高等数学电子教案
高等数学教案word版

高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。
函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。
高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。
一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。
(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。
[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。
(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。
(2)值域:函数值的集合,即{yy?f(x),x?D}。
例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。
高等数学下电子教案

高等数学下电子教案一、引言1.1 课程介绍本课程是高等数学下的电子教案,主要面向大学本科生和研究生,涵盖高等数学的基本概念、理论和方法。
1.2 教学目标通过本课程的学习,使学生掌握高等数学的基本知识,培养学生的逻辑思维能力和解决实际问题的能力。
二、极限与连续2.1 极限的定义与性质2.1.1 极限的定义2.1.2 极限的性质2.1.3 极限的存在性定理2.2 无穷小与无穷大2.2.1 无穷小的概念2.2.2 无穷小的比较2.2.3 无穷大2.3 极限的运算法则2.3.1 极限的四则运算法则2.3.2 复合函数的极限2.4 极限的求解方法2.4.1 直接代入法2.4.2 因式分解法2.4.3 洛必达法则2.5 连续函数的性质2.5.1 连续函数的定义2.5.2 连续函数的性质2.5.3 连续函数的例子三、导数与微分3.1 导数的定义与性质3.1.1 导数的定义3.1.2 导数的性质3.1.3 导数的计算法则3.2 高阶导数3.2.1 二阶导数3.2.2 三阶导数及更高阶导数3.3 隐函数求导3.3.1 隐函数求导的基本方法3.3.2 隐函数求导的例子3.4 微分3.4.1 微分的定义3.4.2 微分的性质3.4.3 微分的计算四、微分中值定理与导数的应用4.1 微分中值定理4.1.1 罗尔定理4.1.2 拉格朗日中值定理4.1.3 柯西中值定理4.2 导数的应用4.2.1 函数的单调性4.2.2 函数的极值4.2.3 函数的凹凸性五、不定积分与定积分5.1 不定积分5.1.1 不定积分的概念5.1.2 不定积分的性质5.1.3 不定积分的计算方法5.2 定积分5.2.1 定积分的概念5.2.2 定积分的性质5.2.3 定积分的计算方法5.3 定积分的应用5.3.1 面积的计算5.3.2 弧长的计算5.3.3 质心、转动惯量的计算六、定积分的进一步应用6.1 定积分在几何中的应用6.1.1 计算平面区域的面积6.1.2 计算曲线围成的面积6.1.3 计算旋转体的体积6.2 定积分在物理中的应用6.2.1 计算物体的质量6.2.2 计算物体受到的力6.2.3 计算物体的动能和势能6.3 定积分在概率论中的应用6.3.1 概率密度函数的定义6.3.2 计算概率6.3.3 计算期望和方差七、微分方程7.1 微分方程的基本概念7.1.1 微分方程的定义7.1.2 微分方程的阶数7.1.3 微分方程的解7.2 一阶微分方程7.2.1 分离变量法7.2.2 积分因子法7.2.3 变量替换法7.3 高阶微分方程7.3.1 线性高阶微分方程7.3.2 非线性高阶微分方程7.3.3 常系数线性微分方程八、线性代数8.1 矩阵8.1.1 矩阵的定义8.1.2 矩阵的运算8.1.3 矩阵的性质8.2 线性方程组8.2.1 高斯消元法8.2.2 克莱姆法则8.2.3 矩阵的逆8.3 向量空间与线性变换8.3.1 向量空间的概念8.3.2 线性变换的概念8.3.3 特征值与特征向量九、概率论与数理统计9.1 概率论基本概念9.1.1 随机试验与样本空间9.1.2 事件与概率9.1.3 条件概率与独立性9.2 离散型随机变量9.2.1 离散型随机变量的定义9.2.2 离散型随机变量的分布律9.2.3 离散型随机变量的期望与方差9.3 连续型随机变量9.3.1 连续型随机变量的定义9.3.2 连续型随机变量的分布函数9.3.3 连续型随机变量的期望与方差9.4 数理统计的基本概念9.4.1 统计量与抽样分布9.4.2 估计理论9.4.3 假设检验十、复变函数10.1 复数的基本概念10.1.1 复数的定义10.1.2 复数的运算10.1.3 复数的性质10.2 复变函数的基本概念10.2.1 复变函数的定义10.2.2 复变函数的运算10.2.3 复变函数的性质10.3 复变函数的积分10.3.1 复变函数的积分公式10.3.2 复变函数的积分计算10.3.3 复变函数的line integral10.4 复变函数的应用10.4.1 复变函数在几何中的应用10.4.2 复变函数在物理中的应用10.4.3 复变函数在工程中的应用重点和难点解析一、极限与连续1.1 极限的定义与性质:理解极限的概念,特别是无穷小和无穷大的比较,以及极限的存在性定理。
