高等数学教案一

合集下载

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】高中数学课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】二元二次方程与圆的一般方程及标准圆方程的`关系。

三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。

2、提问已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案篇二教材分析:前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。

教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

教学目标:(一)知识与技能1.掌握数量积的定义、重要性质及运算律;2.能应用数量积的重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

(二)过程与方法以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

(三)情感、态度与价值观创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。

最新版-高中数学必修一教案【优秀4篇】

最新版-高中数学必修一教案【优秀4篇】

高中数学必修一教案【优秀4篇】高中数学必修一教案篇一重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。

一。

教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。

二。

教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B 的一个函数(function),记作:(),yfxxA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。

显然,值域是集合B的子集。

注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。

3.映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高中数学必修一教案篇二一、教学目标1、知识与技能(1)理解对数的概念,了解对数与指数的关系;(2)能够进行指数式与对数式的互化;(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;2、过程与方法3、情感态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质、二、教学重点、难点教学重点(1)对数的定义;(2)指数式与对数式的互化;教学难点(1)对数概念的理解;(2)对数性质的理解;三、教学过程:四、归纳总结:1、对数的概念一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。

《高等数学》第一章课程教案

《高等数学》第一章课程教案

《高等数学》第一章课程教案《高等数学》第一章课程教案《高等数学》第一章课程教案一.课程名称:高等数学 \Calculus 二.学时与学分:72学时4学分三.适用专业:教育技术,计算机,人体,康复四.课程教材:《高等数学》,第四版. 同济大学数学教研室编,高等教育出版社五.上课教师:刘蓉老师六.课程的性质、目的和任务:高等数学是工科大学生最重要的基础理论课之一,它作为工程教育中的一个重要内容,目的在于培养工程技术人员必备的基本数学素质。

任务:通过本课程的学习,使学生理解微积分中极限、导数、积分等基本概念;掌握基本的运算技巧;使学生能用所学的知识去解决各种领域中的一些实际问题;训练学生数学推理的严密性,使学生具有一定的数学修养和对实际问题具有抽象、归纳、推广的能力,能用数学的语言描述各种概念和现象,能理解其它学科中所用的数学理论和方法;培养学生学习数学的兴趣,帮助学生养成自学数学教材和其它数学知识的能力,为以后学习其它学科打下良好的基础。

