分。
(1)解 设公差为 d,则4aa11++26dd=2=1a41,a1+6d, 解得 d=1 或 d=0(舍去),a1=2, 所以 an=n+1,Sn=nn2+3. 又 a1=2,d=1,所以 a3=4,即 b2=4. 所以数列{bn}的首项为 b1=2,公比 q=bb21=2, 所以 bn=2n,Tn=2n+1-2.
热点聚焦 ·题型突 第十四页,编归辑于纳星总期五结:十·五思点 五分。
(1)解 直线 l 的斜率为 k=12-3--01=2, 故直线 l 的方程为 y=2[x-(-1)],即 y=2x+2. 所以数列{an}的通项公式为 an=2n+2. 把点 C(1,2)代入函数 f(x)=ax,得 a=2, 所以数列{bn}的前 n 项和 Sn=f(n)-1=2n-1. 当 n=1 时,b1=S1=1; 当 n≥2 时,bn=Sn-Sn-1=2n-2n-1=2n-1, 当 n=1 时也适合, 所以数列{bn}的通项公式为 bn=2n-1.
2015高考数学大二轮总复习课件:第1部分专题1第1讲

解析 (1)∵log2π>1,
<0,0<π-2<1,∴a>c>b,故选
C.
(2)由题可知,当-2<x<2 时,f(x)>0.由 f(x-1)>0,得-2<x-
1<2,即-1<x<3.
答案 (1)C (2)(-1,3)
热点聚焦 ·题型第十二页,编归辑于纳星期总五结:十·五思点 四分。
热点二 以函数零点为背景的函数问题
热点聚焦 ·题型第七页,编辑归于星纳期五总:结十五·点思四分。
探究提高 (1)根据函数的解析式判断函数的图象,要从定义域、 值域、单调性、奇偶性等方面入手,结合给出的函数图象进行 全面分析,有时也可结合特殊的函数值进行辅助推断,这是解 决函数图象判断类试题的基本方法.(2)研究函数时,注意结合 图象,在解方程和不等式等问题时,借助图象能起到十分快捷 的作用.
热点聚焦 ·题型第八页,编辑归于星纳期五总:结十五·点思四分。
[微题型 2] 函数性质的应用
【例 1-2】 (1)(2014·安徽卷)若函数 f(x)(x∈R)是周期为 4 的
奇函数,且在[0,2]上的解析式为 f(x)=xsin1-πxx,,1<0≤x≤x≤2,1, 则
f(249)+f(461)=________. (2)函数 f(x)的定义域为 R,f(-1)=2,对任意 x∈R,f′(x)>2,
(2)设奇函数 f(x)在(0,+∞)上为增函数,且 f(2)=0,则不等式
fx-f-x x <0
的解集为(
).
A.(-2,0)∪(0,2)
B.(-∞,-2)∪(0,2)
C.(-∞,-2)∪(2,+∞) D.(-2,0)∪(2,+∞)
解析 (1)法一 函数 y=xl|nx||x|的图象过点(e,1),排除 C,D;
2015年高考数学总复习(人教A版,理科)配套教案:第十一章 统计与概率 11.3

§11.3 变量间的相关关系、统计案例1.两个变量的线性相关 (1)正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关. (2)负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 2.回归方程 (1)最小二乘法求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法. (2)回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数.⎩⎨⎧b ^=∑ni =1(x i-x )(y i-y )∑n i =1(x i-x )2=∑ni =1x i y i-n x y∑n i =1x 2i-n x2a ^=y -b ^x.3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中(x ,y )称为样本点的中心. (3)相关系数当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性. 4.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量. (2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为 2×2列联表y 1 y 2 总计 x 1 a b a +b x 2 cdc +d总计a +cb +d a +b +c +d 构造一个随机变量K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d 为样本容量.(3)独立性检验利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( × ) (2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系. ( √ ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( √ )(4)某同学研究卖出的热饮杯数y 与气温x (℃)之间的关系,得回归方程y ^=-2.352x +147.767,则气温为2℃时,一定可卖出143杯热饮.( × ) (5)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( √ )(6)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀. ( × ) 2.下面哪些变量是相关关系( )A .出租车车费与行驶的里程B .房屋面积与房屋价格C .身高与体重D .铁块的大小与质量 答案 C3.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A.模型1的相关指数R2为0.98B.模型2的相关指数R2为0.80C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25答案 A4.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(填“有关”或“无关”).答案有关5.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是() A.有99%的人认为该电视栏目优秀B.有99%的人认为该电视栏目是否优秀与改革有关系C.有99%的把握认为该电视栏目是否优秀与改革有关系D.