《高等数学电子教案》课件

《高等数学电子教案》PPT课件第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,了解函数的图像。
教学内容:函数的定义,函数的性质,函数的图像。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,学会求极限。
教学内容:极限的定义,极限的性质,极限的求法。
第二章:导数与微分2.1 导数的概念与性质教学目标:理解导数的概念,掌握导数的性质,学会求导数。
教学内容:导数的定义,导数的性质,求导数的方法。
2.2 微分的概念与性质教学目标:理解微分的概念,掌握微分的性质,学会求微分。
教学内容:微分的定义,微分的性质,求微分的方法。
第三章:积分与微分方程3.1 不定积分的概念与性质教学目标:理解不定积分的概念,掌握不定积分的性质,学会求不定积分。
教学内容:不定积分的定义,不定积分的性质,求不定积分的方法。
3.2 定积分的概念与性质教学目标:理解定积分的概念,掌握定积分的性质,学会求定积分。
教学内容:定积分的定义,定积分的性质,求定积分的方法。
第四章:向量与线性方程组4.1 向量的概念与性质教学目标:理解向量的概念,掌握向量的性质,学会求向量的运算。
教学内容:向量的定义,向量的性质,向量的运算。
4.2 线性方程组的概念与性质教学目标:理解线性方程组的概念,掌握线性方程组的性质,学会解线性方程组。
教学内容:线性方程组的定义,线性方程组的性质,解线性方程组的方法。
第五章:矩阵与行列式5.1 矩阵的概念与性质教学目标:理解矩阵的概念,掌握矩阵的性质,学会求矩阵的运算。
教学内容:矩阵的定义,矩阵的性质,矩阵的运算。
5.2 行列式的概念与性质教学目标:理解行列式的概念,掌握行列式的性质,学会求行列式的值。
教学内容:行列式的定义,行列式的性质,求行列式的方法。
第六章:级数与泰勒公式6.1 级数的概念与性质教学目标:理解级数的概念,掌握级数的性质,学会求级数的收敛性。
教学内容:级数的定义,级数的性质,求级数的收敛性。
高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种规则,将一个非空数集(定义域)中的每一个元素对应到另一个非空数集(值域)中的唯一元素。
函数的性质:单调性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个确定的值L,称f(x)当x趋近于a时的极限为L,记作:lim(x→a)f(x)=L。
极限的性质:保号性、传递性、夹逼性等。
1.3 极限的计算极限的基本计算方法:代数法、几何法、泰勒公式等。
极限的运算法则:加减法、乘除法、复合函数的极限等。
1.4 无穷小与无穷大无穷小的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于0,称f(x)为无穷小。
无穷大的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于正无穷或负无穷,称f(x)为无穷大。
第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在点x处的导数,记作f'(x)或df/dx,表示函数在该点的瞬时变化率。
导数的几何意义:函数图像在某点处的切线斜率。
2.2 导数的计算基本导数公式:常数函数、幂函数、指数函数、对数函数等的导数。
导数的运算法则:和差法、乘法法、链式法则等。
2.3 微分的概念与计算微分的定义:函数f(x)在点x处的微小变化量,记作df(x)。
微分的计算:微分的基本公式df(x)=f'(x)dx,以及微分的运算法则。
2.4 微分方程的概念与解法微分方程的定义:含有未知函数及其导数的方程。
微分方程的解法:分离变量法、积分因子法等。
第三章:积分与面积3.1 不定积分的概念与计算不定积分的定义:函数f(x)的不定积分,记作∫f(x)dx,表示f(x)与x轴之间区域的面积。
基本积分公式:幂函数、指数函数、对数函数等的不定积分。