七、教学方式(手段):主要采用讲授新课的方式第一章函数极限与连续一、教学目标与基本要求 1、理解函数的概念,会求函数的定义域、表达式及函数值。

会求分段函数的定义域、函数值,并会作出简单的分段函数图像,掌握函数的表示方法。

2、了解函数的奇偶性、单调性、周期性和有界性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形。

5、会建立简单应用问题中的函数关系式。

6、理解极限的概念,理解函数在极限与右极限的概念,以及极限存在与左、右极限之间的关系。

7、掌握极限的性质及四则运算法则。

8、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

9、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

10、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

11、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值、最小值定理和介值定理),并会应用这些性质。

高职高专高等数学教案

高职高专高等数学教案

高职高专高等数学教案第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,如单调性、奇偶性、周期性等。

教学内容:介绍函数的定义,讨论函数的性质,举例说明。

教学方法:通过讲解和示例,让学生掌握函数的基本概念和性质。

1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,如保号性、夹逼性等。

教学内容:介绍极限的定义,讨论极限的性质,举例说明。

教学方法:通过讲解和示例,让学生理解极限的概念和性质。

第二章:导数与微分2.1 导数的定义与计算教学目标:理解导数的定义,掌握基本函数的导数计算。

教学内容:介绍导数的定义,讲解基本函数的导数计算法则。

教学方法:通过讲解和练习,让学生掌握导数的定义和计算方法。

2.2 微分的概念与计算教学目标:理解微分的概念,掌握微分的计算方法。

教学内容:介绍微分的定义,讲解微分的计算法则。

教学方法:通过讲解和练习,让学生理解微分的概念和计算方法。

第三章:积分与微分方程3.1 定积分的定义与计算教学目标:理解定积分的概念,掌握定积分的计算方法。

教学内容:介绍定积分的定义,讲解定积分的计算法则。

教学方法:通过讲解和练习,让学生掌握定积分的概念和计算方法。

3.2 微分方程的基本概念与解法教学目标:理解微分方程的概念,掌握基本的微分方程解法。

教学内容:介绍微分方程的定义,讲解常见的微分方程解法。

教学方法:通过讲解和练习,让学生理解微分方程的概念和解法。

第四章:级数与常微分方程4.1 数项级数的概念与收敛性教学目标:理解数项级数的概念,掌握级数的收敛性判断。

教学内容:介绍数项级数的定义,讲解级数的收敛性判断方法。

教学方法:通过讲解和练习,让学生掌握数项级数的概念和收敛性判断。

4.2 常微分方程的解法与应用教学目标:理解常微分方程的概念,掌握常见的解法及其应用。

教学内容:介绍常微分方程的定义,讲解常见的解法及其应用。

教学方法:通过讲解和练习,让学生理解常微分方程的概念和解法及其应用。

高数教学设计(共8篇)

高数教学设计(共8篇)

高数教学设计〔共8篇〕第1篇:高数教案设计教案设计教材:《高等数学》〔第三版〕上册,第一章函数与极限,第三节函数的极限。

一、方案学时本小节分为两个局部,对于初学者来说有一定的难度,所以也就分为两个学时进展教学。

第一学时:自变量趋于有限值时函数的极限。

第二学时:自变量趋于无穷大时函数的极限。

〔本次教案主要说明第一学时的内容。

〕二、教材处理通过第一节关于函数根本知识的学习,以及高中时已经对函数极限有过一定的学习理解与铺垫,所以就要通过一些根本的例如,来一步步引导学生接触本节的内容,并进一步学习与研究。

来扩展同学们的知识面,并易于承受新内容。

三、教学目的知识和才能目的:1、通过教学过程培养学生的思维才能、运算才能、以及数学创新意识。

让你给同学们积极考虑、敢于提出自己的想法。

2、让同学们掌握一些本节教学中所涉及的技能技巧。

3、通过数学知识为载体,增强学生们的逻辑思维才能,进步学习的兴趣和才能。

传达出数学的人文价值。

四、教学难点和重点1、如何让学生较快的承受新的理念与知识,而改掉以前类似的学习中的定势与习惯性思维。

2、让学生们纯熟的运用书中所涉及的公式与理解一些重要的定理,从而更好的做题。

五、教学设计1、总体思路先通过在黑板上写一些以前学过的相关知识的例题,让同学们到黑板上去做。

然后,对题目做一些变形,就成了本小节所学的知识,此时,就要通过一步步的引导,让同学们呢理解步骤的方法技巧。

最后,就是先要学生们自己总结本节的内容与规律技巧,之后,再告诉同学们本节所需要重点掌握的知识。

2、教学过程〔1〕先让同学们大致看一下本小节内容,对本节内容有一定的理解。

〔4分钟〕设计说明:通过让同学们进展自主学习,对本小节内容有大志的理解,以便于学生更易于承受新知识。

〔2〕通过小例子让大家熟悉并初步认识一下极限的概念。

如:问题:当x无限接近于1的时候,函数f(x)=2x-1的取值。

解析:问题可转化成|f(x)-1|最小取值,因为|f(x)-1|可以无限变小,也就是无限趋近于0,所以当x无限接近于1的时候,函数f(x)=2x-1的取值就是0.〔5分钟〕设计说明:通过引导学生们的思维,带到新的内容,培养学生们的逻辑思维才能以及发撒思维才能。

高等数学教案第一章

高等数学教案第一章

第一章函数与极限一、教学内容1.函数:常量与变量、函数的定义;2.函数的表示方法:解析法、图示法、表格法;函数的性质:单调性、奇偶性、有界性和周期性;3.初等函数:基本初等函数、反函数、复合函数、初等函数、分段表示的函数,并会建立函数关系;4.极限:数列极限、函数极限、左右极限、极限四则运算法则、两个重要极限、无穷小量、无穷大量、无穷小量的性质;5.连续:连续、间断、初等函数的连续性、闭区间上连续函数的性质。

