高等数学教案

合集下载

高等数学教案word版

高等数学教案word版

高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。

函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。

高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。

一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。

2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。

(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。

[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。

(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。

(2)值域:函数值的集合,即{yy?f(x),x?D}。

例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。

高等数学教案(含)

高等数学教案(含)

高等数学教案一、教学目标1.知识与技能:(1)理解极限、导数、积分等基本概念,掌握它们的计算方法。

(2)熟练运用导数和积分解决实际问题,如最值问题、曲线拟合等。

(3)了解多元函数的极限、连续性、可导性,掌握偏导数、全微分、方向导数等概念。

(4)掌握多元函数的极值问题,了解条件极值和拉格朗日乘数法。

2.过程与方法:(1)通过实际问题,培养学生运用数学知识解决实际问题的能力。

(2)通过探究式学习,培养学生的创新精神和合作意识。

(3)通过数学软件的应用,提高学生的数学建模和计算能力。

3.情感、态度与价值观:(1)培养学生对数学的兴趣和热情,增强学生的自信心。

(2)培养学生严谨、求实的科学态度,提高学生的逻辑思维能力。

(3)培养学生团结协作的精神,增强学生的集体荣誉感。

二、教学内容1.极限与连续(1)数列极限的定义及性质(2)函数极限的定义及性质(3)无穷小量与无穷大量(4)极限的运算法则(5)夹逼定理与单调有界定理(6)连续函数的定义及性质2.导数与微分(1)导数的定义及几何意义(2)导数的运算法则(3)高阶导数(4)隐函数及参数方程求导(5)微分中值定理(6)泰勒公式3.不定积分与定积分(1)不定积分的概念及性质(2)基本积分公式(3)换元积分法与分部积分法(4)定积分的概念及性质(5)定积分的计算(6)定积分的应用4.多元函数微分学(1)多元函数的极限与连续(2)偏导数与全微分(3)复合函数求导法则(4)隐函数求导法则(5)方向导数与梯度(6)多元函数的极值问题5.多元函数积分学(1)二重积分的概念及性质(2)二重积分的计算(3)三重积分的概念及性质(4)三重积分的计算(5)线积分与面积分三、教学安排1.总学时:64学时2.教学进度安排:(1)极限与连续:12学时(2)导数与微分:18学时(3)不定积分与定积分:18学时(4)多元函数微分学:8学时(5)多元函数积分学:8学时四、教学方法1.讲授法:讲解基本概念、性质、定理等。

高等数学课程教案

高等数学课程教案

高等数学课程教案一、课程概述1.1 课程定位高等数学是工科、理科及其他相关专业的基础课程,旨在培养学生运用数学知识解决实际问题的能力,为后续专业课程的学习奠定基础。

1.2 课程目标通过本课程的学习,使学生掌握极限、导数、微分、积分、级数等基本概念、理论和方法,具备运用高等数学知识分析和解决实际问题的能力。

二、教学内容2.1 极限与连续2.1.1 极限的概念与性质2.1.2 无穷小与无穷大2.1.3 函数的连续性2.2 导数与微分2.2.1 导数的概念与计算2.2.2 微分的概念与计算2.2.3 微分中值定理与导数的应用2.3 积分与不定积分2.3.1 积分的概念与计算2.3.2 不定积分的概念与计算2.3.3 定积分的应用2.4 级数2.4.1 数项级数的概念与判别法2.4.2 幂级数的概念与展开2.4.3 傅里叶级数的概念与应用三、教学方法与手段3.1 教学方法采用讲授、讨论、实践相结合的教学方法,引导学生主动探索、发现和解决问题。