3.2 定积分的概念与计算定积分的定义:函数f(x)在区间[a,b]上的定积分,记作∫[a,b]f(x)dx,表示f(x)在[a,b]区间上的累积面积。
2024年高等数学电子教案word

2024年高等数学电子教案word一、教学内容本教案依据《高等数学》教材,涉及第三章“一元函数微分学”的3.1节至3.3节。
详细内容包括导数的定义、求导法则、高阶导数、隐函数求导、微分中值定理及导数的应用等。
二、教学目标1. 理解并掌握导数的定义,能熟练运用导数求解实际问题。
2. 掌握求导法则,能对常见函数求导。
3. 了解导数与函数图形的关系,能运用导数分析函数的性质。
三、教学难点与重点重点:导数的定义及求导法则,导数的应用。
难点:高阶导数的求法,隐函数求导,微分中值定理的理解与应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、《高等数学》辅导书、笔记本、文具。
五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的优化问题,如最短路径、最大利润等,引导学生思考如何解决这类问题,从而引出导数的概念。
2. 理论讲解(10分钟)详细讲解导数的定义、几何意义、物理意义等,让学生对导数有一个全面的认识。
3. 例题讲解(15分钟)讲解例题,涵盖求导法则、高阶导数、隐函数求导等,让学生掌握求导方法。
4. 随堂练习(10分钟)设计针对性强的练习题,让学生及时巩固所学知识。
5. 课堂小结(5分钟)六、板书设计1. 黑板左侧:导数的定义、求导法则、高阶导数公式。
2. 黑板右侧:例题及解答,随堂练习。
七、作业设计1. 作业题目:(1)求下列函数的导数:y=x^3, y=sin(x), y=e^x。
(2)已知函数f(x)=x^2+3x+1,求f(x)在x=2时的导数。
(3)求隐函数y=x^2+2x^3的导数。
2. 答案:(1)y'=3x^2, y'=cos(x), y'=e^x。
(2)f'(x)=2x+3,所以f'(2)=7。
(3)y'=2x+6x^2。
八、课后反思及拓展延伸1. 反思:本节课学生对导数的定义和求导法则掌握较好,但在高阶导数和隐函数求导方面存在一定困难,需要在课后加强练习。
大学高数教案模板电子版

一、课程基本信息1. 课程名称:高等数学2. 学科类别:数学3. 教学班级:[班级名称]4. 教学时间:[教学周次]周5. 教学地点:[教室编号]6. 教学对象:[专业名称]专业学生7. 教材名称及版本:[教材名称] [版本号]8. 教师姓名:[教师姓名]9. 教学目标:- 知识目标:使学生掌握高等数学的基本概念、基本理论和方法。
- 能力目标:培养学生运用高等数学知识解决实际问题的能力。
- 素质目标:培养学生的逻辑思维能力、创新能力和团队协作精神。
二、教学内容1. 课题:[具体章节名称]2. 主要内容:- [具体知识点1]- [具体知识点2]- [具体知识点3]3. 教学重点:- [教学重点1]- [教学重点2]4. 教学难点:- [教学难点1]- [教学难点2]三、教学过程1. 导入新课- 通过回顾旧知识,引出本节课的主题。
- 提出问题,激发学生的学习兴趣。
2. 讲授新课- 按照教学重点和难点,详细讲解知识点。
- 结合实例,帮助学生理解和掌握知识。
3. 课堂练习- 设计基础练习题,巩固学生对知识点的掌握。
- 引导学生进行小组讨论,培养学生的团队协作能力。
4. 案例分析- 分析实际案例,让学生学会运用所学知识解决实际问题。
- 鼓励学生提出问题,培养学生的创新思维。
5. 总结与回顾- 总结本节课所学内容,帮助学生梳理知识体系。
- 提出课后思考题,引导学生进一步学习。
四、教学手段1. 多媒体课件2. 板书3. 实物教具4. 网络资源五、教学评价1. 课堂表现:学生的参与度、回答问题的情况。
2. 作业完成情况:学生对知识点的掌握程度。
3. 期中/期末考试:对教学效果的全面评估。
六、课后作业1. 完成课后习题,巩固所学知识。
2. 预习下一节课的内容,为下一节课的学习做好准备。
七、教学反思- 教师在教学过程中遇到的问题及解决方法。
- 学生对教学内容的反馈及改进措施。
- 教学效果的评估及后续教学计划。
---注意事项:- 教案应根据实际情况进行调整,以适应不同学生的学习需求。
高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。
函数的性质:单调性、连续性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
极限的性质:保号性、保不等式性、夹逼定理等。
1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。