二、教学目的1.理解函数的概念及其性质,熟练掌握求函数定义域和函数值的方法;2.掌握基本初等函数的解析表达式、定义域、主要性质和图形;3.了解反函数的概念及互为反函数的函数图象之间的关系;理解复合函数、分段函数的概念;了解初等函数的概念;会建立函数关系;4.了解数列极限与函数极限的概念(描述性定义);会求左右极限;5.掌握极限四则运算法则;掌握用两个重要极限求极限的方法;能熟练进行极限运算;6.理解无穷小量、无穷大量的概念及相互关系;7.理解函数连续概念;掌握由初等函数的连续性求极限的方法;了解闭区间上连续函数的性质。

三、教学重点1.函数的概念及其性质、基本初等函数、复合函数;2.极限的运算。

3.无穷小量、无穷大量的概念及相互关系;4.函数连续概念、闭区间上连续函数的性质。

四、教学难点1.极限的概念;2.无穷小量、无穷大量的概念及相互关系; 3.函数连续概念。

第一节 函数一、集合 1、集合概念具有某种特定性质的事物的总体叫做集合。

组成这个集合的事物称为该集合的元素。

表示方法:用A ,B ,C ,D 表示集合;用a ,b ,c ,d 表示集合中的元素1)},,,{321 a a a A = 2)}{P x x A 的性质=元素与集合的关系:A a ∉ A a ∈一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。

常见的数集:N ,Z ,Q ,R ,N + 元素与集合的关系:A 、B 是两个集合,如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作B A ⊂。

《高等数学》-授课教案

《高等数学》-授课教案

《高等数学》-授课教案第一讲 高等数学学习介绍、函数一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量; (2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。

2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。

(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。

[见教材“序言”] 二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。

(用变化的观点定义函数),记:)(x f y =(说明表达式的含义) (1)定义域:自变量的取值集合(D )。

(2)值 域:函数值的集合,即}),({D x x f y y ∈=。

例1、求函数)1ln(2x y -=的定义域?2、函数的图像:设函数)(x f y =的定义域为D ,则点集}),(),{(D x x f y y x ∈= 就构成函数的图像。

例如:熟悉基本初等函数的图像。

3、分段函数:对自变量的不同取值范围,函数用不同的表达式。

例如:符号函数、狄立克莱函数、取整函数等。

分段函数的定义域:不同自变量取值范围的并集。

例2、作函数⎩⎨⎧≥<=0,20,)(2x x x x x f 的图像?例3、求函数⎩⎨⎧-<≥=?)1(),0(),1(010)(2f f f x x x x f 的定义域及函数值,,四:设y=f(u),u=g(x),且与x 对应的u 使y=f(u)有意义,则y=f[g(x)]是x 的复合函数,u 称为中间变量。

《高等数学》课程教案

《高等数学》课程教案

《高等数学》课程教案一、课程简介《高等数学》是工科、理科以及部分经济管理科学专业的一门基础课程。

通过本课程的学习,使学生掌握数学分析、线性代数、概率论等基本理论和方法,培养学生运用数学知识解决实际问题的能力。

二、教学目标1. 理解并掌握高等数学的基本概念、原理和方法。

2. 能够熟练运用高等数学知识解决实际问题。

3. 培养学生的逻辑思维能力和创新意识。

三、教学内容第一章:极限与连续1. 极限的概念与性质2. 函数的连续性3. 极限的运算法则4. 无穷小与无穷大5. 极限存在的条件第二章:导数与微分1. 导数的概念2. 基本导数公式3. 导数的运算法则4. 高阶导数5. 微分第三章:积分与不定积分1. 积分概念2. 基本积分公式3. 积分的运算法则4. 不定积分5. 定积分第四章:级数1. 数项级数概念2. 收敛性与发散性3. 级数的运算法则4. 幂级数5. 傅里叶级数第五章:常微分方程1. 微分方程的概念2. 一阶微分方程的解法3. 高阶微分方程4. 线性微分方程5. 微分方程的应用四、教学方法采用讲授、讨论、实践相结合的方法,引导学生主动探索、积极参与,培养学生的动手能力和创新能力。