3.2 教学手段利用多媒体课件、板书、教材、网络资源等多种教学手段,提高教学效果。

四、教学评价4.1 过程评价通过课堂提问、作业、小测验等方式,了解学生对课程内容的掌握情况。

4.2 结果评价期末考试对学生学习成果进行全面评价,考察学生对课程知识的运用能力。

五、教学安排5.1 课时安排本课程共计64课时,包括32课时课堂讲授、20课时实践操作、12课时讨论与交流。

5.2 教学进度安排按照教材和教学大纲,合理分配每个章节的教学课时,确保教学内容的完整性。

六、教学活动设计6.1 课堂讲授教师通过讲解、示例、互动等方式,引导学生掌握高等数学的基本概念、理论和方法。

6.2 实践操作学生通过上机实验、数学软件操作等实践活动,加深对高等数学知识的理解和应用。

6.3 讨论与交流学生分组讨论,分享学习心得和解决问题的方法,提高沟通与协作能力。

七、作业与练习7.1 作业布置教师根据教学内容,布置适量作业,巩固学生对知识的理解和运用。

高等数学教案完整版

高等数学教案完整版

包括局部保号性、介值定理、零 点定理等。这些性质为分析和研 究连续函数的性质和行为提供了 重要的依据。
连续函数在数学分析、物理学、 工程学等领域有着广泛的应用。 例如,利用连续函数的性质可以 研究函数的单调性、极值等问题; 利用介值定理可以判断方程根的 存在性等。
PART 03
导数与微分
REPORTING
行列式的计算 利用性质将行列式化为上(下)三角形行列式,然后计算主对角线元素的乘积。
矩阵概念及运算规则
1 2
矩阵的定义 由m×n个数排成m行n列的数表称为m行n列的 矩阵,简称m×n矩阵。
矩阵的运算规则 矩阵的加法、数乘、乘法、转置等运算规则。
3
矩阵的性质
矩阵的加法满足交换律和结合律;数乘满足分配 律;矩阵乘法满足结合律和分配律,但不满足交 换律。
PART 07
线性代数初步
REPORTING
行列式概念及性质
行列式的定义
由n^2个数按一定规则排成的n行n列的数表称为n阶行列式。
行列式的性质
行列式与它的转置行列式相等;互换行列式的两行(列),行列式变号;行列式的某一行(列)的公因子可以提到行列式 外面;若行列式中某一行(列)的元素都是两数之和,则此行列式等于两个行列式的和。
若∑|u_n|收敛,则称原级数绝对 收敛;若原级数收敛但∑|u_n|发 散,则称原级数条件收敛。
比较判别法
通过比较级数与已知收敛或发散 的级数来判断其收敛性。
级数定义
比值判别法与根值判别法
无穷序列的和,表示为∑u_n,其 中u_n为级数的通项。
通过求通项的比值或根值的极限 来判断级数的收敛性。
微分方程与级数应用举例
利用微分方程描述人口

高数教学设计(共8篇)

高数教学设计(共8篇)

高数教学设计〔共8篇〕第1篇:高数教案设计教案设计教材:《高等数学》〔第三版〕上册,第一章函数与极限,第三节函数的极限。

一、方案学时本小节分为两个局部,对于初学者来说有一定的难度,所以也就分为两个学时进展教学。

第一学时:自变量趋于有限值时函数的极限。

第二学时:自变量趋于无穷大时函数的极限。

〔本次教案主要说明第一学时的内容。

〕二、教材处理通过第一节关于函数根本知识的学习,以及高中时已经对函数极限有过一定的学习理解与铺垫,所以就要通过一些根本的例如,来一步步引导学生接触本节的内容,并进一步学习与研究。