没有理由认为该电视栏目是否优秀与改革有关系答案 D解析只有K2≥6.635才能有99%的把握认为该电视栏目是否优秀与改革有关系,而既使K2≥6.635也只是对“该电视栏目是否优秀与改革有关系”这个论断成立的可能性大小的结论,与是否有99%的人等无关.故只有D正确.题型一相关关系的判断例1x和y的散点图如图所示,则下列说法中所有正确命题的序号为________.①x,y是负相关关系;②在该相关关系中,若用y=c1e c2x拟合时的相关指数为R21,用y=bx+a拟合时的相关指数为R22,则R21>R22;③x、y之间不能建立回归直线方程.思维启迪本题散点图对应的曲线类似于指数型曲线,因此,用y=bx+a拟合的效果差,所以R22小.答案①②解析 ①显然正确;由散点图知,用y =c 1e c 2x 拟合的效果比用y =bx +a 拟合的效果要好,故②正确;x ,y 之间能建立回归直线方程,只不过预报精度不高,故③不正确. 思维升华 判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图,根据散点图很容易看出两个变量之间是否具有相关性,是不是存在线性相关关系,是正相关还是负相关,相关关系是强还是弱.(1)对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图①;对变量u ,v有观测数据(u i ,v i )(i =1,2,…,10),得散点图②,由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 答案 C(2)(2012·课标全国)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )A .-1B .0C.12D .1答案 D解析 利用相关系数的意义直接作出判断.样本点都在直线上时,其数据的估计值与真实值是相等的,即y i =y i ^,代入相关系数公式r =1-∑i =1n(y i -y i ^)2∑i =1n(y i -y )2=1.题型二 线性回归分析例2 某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得零件的个数x (个) 2 3 4 5 加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时?(注:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x )思维启迪 求线性回归方程的系数b ^时,为防止出错,应分别求出公式中的几个量,再代入公式.解 (1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y =3.5,∑i =14x 2i =54,∴b ^ =0.7,∴a ^=1.05,∴y ^=0.7x +1.05,回归直线如图所示.(3)将x =10代入回归直线方程,得y ^=0.7×10+1.05=8.05, 故预测加工10个零件约需要8.05小时.思维升华 (1)回归直线y ^=b ^x +a ^必过样本点的中心(x ,y ).(2)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________. 答案 0.5 0.53解析 小李这5天的平均投篮命中率y =0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故线性回归方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的投篮命中率约为0.53. 题型三 独立性检验例3 为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例.(2)能否有99.5%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.思维启迪 直接计算K 2的值,然后利用表格下结论.解 (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要志愿者提供帮助的老年人的比例的估计值为70500×100%=14%.(2)K 2=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>7.879,所以有99.5%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法,比采用简单随机抽样方法更好.思维升华 (1)根据样本估计总体是抽样分析的一个重要内容.要使估计的结论更加准确,抽样取得的样本很关键.(2)根据独立性检验知,需要提供服务的老人与性别有关,因此在调查时,采取男、女分层抽样的方法更好,从而看出独立性检验的作用.某中学对“学生性别和是否喜欢看NBA 比赛”作了一次调查,其中男生人数是女生人数的2倍,男生喜欢看NBA 的人数占男生人数的56,女生喜欢看NBA 的人数占女生人数的13.(1)若被调查的男生人数为n ,根据题意建立一个2×2列联表;(2)若有95%的把握认为是否喜欢看NBA 和性别有关,求男生至少有多少人?附:K 2=(a +b +c +d )(ad -bc )2(a +b )(c +, P (K 2≥k )0.100 0.050 0.010 K2.7063.8416.635解 (1)由已知得:喜欢看NBA不喜欢看NBA总计 男生 5n 6 n 6 n 女生 n 6n 3 n 2 总计nn 23n 2(2)K 2=3n 2(5n 6·n 3-n 6·n 6)2n ·n 2·n 2·n =38n .若有95%的把握认为是否喜欢看NBA 和性别有关,则K 2>3.841,即38n >3.841,n >10.24.∵n 2,n6为整数,∴n 最小值为12. 即:男生至少12人.统计中的数形结合思想年收入x (万元) 24466677810年饮食支出y (万元)0.91.41.62.02.11.91.82.12.22.3(1)根据表中数据,确定家庭的年收入和年饮食支出的相关关系; (2)如果某家庭年收入为9万元,预测其年饮食支出.思维启迪 可以画出散点图,根据图中点的分布判断家庭年收入和年饮食支出的线性相关性.规范解答解 (1)由题意,知年收入x 为解释变量,年饮食支出y 为预报变量,作散点图如图所示.[3分]从图中可以看出,样本点呈条状分布,年收入和年饮食支出有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系.