无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。
1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。
导数的概念:函数在某一点的导数表示函数在该点的切线斜率。
第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。
导数的计算:基本导数公式、导数的四则运算法则等。
2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。
微分的计算:微分的基本公式、微分的四则运算法则等。
2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。
积分的计算:基本积分公式、积分的换元法、分部积分法等。
2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。
第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。
微分方程的分类:常微分方程、偏微分方程等。
3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。
3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。
第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。
《高等数学电子教案》课件

《高等数学电子教案》课件一、第1章函数与极限1.1 函数的概念与性质定义域、值域、对应关系奇函数、偶函数、周期函数单调性、连续性、可导性1.2 极限的概念与性质极限的定义(洛必达法则)无穷小、无穷大、极限的存在性极限的运算法则、夹逼定理、单调有界定理二、第2章导数与微分2.1 导数的定义与计算导数的定义(极限比值法)基本导数公式、导数的运算法则高阶导数、隐函数求导、参数方程求导2.2 微分的作用与应用微分的定义、微分的运算法则微分在近似计算、物理应用等方面的作用微分方程的解法与应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算泰勒公式的定义、泰勒级数常见函数的泰勒展开式泰勒公式在近似计算中的应用3.2 不定积分的概念与计算不定积分的定义、基本积分公式换元积分、分部积分积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算定积分的定义、定积分的性质牛顿-莱布尼茨公式、定积分的换元法、分部积分法定积分在几何、物理等方面的应用4.2 反常积分的概念与计算反常积分的定义、无穷区间上的积分瑕点、解析延拓、魏尔斯特拉斯函数反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法微分方程的定义、微分方程的解常微分方程、线性微分方程、非线性微分方程分离变量法、积分因子法、变量替换法5.2 线性微分方程组的概念与解法线性微分方程组的定义、解的结构高阶线性微分方程、齐次线性微分方程特解法、待定系数法、常数变易法六、第6章级数6.1 数项级数的概念与判别法数项级数的定义、收敛性与发散性收敛级数的性质、级数的收敛准则(比较检验、比值检验、根值检验)绝对收敛与条件收敛6.2 幂级数的概念与性质幂级数的定义、收敛半径、收敛区间幂级数的运算、泰勒级数与麦克劳林级数幂级数在函数逼近与数值计算中的应用七、第7章多元函数的极限与连续7.1 多元函数的概念与性质多元函数的定义、偏导数、全微分多元函数的单调性、连续性、可微性方向导数与梯度7.2 多元函数的极限与连续多元函数的极限定义、极限的存在性多元函数的连续性、无穷远点多元函数极限与单变量函数极限的对比八、第8章多元函数的导数与微分8.1 多元函数的导数与微分多元函数的偏导数、全导数高阶偏导数、隐函数求导、参数方程求导微分的概念与性质、微分在多元函数中的应用8.2 多元函数的泰勒公式与不定积分多元函数的泰勒公式、泰勒级数不定积分的概念、多元函数的不定积分积分在多元函数中的应用九、第9章多元函数的定积分与反常积分9.1 多元函数的定积分多元函数定积分的定义、性质多元函数定积分的计算、换元法、分部积分法多元函数定积分在几何、物理等方面的应用9.2 多元函数的反常积分多元函数反常积分的定义、无穷区间上的积分多元函数瑕点、解析延拓、魏尔斯特拉斯函数多元函数反常积分在实际应用中的意义十、第10章向量分析与线性代数10.1 向量分析的概念与方法向量的定义、向量的运算空间解析几何、向量场的概念梯度、散度、旋度、格林公式10.2 