来扩展同学们的知识面,并易于承受新内容。

三、教学目的知识和才能目的:1、通过教学过程培养学生的思维才能、运算才能、以及数学创新意识。

让你给同学们积极考虑、敢于提出自己的想法。

2、让同学们掌握一些本节教学中所涉及的技能技巧。

3、通过数学知识为载体,增强学生们的逻辑思维才能,进步学习的兴趣和才能。

传达出数学的人文价值。

四、教学难点和重点1、如何让学生较快的承受新的理念与知识,而改掉以前类似的学习中的定势与习惯性思维。

2、让学生们纯熟的运用书中所涉及的公式与理解一些重要的定理,从而更好的做题。

五、教学设计1、总体思路先通过在黑板上写一些以前学过的相关知识的例题,让同学们到黑板上去做。

然后,对题目做一些变形,就成了本小节所学的知识,此时,就要通过一步步的引导,让同学们呢理解步骤的方法技巧。

最后,就是先要学生们自己总结本节的内容与规律技巧,之后,再告诉同学们本节所需要重点掌握的知识。

2、教学过程〔1〕先让同学们大致看一下本小节内容,对本节内容有一定的理解。

〔4分钟〕设计说明:通过让同学们进展自主学习,对本小节内容有大志的理解,以便于学生更易于承受新知识。

〔2〕通过小例子让大家熟悉并初步认识一下极限的概念。

如:问题:当x无限接近于1的时候,函数f(x)=2x-1的取值。

解析:问题可转化成|f(x)-1|最小取值,因为|f(x)-1|可以无限变小,也就是无限趋近于0,所以当x无限接近于1的时候,函数f(x)=2x-1的取值就是0.〔5分钟〕设计说明:通过引导学生们的思维,带到新的内容,培养学生们的逻辑思维才能以及发撒思维才能。