[4分] 因为x =6,y =1.83,∑i =110x 2i =406,∑i =110y 2i =35.13,∑i =110x i y i =117.7,所以b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.172,a ^=y -b ^x ≈1.83-0.172×6=0.798.从而得到线性回归方程为y ^=0.172x +0.798.[8分] (2)y ^=0.172×9+0.798=2.346(万元).所以家庭年收入为9万元时,可以预测年饮食支出为2.346万元.[12分]温馨提醒 (1)在统计中,用样本的频率分布表、频率分布直方图、统计图表中的茎叶图、折线图、条形图,去估计总体的相关问题,以及用散点图判断相关变量的相关性等都体现了数与形的完美结合.借助于形的直观,去统计数据,分析数据,无不体现了数形结合的思想.(2)本题利用散点图分析两变量间的相关关系,充分体现了数形结合思想的应用. (3)本题易错点为散点图画的不准确,导致判断错误.方法与技巧1.求回归方程,关键在于正确求出系数a ^,b ^,由于a ^,b ^的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为b ^,常数项为a ^,这与一次函数的习惯表示不同.)2.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程. 3.根据K 2的值可以判断两个分类变量有关的可信程度. 失误与防范1.相关关系与函数关系的区别相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.例如正方形面积S 与边长x 之间的关系S =x 2就是函数关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.例如商品的销售额与广告费是相关关系.两个变量具有相关关系是回归分析的前提.2.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.A 组 专项基础训练一、选择题1.某地区调查了2~9岁的儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为y ^=8.25x +60.13,下列叙述正确的是( )A .该地区一个10岁儿童的身高为142.63 cmB .该地区2~9岁的儿童每年身高约增加8.25 cmC .该地区9岁儿童的平均身高是134.38 cmD .利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 B2. 设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .直线l 过点(x ,y )B .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在0到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 答案 A解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以B 、C 错误.D 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以D 错误.根据线性回归直线一定经过样本点中心可知A 正确.3.(2012·湖南)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由于线性回归方程中x 的系数为0.85, 因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点中心(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确. 当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确. 4以下结论正确的是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 答案 A解析 根据独立性检验的定义,由K 2≈7.8>6.635可知我们有99%以上的把握认为“爱好该项运动与性别有关”,故选A.5根据上表可得线性回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元答案 B解析 ∵x =4+2+3+54=72,y =49+26+39+544=42,又y ^=b ^x +a ^必过(x ,y ), ∴42=72×9.4+a ^ ,∴a ^ =9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元). 二、填空题6.以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1 ;③在线性回归方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y ^平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大. 答案 ②③解析 ①是系统抽样;对于④,随机变量K 2的观测值k 越小,说明两个相关变量有关系的把握程度越小.7.已知回归方程y ^=4.4x +838.19,则可估计x 与y 的增长速度之比约为________. 答案 5∶22解析 x 每增长1个单位,y 增长4.4个单位,故增长的速度之比约为1∶4.4=5∶22. 事实上所求的比值为回归直线方程斜率的倒数.8.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________ cm. 答案 185解析 儿子和父亲的身高可列表如下:设线性回归方程为y ^=a +b x ,由表中的三组数据可求得b =1,故a ^=y -b ^x =176-173=3,故线性回归方程为y ^=3+x ,将x =182代入得孙子的身高为185 cm. 三、解答题9.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)频数1263861829261 4分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)频数297185159766218(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面2×2列联表,问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?