线性代数的基本理论向量空间、线性变换、特征值与特征向量矩阵的运算、行列式、特征方程线性方程组、最小二乘法、正交投影重点和难点解析一、第1章函数与极限1.1 函数的概念与性质重点关注函数的奇偶性、周期性及单调性难点解析:奇偶性的判断、周期性的求解、单调性的证明1.2 极限的概念与性质重点关注极限的定义、性质及运算法则难点解析:极限的判断(洛必达法则)、无穷小与无穷大的比较、极限的夹逼定理与单调有界定理二、第2章导数与微分2.1 导数的定义与计算重点关注导数的定义、基本导数公式及导数的运算法则难点解析:导数的计算(隐函数求导、参数方程求导)、高阶导数的应用、导数在实际问题中的应用2.2 微分的作用与应用重点关注微分的定义及微分的运算法则难点解析:微分的应用(近似计算、物理应用)、微分方程的解法及应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算重点关注泰勒公式的定义、常见函数的泰勒展开式难点解析:泰勒公式的应用(近似计算)、泰勒级数的收敛性判断3.2 不定积分的概念与计算重点关注不定积分的定义、基本积分公式及积分方法难点解析:不定积分的计算(换元积分、分部积分)、积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算重点关注定积分的定义、性质及计算方法难点解析:定积分的计算(牛顿-莱布尼茨公式、换元法、分部积分法)、定积分在几何、物理等方面的应用4.2 反常积分的概念与计算重点关注反常积分的定义、性质及计算方法难点解析:反常积分的计算(瑕点、解析延拓、魏尔斯特拉斯函数)、反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法重点关注微分方程的定义、解的结构及解法难点解析:微分方程的解法(分离变量法、积分因子法、变量替换法)、高阶线性微分方程的解法5.2 线性微分方程组的概念与解法重点关注线性微分方程组的定义、解的结构及解法难点解析:线性微分方程组的解法(特解法、待定系数法、常数变易法)、线性微分方程组的应用全文总结与概括:本文针对《高等数学电子教案》课件的十个章节进行了重点和难点的解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章不定积分教学目的:1、理解原函数概念、不定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、不定积分的概念;2、不定积分的性质及基本公式;3、换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§4 1 不定积分的概念与性质一、教学目的与要求:1.理解原函数与不定积分的概念及性质。
2.掌握不定积分的基本公式。
二、重点、难点:原函数与不定积分的概念三、主要外语词汇:At first function ,Be accumulate function ,Indefinite integral ,Formulas integrals elementary forms.四、辅助教学情况:多媒体课件第四版和第五版(修改)五、参考教材(资料):同济大学《高等数学》第五版一、原函数与不定积分的概念定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有F '(x )=f (x )或dF (x )=f (x )dx ,那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数.例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为x x 21)(=', 所以x 是x21的原函数. 提问:cos x 和x21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有F '(x )=f (x ).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数.第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数).定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作⎰dx x f )(.其中记号⎰称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量.根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即⎰+=C x F dx x f )()(.