五、教学评价1. 平时成绩:包括作业、小测、课堂表现等,占总评的40%。

2. 期中考试:测试学生对高等数学知识的掌握程度,占总评的30%。

3. 期末考试:全面测试学生的综合素质,占总评的30%。

六、多元函数微分学1. 多元函数的概念2. 多元函数的求导法则3. 偏导数4. 全微分5. 多元函数微分学在实际问题中的应用七、重积分1. 二重积分概念及性质2. 二重积分的计算3. 三重积分概念及性质4. 三重积分的计算5. 重积分的应用八、向量分析1. 空间解析几何基础2. 向量的概念及运算3. 空间向量的线性运算4. 空间向量的数量积与角积5. 空间向量的坐标运算及其应用九、常微分方程初步1. 微分方程的概念与分类2. 常微分方程的解法3. 常微分方程的数值解法4. 常微分方程的应用5. 常微分方程在工程与科学计算中的重要性十、线性代数的应用1. 线性方程组及其解法2. 矩阵的概念与运算3. 特征值与特征向量4. 二次型及其判定5. 线性代数在实际问题中的应用十一、概率论与数理统计1. 随机事件及其概率2. 随机变量及其分布3. 数学期望与方差4. 大数定律与中心极限定理5. 数理统计的基本方法十二、数学软件与应用1. MATLAB软件简介2. MATLAB在高等数学中的应用3. Mathematica软件简介4. Mathematica在高等数学中的应用5. 数学软件在实际问题中的应用教学方法:1. 通过案例分析、实际应用问题引导学生理解和掌握理论知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南机电职业技术学院学期授课计划学期授课计划备注:严格按此计划组织教学,授课内容误差不得超过2个课时;各班级按教学进度表组织教学,如有实习周或放假周,按计划内容顺延。

湖南机电职业技术学院教案(一)备课组长签名:教师签名:湖南机电职业技术学院教案(二)备课组长签名:教师签名:湖南机电职业技术学院教案(三)备课组长签名:教师签名:湖南机电职业技术学院教案(四)备课组长签名:教师签名:教学目的(知识、技能、态度):了解极限存在准则,掌握两个重要极限; 利用法则与重要极限会求某些函数的极限.提高观察分析能力。

教学重点:利用法则与重要极限求极限。

教学难点:重要极限的认识与应用 课 型:新授课主要教学方法:引导式教学法;讲授法. 教学场所、设备要求:教 学 过 程 设 计(时间大体分配)教学方法Ⅰ.组织教学: 考勤,复习回顾:无穷大与无穷小,极限的四则运算法则。

Ⅱ、新课教学1. 极限存在准则Ⅰ与重要极限0sin lim1x xx→=准则Ⅰ如果对于x 0的某邻域内的一切x (可以不包含x 0),或者对于绝对值充分大的一切x ,有)()()(x h x f x g ≤≤;并且有A x h x g ==)(lim )(lim ,则当0x x →或∞→x 时,f(x)的极限存在,且limf(x)=A 。

0sin lim1x xx→=证明:,,(0)2O AOB x x π∠=<<设单位圆圆心角, .ACO ∆,得作单位圆的切线,x OAB 的圆心角为扇形,BD OAB 的高为∆,tan ,,sin AC x AB x BD x ===弧于是有sin tan ,x x x ∴<<即sin cos 1,xx x <<.02也成立上式对于<<-x π,20时当π<<xx x cos 11cos 0-=-<2sin 22x =2)2(2x <,22x = ,02lim 20=→x x ,0)cos 1(lim 0=-∴→x x5’10’ACxBDosin1=01sin 21lim 22222x x cos x x cos x →==22sin x 2sin1x1lim(1)e →∞+=;1lim(1)e →+=型幂指函数的极限。

1311x ⎛⎫+ ⎪-⎝⎭3lim 1x x →∞⎛+ -⎝湖 南 机 电 职 业 技 术 学 院 教 案(五)备课组长签名: 教师签名:课题:§1.14函数的连续性教学目的(知识、技能、态度):理解函数连续性的两个定义,了解间断点的类别,掌握初等函数在定义区间上的连续性,了解闭区间上连续函数的性质及应用;提高观察分析能力。