甲厂乙厂合计优质品非优质品合计附解(1)甲厂抽查的500件产品中有360件优质品,从而估计甲厂生产的零件的优质品率为360500=72%;乙厂抽查的500件产品中有320件优质品,从而估计乙厂生产的零件的优质品率为320500=64%.(2)完成的2×2甲厂乙厂合计优质品360320680非优质品140180320合计500500 1 000由表中数据计算得K2的观测值k=1 000×(360×180-320×140)2500×500×680×320≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”.10.(2013·重庆)从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y ^对月收入x 的线性回归方程y ^ =b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i -n x y =184-10×8×2=24,由此得b ^ =l xy l xx =2480=0.3,a ^ =y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).B 组 专项能力提升1.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ③回归方程y ^=b ^x +a ^ 必过(x ,y );④有一个2×2列联表中,由计算得K 2=13.079,则有99.9%的把握确认这两个变量间有关系.其中错误的个数是( )A .0B .1C .2D .3 答案 B解析 一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y ^=3-5x ,当x 增加一个单位时,y 平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y ^=b ^x +a ^必过点(x ,y ),③正确;因为K 2=13.079>10.828,故有99.9%的把握确认这两个变量有关系,④正确.故选B.2.(2013·福建)已知x 与y假设根据上表数据所得线性回归直线方程y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是 ( )A.b ^>b ′,a ^>a ′ B.b ^ >b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′答案 C解析 b ′=2,a ′=-2,由公式b ^=∑i =16(x i -x )(y i -y )∑i =16(x i -x )2求得.b ^=57,a ^ =y -b ^ x =136-57×72=-13,∴b ^ <b ′,a ^>a ′.选C.3.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下非优秀统计成绩,已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按97.5%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按97.5%的可靠性要求,不能认为“成绩与班级有关系” 答案 C解析 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75, 所以c =20,b =45,选项A 、B 错误.根据列联表中的数据,得到K 2=105×(10×30-20×45)255×50×30×75≈6.6>5.024,因此有97.5%的把握认为“成绩与班级有关系”.4.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2男生20525女生101525总计302050则在犯错误的概率不超过________的前提下认为喜爱打篮球与性别有关(请用百分数表示).答案0.5%解析K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=50×(20×15-5×10)225×25×30×20≈8.333>7.879,所以在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关.5.(2013·福建)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?解(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2所以得K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)260×40×30×70=2514≈1.79.因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.创新题目技能练——统计、统计案例A 组 专项基础训练一、选择题1.从2 012名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2 012人中剔除12人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 012人中,每人入选的概率 ( )A .不全相等B .均不相等C .都相等,且为251 006D .都相等,且为140答案 C解析 在各种抽样中,不管是否剔除个体,也不管抽取的先后顺序,每个个体被抽到的可能性都是相等的,这是各种抽样的一个特点,也说明了抽样的公平性.故本题包括被剔除的12人在内,每人入选的概率是相等的,都是502 012=251 006.2. 右图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是 ( )A .161 cmB .162 cmC .163 cmD .164 cm答案 B解析 由给定的茎叶图可知,这10位同学身高的中位数为161+1632=162(cm).3.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 x 0,y 0为这10组数据的平均值, 根据公式计算线性回归方程y ^=b ^x +a ^的b ^以后, 再根据a ^=y -b ^x (x ,y 为样本平均值)求得a ^.