高等数学教案各章的教学目的、重点、难点

高等数学教案各章的教学目的、重点、难点

高等数学教案各章的教学目的、重点、难点一、极限与连续教学目的:1. 理解极限的概念,掌握极限的计算方法。

2. 理解函数的连续性,掌握连续函数的性质。

重点:1. 极限的定义及计算方法。

2. 连续函数的性质及判定。

难点:1. 极限的计算,特别是极限的超越类型。

2. 连续函数的性质的证明。

二、导数与微分教学目的:1. 理解导数的概念,掌握导数的计算方法。

2. 掌握微分法则,能应用微分解决实际问题。

重点:1. 导数的定义及计算方法。

2. 微分法则及应用。

难点:1. 高阶导数的计算。

2. 微分在实际问题中的应用。

三、积分与不定积分教学目的:1. 理解积分的基本概念,掌握不定积分和定积分的计算方法。

2. 掌握积分的应用,如求解曲线长度、面积、体积等。

重点:1. 不定积分和定积分的计算方法。

2. 积分的应用。

难点:1. 不定积分的计算,特别是含有复杂函数的积分。

2. 定积分的应用,如求解曲线长度、面积、体积等。

四、定积分与微分方程教学目的:1. 理解定积分的概念,掌握定积分的计算方法。

2. 掌握微分方程的解法,能应用微分方程解决实际问题。

重点:1. 定积分的定义及计算方法。

2. 微分方程的解法及应用。

难点:1. 定积分的计算,特别是定积分的反常积分。

2. 微分方程的解法的应用。

五、线性代数基本概念教学目的:1. 理解向量、矩阵、行列式的基本概念,掌握它们的运算。

2. 理解线性方程组的概念,掌握解线性方程组的方法。

重点:1. 向量、矩阵、行列式的运算。

2. 线性方程组的解法。

难点:1. 向量空间的概念及应用。

2. 线性方程组的解法的应用。

六、向量空间与线性变换教学目的:1. 理解向量空间的概念,掌握向量空间的基本性质。

2. 理解线性变换的概念,掌握线性变换的性质和计算。

重点:1. 向量空间的基本性质,如基、维数、张量。

2. 线性变换的性质,如线性、可逆性、矩阵表示。

难点:1. 向量空间的子空间及其之间的关系。

2. 线性变换的计算和应用。

高等数学教案各章的教学目的、重点、难点

高等数学教案各章的教学目的、重点、难点

一、前言教学目的:使学生了解高等数学的基本概念、方法和应用,培养学生运用数学知识解决实际问题的能力。

重点:高等数学的基本概念、方法和应用。

难点:理解并掌握高等数学中的抽象概念和方法。

二、极限与连续教学目的:使学生了解极限的概念,掌握极限的计算方法,理解函数的连续性。

重点:极限的概念和计算方法,函数的连续性。

难点:理解极限的直观意义,掌握无穷小和无穷大的概念。

三、导数与微分教学目的:使学生了解导数的概念,掌握导数的计算方法,理解导数在实际问题中的应用。

重点:导数的概念和计算方法,导数在实际问题中的应用。

难点:理解导数的几何意义,掌握高阶导数的计算方法。

四、积分与不定积分教学目的:使学生了解积分的概念,掌握积分的计算方法,理解积分在实际问题中的应用。

重点:积分的概念和计算方法,积分在实际问题中的应用。

难点:理解积分的直观意义,掌握换元积分和分部积分的方法。

五、定积分与面积教学目的:使学生了解定积分的概念,掌握定积分的计算方法,理解定积分在实际问题中的应用。

重点:定积分的概念和计算方法,定积分在实际问题中的应用。

难点:理解定积分的性质,掌握定积分的计算技巧。

六、微分方程教学目的:使学生了解微分方程的基本概念,掌握一阶微分方程的解法,理解微分方程在实际问题中的应用。

重点:微分方程的基本概念,一阶微分方程的解法,微分方程在实际问题中的应用。

难点:理解微分方程的解的存在性定理,掌握高阶微分方程的解法。

七、线性代数基本概念教学目的:使学生了解线性代数的基本概念,掌握矩阵的运算,理解线性方程组的解法。

重点:线性代数的基本概念,矩阵的运算,线性方程组的解法。

难点:理解线性空间和线性变换的概念,掌握矩阵的特征值和特征向量。

八、线性方程组与矩阵教学目的:使学生了解线性方程组的基本概念,掌握线性方程组的解法,理解矩阵的应用。

重点:线性方程组的基本概念,线性方程组的解法,矩阵的应用。

难点:理解线性方程组的解的存在性定理,掌握矩阵的逆矩阵。

《高等数学》课程教案

《高等数学》课程教案

《高等数学》课程教案一、课程简介《高等数学》是工科、理科以及部分经济管理科学专业的一门基础课程。

通过本课程的学习,使学生掌握数学分析、线性代数、概率论等基本理论和方法,培养学生运用数学知识解决实际问题的能力。

二、教学目标1. 理解并掌握高等数学的基本概念、原理和方法。

2. 能够熟练运用高等数学知识解决实际问题。

3. 培养学生的逻辑思维能力和创新意识。

三、教学内容第一章:极限与连续1. 极限的概念与性质2. 函数的连续性3. 极限的运算法则4. 无穷小与无穷大5. 极限存在的条件第二章:导数与微分1. 导数的概念2. 基本导数公式3. 导数的运算法则4. 高阶导数5. 微分第三章:积分与不定积分1. 积分概念2. 基本积分公式3. 积分的运算法则4. 不定积分5. 定积分第四章:级数1. 数项级数概念2. 收敛性与发散性3. 级数的运算法则4. 幂级数5. 傅里叶级数第五章:常微分方程1. 微分方程的概念2. 一阶微分方程的解法3. 高阶微分方程4. 线性微分方程5. 微分方程的应用四、教学方法采用讲授、讨论、实践相结合的方法,引导学生主动探索、积极参与,培养学生的动手能力和创新能力。

五、教学评价1. 平时成绩:包括作业、小测、课堂表现等,占总评的40%。

2. 期中考试:测试学生对高等数学知识的掌握程度,占总评的30%。

3. 期末考试:全面测试学生的综合素质,占总评的30%。

六、多元函数微分学1. 多元函数的概念2. 多元函数的求导法则3. 偏导数4. 全微分5. 多元函数微分学在实际问题中的应用七、重积分1. 二重积分概念及性质2. 二重积分的计算3. 三重积分概念及性质4. 三重积分的计算5. 重积分的应用八、向量分析1. 空间解析几何基础2. 向量的概念及运算3. 空间向量的线性运算4. 空间向量的数量积与角积5. 空间向量的坐标运算及其应用九、常微分方程初步1. 微分方程的概念与分类2. 常微分方程的解法3. 常微分方程的数值解法4. 常微分方程的应用5. 常微分方程在工程与科学计算中的重要性十、线性代数的应用1. 线性方程组及其解法2. 矩阵的概念与运算3. 特征值与特征向量4. 二次型及其判定5. 线性代数在实际问题中的应用十一、概率论与数理统计1. 随机事件及其概率2. 随机变量及其分布3. 数学期望与方差4. 大数定律与中心极限定理5. 数理统计的基本方法十二、数学软件与应用1. MATLAB软件简介2. MATLAB在高等数学中的应用3. Mathematica软件简介4. Mathematica在高等数学中的应用5. 数学软件在实际问题中的应用教学方法:1. 通过案例分析、实际应用问题引导学生理解和掌握理论知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言:初等数学的主要研究对象基本上是不变的量,高等数学的主要研究对象则是变量之间的关系,即函数。