教学重点:初等函数在定义区间上的连续性。

教学难点:连续性与间断点的判别,闭区间上连续函数的性质的理解和应用。

课型:新授课主要教学方法:数形结合法,分析法 教学场所、设备要求:教 学 过 程 设 计(时间大体分配)教学方法Ⅰ.组织教学:上节回顾:两个重要极限公式.无穷小的比较;作业讲析 Ⅱ、新课教学 一、 函数的增量在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性 在定义函数的连续性之前我们先来学习一个概念——增量定义1 如果函数()y f x = 在0x 的某个邻域内有定义,当自变量x 从0x 变到0x x +∆,函数()y f x =相应地从0()f x 变到0()f x x +∆,因此函数相应的增量为: 00()()y f x x f x ∆=+∆-强调:增量可正可负,其实是变量的改变量。

例1 设2()31y f x x ==-,求适合下列条件的自变量的增量x ∆和函数的增量y ∆:(1)x 由1变化到0.5 (2)x 由1变到1x +∆ (3)x 由0x 变到0x x +∆2’5’10’解略。

二、函数连续性的概念 1. 一点处连续的定义。

定义2 设函数()y f x =在点0x 的某个邻域有定义,如果当△x 趋向于零时,函数y 对应的增量△y 也趋向于零,即:那末就称函数在点x 0处连续。

例2 证明函数2()22y f x x x ==-+在点0x x =处连续。

定义3设函数在点x 0的某个邻域内有定义,如果有称函数在点x 0处连续,且称x 0为函数的的连续点.由定义,函数在()y f x =点0x 连续需同时满足三个条件:(1) 函数在点0x 的一个邻域内有定义,即0()f x 存在(2) 0lim ()x x f x →存在,即左右极限相等0lim ()lim ()x x x x f x f x +-→→= (3) 上述两个值相等,即极限值等于函数值0lim ()x x f x →=0()f x例3讨论函数21()1x f x x -=-在1x =处的连续性。

例4 讨论函数1,1()0,11,1x x f x x x x +>⎧⎪==⎨⎪-<⎩在1x =处的连续性。

例5讨论函数1,1()0,1x x f x x +≠⎧=⎨=⎩在1x =处的连续性。

2. 区间连续 设函数在区间(a,b]内有定义,如果左极限存在且等于,即:=,那末我们就称函数在点b 左连续.设函数在区间[a,b)内有定义,如果右极限存在且等于,即:=,那末我们就称函数在点a 右连续. 一个函数在由图形分析加强学生对定义的理解10’10’15’5’开区间(a,b)内每点连续,则为在(a,b)连续,若又在a 点右连续,b 点左连续,则在闭区间[a ,b]连续,如果在整个定义域内连续,则称为连续函数。

连续函数图形是一条连续而不间断的曲线。

三、函数的间断点 分类 原因 包含情况 类型 第一类间断点lim ()x x f x -→,0lim ()x x f x +→ 都存在lim ()x x f x -→≠0lim ()x x f x +→ 跳跃间断点0lim ()x x f x -→=0lim ()x x f x +→=00lim ()()x x f x f x →≠ 可去间断点第二类间断点不属于第一类间断点的lim ()x x f x →=∞无穷间断点结合前面的例子分别介绍.例3为无穷间断点,例4为可去间断点,例5为跳跃间断点 四、 初等函数的连续性1.连续函数的和、差、积、商的连续性由函数在一点处连续的定义和极限的四则运算法则可知:00(),(),()(),()()f x g x x f x g x f x g x x ±⋅若函数在点处连续则在点处连续, 2. 复合函数的连续性 设函数当x →x 0时的极限存在且等于a ,即:.而函数在点u=a 连续,那末复合函数当x →x 0时的极限也存在且5’5’湖南机电职业技术学院教案(六)备课组长签名:教师签名:与连续的关系. 培养学生联系的、辩证统一的思想;培养学生解决实际问题的能力。