因而不定积分dx x f )(⎰可以表示f (x )的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以C x xdx +=⎰sin cos .因为x 是x21的原函数, 所以C x dx x+=⎰21.例2. 求函数xx f 1)(=的不定积分. 解:当x >0时, (ln x )'x1=, C x dx x+=⎰ln 1(x >0); 当x <0时, [ln(-x )]'xx 1)1(1=-⋅-=, C x dx x+-=⎰)ln( 1(x <0). 合并上面两式, 得到C x dx x+=⎰||ln 1(x ≠0). 例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解 设所求的曲线方程为y =f (x ), 按题设, 曲线上任一点(x , y )处的切线斜率为y '=f '(x )=2x ,,即f (x )是2x 的一个原函数.因为 ⎰+=C x xdx 22,故必有某个常数C 使f (x )=x 2+C , 即曲线方程为y =x 2+C .因所求曲线通过点(1, 2), 故2=1+C , C =1.于是所求曲线方程为y =x 2+1.积分曲线: 函数f (x )的原函数的图形称为f (x )的积分曲线.从不定积分的定义, 即可知下述关系: ⎰=)(])([x f dx x f dx d , 或 ⎰=dx x f dx x f d )(])([;又由于F (x )是F '(x )的原函数, 所以⎰+='C x F dx x F )()(,或记作 ⎰+=C x F x dF )()(.由此可见, 微分运算(以记号d 表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)C kx kdx +=⎰(k 是常数), (2)C x dx x ++=+⎰111μμμ, (3)C x dx x+=⎰||ln 1, (4)C e dx e x x +=⎰, (5)C aa dx a x x +=⎰ln , (6)C x xdx +=⎰sin cos ,(7)C x xdx +-=⎰cos sin , (8)C x xdx dx x +==⎰⎰tan sec cos 122, (9)C x xdx dx x+-==⎰⎰cot csc sin 122, (10)C x dx x+=+⎰arctan 112, (11)C x dx x +=-⎰arcsin 112, (12)C x xdx x +=⎰sec tan sec ,(13)C x dx x +-=⎰csc cot csc ,(14)C x dx x +=⎰ch sh ,(15)C x dx x +=⎰sh ch .例4 ⎰⎰-=dxx dx x 331C x C x +-=++-=+-21321131. 例5 ⎰⎰=dxx dx x x 252C x ++=+1251251C x +=2772C x x +=372. 例6 ⎰⎰-=dx x x x dx 343C x ++-=+-134134C x +-=-313C x +-=33. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([.这是因为, ])([])([])()(['+'='+⎰⎰⎰⎰dx x g dx x f dx x g dx x f =f (x )+g (x ).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即 ⎰⎰=dx x f k dx x kf )()((k 是常数, k ≠0).例7. ⎰⎰-=-dx x x dx x x )5()5(21252 ⎰⎰-=dx x dx x 21255⎰⎰-=dx x dx x 21255 C x x +⋅-=232732572. 例8 dx x x x dx x x x x dx x x )133(133)1(222323-+-=-+-=-⎰⎰⎰ C x x x x dx xdx x dx dx x +++-=-+-=⎰⎰⎰⎰1||ln 3321113322. 例9 ⎰⎰⎰-=-xdx dx e dx x e x x cos 3)cos 3(C x e x +-=sin 3.例10 C e C e e dx e dx e x x x xx x ++=+==⎰⎰2ln 12)2ln()2()2(2. 例11 dx x x dx x x x x dx x x x x )111()1()1()1(122222++=+++=+++⎰⎰⎰ C x x dx x dx x ++=++=⎰⎰||ln arctan 1112. 