其研究的主要内容却是微积分,而研究微积分的基本方法是极限,函数的连续性则是函数可微与可积的基本条件。

在中学对于函数及其性质已作了比较全面而详细的讨论,下面先对函数进行概括的复习,而后着重讨论极限与连续性问题。

第一章函数与极限
【授课对象】理工类一年级,03090401~5
【授课时数】15学时,习题5学时
【授课方法】课堂讲授与提问相结合,适当时候采用多媒体技术
【基本要求】1.理解函数的概念.
2.了解函数的单调性、周期性、奇偶性.
3.了解反函数和复合函数的概念.
4.熟悉基本初等函数的性质及其图形.
5.能列出简单实际问题中的函数关系.
6.了解极限的δ
N定义,并能在学习过程中逐步加深对极限思想
ε,
-
ε
-
的理解.
7.掌握极限的四则运算法则.
8.了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极
限求极限.
9.了解无穷小、无穷大的概念,掌握无穷小的比较.
10.理解函数在一点连续的概念,会判断间断点的类型.
11.了解初等函数的连续性,知道在闭区间上连续函数的性质(介值定
理和最大、最小值定理).
【本章重点】复合函数的概念,极限的概念,极限的计算方法,复合函数的极限,幂指数函数的极限,判断极限存在的准则及两个重要极限的应用,无
穷大与无穷小的概念以及二者之间的关系,等价无穷小的运用,连续
性与间断点的概念与判断,闭区间上连续函数的性质。

【本章难点】极限的概念,利用极限的定义证明函数与数列的极限,幂指数函数极
限的计算,判断极限存在的两个准则及两个重要极限,复合函数的极
限,等价无穷小的代换,间断点的判断与分类,根的存在性定理的应
用。

【授课内容及学时分配】
§1. 函 数
一、基本概念:
1. 集合、常量与变量。

(中学已学P 1,P 4)
2. 函数的概念。

Df 1: 设有两个变量x 和y ,如果对于变量x 在数集D 中的每一个值,按照定一对应法则f ,变量y 总有确定的值与之对应,则称y 是x 的函数,记作y=f (x )。

其中,x 称为自变量,y 称为因变量,数集D 称为函数的定义域。

对于确定的0x ∈D ,相应的因变量y 的对应值称为y=f (x )在0x 处的函数值,记作f (0x )。

全体函数值组成的数集W ,称为函数的值域。

此时,函数y =f (x )可看作是数集D 到数集W 上的一个映射。

若无特别说明,凡提及的数以及数集都限于实数范围内考虑,本书中所涉及的函数都是仅含一个自变量的一元函数(上册内容的研究对象)。

关于函数的定义特作如下几点说明:
01 定义域:如果函数y =f (x )的定义域是介于两全实数之间的全体实数,则称变量x 是连续型自变量,其定义域可以用所谓的区间来表示。

若设:a ,b ∈R ,且a <b ,则对于满足如下不等式a <x <b , a ≤x ≤b , a ≤x <b , a <x ≤b 的实数集合分别用开区间(a ,b ),闭区间 [a ,b ],半开半闭区间[a ,b ),(a ,b ]来表示,这些区间都称为有限区间,而对于满足不等式a <x <+∞,-∞<x ≤b , -∞<x <+∞的实数集合分别用所谓的无穷区间
(a , +∞),(-∞,b ) 及 (-∞,+∞)来表示。

设a , δ∈R ,且δ>0,满足不等式|x -a |<δ,即a -δ<x <a +δ的实数集合{x |x -a |<δ=或(a -δ,a +δ)称为点a 的δ邻域,记为U (a ,δ)(或N (a ,δ))。