教学重点:导数的定义与求导数的方法.教学难点:导数概念的理解和可导与连续之间的关系。

课型:新授课主要教学方法:讲授法、讨论法、案例教学法 教学场所、设备要求:教 学 过 程 设 计(时间大体分配)教学方法Ⅰ.组织教学:考勤,检查预习情况。

Ⅱ、新课教学 一、两个引例。

引例1 求变速直线运动的瞬时速度。

瞬时速度定义:运动物体经过某一时刻(某一位置)的速度,叫做瞬时速度。

确定物体在某一时刻0t 处的瞬时速度0()v t 的方法:从t 0到t 0+Δt ,这段时间是Δt . 时间Δt 足够短,就是Δt 无限趋近于0. 当Δt →0时,平均速度就越接近于瞬时速度,用极限表示瞬时速度 瞬时速度000000()()()lim limlim t t t s t t s t sv t v t t∆→∆→∆→+∆-∆===∆∆ 引例2 曲线的切线。

如图,设曲线c 是函数()y f x =的图象,点00(,)P x y 是曲线 c 上一点作割线PQ 当点Q 沿着曲线c 无限地趋近于点P ,割线PQ 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线c 在点P 处的切线y=f(x)β∆x∆yQ MPxOy确定曲线c 在点00(,)P x y 处的切线斜率的方法:因为曲线c 是给定的,根据解析几何中直线的点斜是方程的知识,只要求出切线的斜率就够了设割线PQ 的倾斜角为β,切线PT 的倾斜角为α,既2’ 10’10’00limlimx x x →→=∆这个极限为函数y 00lim limx x x →→=∆处可导有时也说成x f )(0不存在,则称函数)(x f y =在开区间),(b a 内可导三、求函数导数的一般方法:(1)求函数的改变量()()y f x x f x ∆=+∆-(2)求平均变化率()()y f x x f x x x∆+∆-=∆∆ (3)取极限,得导数/y =()f x '=xyx ∆∆→∆0lim注意:(Δx )2括号别忘了写.例2已知2y x =,求y ′.解:略分析:例1中的一点处的导数与这里的任意点处的导数的关系。

例3 求函数()log (0,1)a f x x a a =>≠的导数。

解:(1)log ()log log (1)a a a xy x x x x∆∆=+∆-=+;(2)11log (1)log (1)xxa a y x x x x x x x∆∆∆∆=+=+∆∆; (3)00011limlim log (1)lim log (1)x x x xa a x x x y x x x x x x x ∆∆∆→∆→∆→∆∆∆=+=+=∆ 0111log lim(1)log ln xxa a x x e x xx x a∆∆→∆+== 1(log )ln a x x a '=特别地:当a e =时,有1(ln )x x'= 点评:求函数的导数也主要是求极限的值,所以极限是求函数的导数的基础,求极限的一些基本方法不能忘掉.四、 导数的几何意义由导数的定义可知:函数在点处的导数在几何上表示曲线在点处的切线斜率,即,其中是切线的倾角.如下图:20’5’如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-例2 求曲线3y x =在点(2,8)处的切线方程和法线方程。

解略。

五、 可导与连续的关系定理2.1 如果函数y =f (x )在点x 0处可导,那么函数y =f (x )在点x 0处连续,反之不成立. 函数具有连续性是函数具有可导性的必要条件,而不是充分条件.设函数()y f x =在点x 可导,即有: 0lim ()x yf x x∆→∆'=∆由极限与无穷小的关系得:()yf x xα∆'=+∆ 其中α为当0x ∆→时的无穷小,上式两端同乘以x ∆,得()y f x x x α'∆=∆+∆当0x ∆→时0y ∆→,由连续性的定义可知:f (x )在x 0处连续.连续未必可导可通过反例说明,如y =|x |=⎩⎨⎧<-≥0x x x x 在x 0=0处∵-→0lim x y =-→0lim x (-x )=0,+→0lim x y =+→0lim x x =0,∴0lim →x y =0∴y =|x |在x =0处连续.lim→∆x x y∆∆==∆∆=∆-∆→∆→∆x x x x x x ||lim |0|||lim 00⎩⎨⎧<∆->∆010 1x x∴y =|x |在x 0=0处不可导.5’10’湖南机电职业技术学院教案(七)备课组长签名:教师签名:dudx即两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数注:复合函数的求导法则也称为链式法则,它可以推广到多个变量的情形。

相关文档
最新文档