因此(x ,y )一定满足线性回归方程,但满足线性回归方程的除了(x ,y )外,可能还有其他样本点.4.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为 ( )A .32B .0.2C .40D .0.25答案 A解析 由频率分布直方图的性质,可设中间一组的频率为x ,则x +4x =1, ∴x =0.2,故中间一组的频数为160×0.2=32,选A.5. 若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92答案 A解析 中位数为12×(91+92)=91.5.平均数为18×(87+89+90+91+92+93+94+96)=91.5. 二、填空题6. 某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品 A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________. 答案 1解析 当x ≥4时,89+89+92+93+92+91+947=6407≠91,∴x <4,则89+89+92+93+92+91+x +907=91,∴x =1.7.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.答案 24 23解析 x 甲=110×(19+18+20+21+23+22+20+31+31+35)=24.x 乙=110×(19+17+11+21+24+22+24+30+32+30)=23.8.如图所示是某公司(员工总人数300人)2012年员工年薪情况的频率分布直方图,由此可知,员工中年薪在2.4万元~2.6万元之间的共有________人.答案 72解析 由所给图形,可知员工中年薪在2.4万元~2.6万元之间的频率为1-(0.02+0.08+0.08+0.10+0.10)×2=0.24,所以员工中年薪在2.4万元~2.6万元之间的共有300×0.24=72(人). 三、解答题9.某个体服装店经营某种服装,一周内获纯利y (元)与该周每天销售这种服装的件数x 之间x 3 4 5 6 7 8 9 y66697381899091已知:∑7i =1x 2i =280,∑7i =1y 2i =45 309,∑7i =1x i y i =3 487. (1)求x ,y ;(2)判断纯利润y 与每天销售件数x 之间是否线性相关,如果线性相关,求出线性回归方程.解 (1)x =17(3+4+5+6+7+8+9)=6,y =17(66+69+73+81+89+90+91)≈79.86.(2)根据已知∑7i =1x 2i =280,∑7i =1y 2i =45 309, ∑7i =1x i y i =3 487,得相关系数 r =3 487-7×6×79.86(280-7×62)(45 309-7×79.862)≈0.973.由于0.973>0.75,所以纯利润y 与每天销售件数x 之间具有显著的线性相关关系. 利用已知数据可求得线性回归方程为y ^=4.75x +51.36. 10.某初级中学共有学生2 000名,各年级男、女生人数如表:初一年级 初二年级初三年级女生 373 x y 男生377370z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;。
2015届高三数学第一轮总复习课件:第64讲 排列与组合综合应用问题

学海导航
理数
(2)(方法一)先把甲、乙作为一个“整体”,看作一个人, 有 A55种站法,再把甲、乙进行全排列,有 A22种站法,根椐 分步计数原理,共有 A55·A22=240 种站法.
(方法二)先把甲、乙以外的 4 个人作全排列,有 A44种站 法,再在 5 个空档中选出一个供甲、乙放入,有 A15种站法, 最后让甲、乙全排列,有 A22种方法,共有 A44·A51·A22=240 种 站法.
(2)将 10 个数分为三组(0,3,6,9)、(1,4,7)、(2,5,8),满
足条件的点的坐标有两种情形:①同时从每一组中选 3 个
数,有
A
3 3
+
A33
+
A34
=
36
个;②从每一组选一个数有
4×3×3×A33=216 个,根据加法原理,共有 36+216=252
个,故选 A.
22 第二十二页,编辑于星期五:八点 五十四分。
(方法二)由于不站两端,这两个位置只能从其余 5 个 人中选 2 个人站,有 A25种站法,然后中间 4 人有 A44种站法, 根据分步计数原理,共有 A25·A44=480 种站法.
(方法三)若对甲没有限制条件共有 A66种站法,甲在两 端共有 2A55种站法,从总数中减去这两种情况的排列数, 即得所求的站法数,共有 A66-2A55=480 种站法.
(2)以这些点为顶点,最多可作多少个三棱锥? (3)上述三棱锥中最多可以有多少个不同的体积?
30 第三十页,编辑于星期五:八点 五十四分。
学海导航
理数
解析:(1)所作出的平面有三类: ①α 内 1 点,β 内 2 点确定的平面,有 C14·C26个; ②α 内 2 点,β 内 1 点确定平面,有 C24·C16个; ③α,β 本身,共 2 个. 所以所作的平面最多有 C14·C26+C24·C61+2=98(个).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在指定位置将主视图画成剖视图。
用M16×40开槽圆柱头螺钉将件1与件2连接起来,试完成主、左视图,左视图不剖。
1.该零件采用了哪些视图、剖视图和剖面图? 2.指出该零件在长、宽、高三个方向的主要尺寸基准。 3.图中G1/2"表示: 螺纹,1/2"表示 ,是 螺纹(内、外), 4.36H8表示:Φ36是 ,H8是 ,其中,H是 ,8是 。
6.3
5.说明符号 的含义。 6.试画出主视图的外形。
1.补画出左视外形图; 2.写出图中下列类型尺寸各 两个:定形尺寸 ____________________, 定位尺寸 ___________________. 3.解释ø25H7的含义: _______________________ _______________; 4.解释
的含义: ___________________
在平面ABC 内求作一条直线,使其到H 面距离为 10mm。
a m b b m a n c n c X O
已知三角形ABC为侧垂面且对V面的倾角β=30°,试完成三角形ABC的水平及侧面投影。
补画正面投影中的相贯线
根据给定的视图,在指定位置将主视图改画为半剖视图,并画出全部视的左视图。