其中,a 称为邻域中心,δ称为邻域半径。

在分析函数的性态时,常常需要深入到一点附近来研究,因此,δ一般是一个很小的正数。

对应于点a 的邻域,还有一个点a 的空(去)心邻域,它是由不等式0<|x -a |<δ
来确定,记作0U (a ˆ,δ)(N (a ˆ,δ)),即0
U (a ˆ,δ)={x |0<|x -a |<δ==(a -δ,a ) (a ,a +δ),其中(a-δ,a ),(a ,a +δ)分别称为点a 的左邻域和右邻域 需要指出的是,并非所有函数的定义域都能用某一区间来表示,如单位圆内接
正n 边形的面积n S =2n sin n
π2,其中n =3,4,5,…依定义,n S 是n 的函数,记n S =f (n )。

其定义域为{3,4,5,…}
一般地,数列{X n }确定了X n 是下标n 的函数,X n =f (n )。

因其定义域为正整数集,故而数列又称为整数函数。

显然,数列是一类特殊的函数。

因此,对于一般函数适合的结论同样适用于数列。

数列的图形是一些离散的点。

例如数列X n =n
1 ,其图形可以用数轴上的点表示(如左下图),也可用平面直角坐标系中的点来表示(如右下图),它是双曲函数y =1/x 的右支,当x 取正整数时所对应的点。

02对应法则:y 是x 的函数,通常用y =f (x )来表示,它是用自变量x 的解析式子来表示因变量y 的,函数的这种表达式称为显函数,但这并不是函数关系的唯一表达形式。

从结构上看,它是“y 已解出的二元方程”。

考虑二元方程x +y =1,当x ∈)1,1(-时,y =±21x -,因此,在区间)1,1(-内,方程
x +y =1就确定了y 是x 的双值函数;若限定0≥y (或y <0),则在[1-,1]上可确定y 是x 的单值函数。

今后若无特别说明,我们只考虑单值函数。

一般说来,对于二元方程F (x ,y )=0,若存在函数y =f (x ),满足F[x ,f (x )]≡0,则称y =f (x )是由二元方程所确定的隐函数。

据此,方程x 2+y 2=1(y ≥0)在区间[-1,1]上确定了y 是x 的隐函数。

按照函数的定义,允许多个自变量对应于同一函数值一,如y =sin x ,当x k π= (k ∈Z)时,y =0
常函数y =f (x )=C (常数)中的任何实数x 都对需要说明的是,对于分段函数来说,函数的分段所表示函数仍是一个函数,而不是两个或几个函数,只是在定义域中的不同段上,其对应法则不同而已。

如:y =f (x )= ⎪⎩
⎪⎨⎧<-=>010001x x x D =(-∞,+∞)
如:y =f (x )=⎪⎩⎪⎨⎧<<≤--2
||11||1122x x x x , D =D 1 D 2=[-1,1] (-2,-1) (1,2)=(-2,2)
03函数值
eg 1.设y =f (x )=1122+-x x ,则:f (0)=-1,f (1)=0,f (a b )=2222a b a b +-,(f (a b ))=4
4222b a b a +-,f [f (x )]=42
12x
x +- eg 2.已知f (sin 2x )=1+cos x ,求f (cos 2
x ). 解:先求f (x )=2(1-x 2),再求f (cos
2x )=1-cos x .
由上述可知:定义域和对应法则是构成函系的两大因素,因为只要定义域和对应法则给定了,相应的值域也就确定了。

因此,仅当两个函数的定义域和对应法则完全相同时,才能说这两个函数是相等的。

例如,
x +3与3
92--x x 就表示两个不同的函数,因为二者的定义域不同。

仅当x ≠3时,等式3
92--x x =x +3成立。

再如,2ln x 与ln x 2,亦如此。

而在s =21gt 2与 y =21gx 2k ,尽管所用变量不同,仅当t ≥0,x ≥0时,两者均可表示自由落体运动中,物体下落距离与时间的关系。

二、函数的性质——函数的有界性、单调性、奇偶性、周期性。

1310-P。

相关文档
最新文档