例12 dx x x x dx x x dx x x ⎰⎰⎰++-+=++-=+222242411)1)(1(1111 ⎰⎰⎰⎰++-=++-=dx x dx dx x dx x x 222211)111( C x x x ++-=arctan 313. 例13 ⎰⎰⎰⎰-=-=dx xdx dx x dx x 222sec )1(sec tan= tan x - x + C .例14 ⎰⎰⎰-=-=dx x dx x dx x )cos 1(212cos 1 2sin 2 C x x +-=)sin (21. 例15 C x dx x dx xx +-==⎰⎰cot 4sin 142cos 2sin 1222.§4 2 换元积分法一、教学目的与要求:1.掌握不定积分的第一类换元法(凑微分法),熟悉常见的凑微分的类型,会灵活应用凑微分法求不定积分。
2.掌握不定积分的第二类换元法,并会灵活运用常用的代换方法。
二、重点、难点:换元法三、主要外语词汇:Change a dollar四、辅助教学情况:多媒体课件第四版和第五版(修改)五、参考教材(资料):同济大学《高等数学》第五版一、第一类换元法设f (u )有原函数F (u ), u =ϕ(x ), 且ϕ(x )可微, 那么, 根据复合函数微分法, 有d F [ϕ(x ) ]=d F (u )=F '(u )d u = F ' [ϕ(x ) ] d ϕ(x )= F '[ϕ(x ) ]ϕ'(x )d x ,所以 F '[ϕ(x )]ϕ'(x )dx = F '[ϕ(x )] d ϕ(x )= F '(u )d u = d F (u )=d F [ϕ(x ) ], 因此 ⎰⎰'='')()]([)()]([x d x F dx x x F ϕϕϕϕ⎰⎰='=)()(u dF du u F C x F x dF +==⎰)]([)]([ϕϕ. 即 )(])([)()]([)()]([x u du u f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰==' =[F (u ) +C ] u = ϕ(x ) = F [ϕ(x )]+C . 定理1 设f (u )具有原函数, u =ϕ(x )可导, 则有换元公式⎰⎰⎰+=+==='C x F C u F du u f x d x f dx x x f )]([)()()()]([)()]([ϕϕϕϕϕ .被积表达式中的dx 可当作变量x 的微分来对待, 从而微分等式ϕ'(x )dx =du 可以应用到被积表达式中.在求积分⎰dx x g )(时, 如果函数g (x )可以化为g (x )= f [ϕ(x )]ϕ'(x )的形式, 那么⎰dx x g )()(])([)()]([x u du u f dx x x f ϕϕϕ=⎰⎰='=.例1. ⎰⎰'⋅=dx x x xdx )2(2cos 2cos 2⎰=)2(2cos x xd C u udu +==⎰sin cos =sin 2x +C . 例2. dx x x dx x ⎰⎰'++=+)23(23121231⎰++=)23(23121x d x C u dx u +==⎰||ln 21121C x ++=|23|ln 21. 例3. ⎰⎰⎰⎰=='=du e x d e dx x e dx xe u x x x )()(222222 C e C e x u +=+=2.例4. 22222121)(1211dx x dx x x dx x x ⎰⎰⎰-='-=- C u du u x d x +-=-=---=⎰⎰2321223121)1(121 C x +--=232)1(31. 例5. ⎰⎰⎰-==x d x dx x x xdx cos cos 1cos sin tan C u du u+-=-=⎰||ln 1 =-ln|cos x |+C .即 C x xdx +-=⎰|cos |ln tan .类似地可得C x xdx +=⎰|sin |ln cot .熟练之后, 变量代换就不必再写出了.例6. dx ax a dx x a ⎰⎰+=+2222)(1111C ax a a x d ax a +=+=⎰arctan 1)(1112. 即 dx x a ⎰+221C a xa +=arctan 1. 例7. C ax a a x d a x a dx a x +==⎰⎰sh ch ch .例8. 当a >0时,⎰⎰-=-dx a x a dx x a 222)(1111C a x a x d ax +=-=⎰arcsin )(112. 即 dx x a ⎰-221C a x +=arcsin . 例9. ⎰⎰+--=-dx a x a x a dx a x )11(21122]11[21⎰⎰+--=dx a x dx a x a ])(1)(1[21⎰⎰++---=a x d a x a x d a x a C a x a x a ++--=|]|ln ||[ln 21C a x a x a ++-=||ln 21. 即 dx a x ⎰-221C a x ax a ++-=||ln 21. 例10. ⎰⎰⎰++=+=+x x d x x d x x dx ln 21)ln 21(21ln 21ln )ln 21( C x ++=|ln 21|ln 21. 例11. ⎰⎰⎰==x d e x d e dx xe x x x 3322333 C e x +=332. 含三角函数的积分:例12. ⎰⎰⋅=xdx x xdx sin sin sin 23⎰--=x d x cos )cos 1(2 ⎰⎰+-=x xd x d cos cos cos 2C x x ++-=3cos 31cos . 例13. ⎰⎰=x xd x xdx x sin cos sin cos sin 4252 ⎰-=x d x x sin )sin 1(sin 222 ⎰+-=x d x x x sin )sin sin 2(sin 642C x x x ++-=753sin 71sin 52sin 31. 例14. dx x xdx ⎰⎰+=22cos 1cos 2)2cos (21⎰⎰+=xdx dx ⎰⎰+=x xd dx 22cos 4121C x x ++=2sin 4121. 例15. dx x xdx 224)(cos cos ⎰⎰=⎰+=dx x 2)]2cos 1(21[⎰++=dx x x )2cos 2cos 21(412 ⎰++=dx x x )4cos 212cos 223(41 C x x x +++=)4sin 812sin 23(41 C x x x +++=4sin 3212sin 4183. 例16. ⎰⎰+=dx x x xdx x )5cos (cos 212cos 3cos C x x ++=5sin 101sin 21. 例17. ⎰⎰=dx x xdx sin 1csc ⎰=dx x x 2cos 2sin 21 C x xxd x x x d +===⎰⎰|2tan |ln 2tan 2tan 2cos 2tan 22=ln |csc x -cot x |+C . 即 ⎰xdx csc =ln |csc x -cot x |+C .例18. ⎰⎰+=dx x xdx )2csc(sec πC x x ++-+=|)2cot()2 csc(|ln ππ =ln |sec x + tan x | + C .即 ⎰xdx sec =ln |sec x + tan x | + C .二、第二类换元法定理2 设x =ϕ(t )是单调的、可导的函数, 并且ϕ'(t )≠0. 又设f [ϕ(t )]ϕ'(t )具有原函数F (t ), 则有换元公式C x F t F dt t t f dx x f +=='=-⎰⎰)]([)()()]([)(1ϕϕϕ.其中t =ϕ-1(x )是x =ϕ(t )的反函数.这是因为)()]([1)()]([)(})]([{1x f t f dtdx t t f dx dt t F x F =='='='-ϕϕϕϕ. 例19. 求dx x a ⎰-22(a >0).解: 设x =a sin t , 22 ππ<<-t , 那么22x a -t a t a a cos sin 222=-=, dx =a cos t d t , 于是⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222. 因为ax t arcsin =, a x a a x t t t 222cos sin 22sin -⋅==, 所以 dx x a ⎰-22C t t a ++=)2sin 4121(2C x a x a x a +-+=22221arcsin 2.解: 设x =a sin t , 22 ππ<<-t , 那么 ⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222C x a x a x a +-+=22221arcsin 2. 提示:22x a -t a t a a cos sin 222=-=, dx =a cos tdt .提示: a x t arcsin =, ax a a x t t t 222cos sin 22sin -⋅==.例20. 求⎰+22a x dx (a >0). 解法一: 设x =a tan t , 22 ππ<<-t , 那么 22a x +t a a 222tan +=t a 2tan 1+==a sec t , dx =a sec 2t d t , 于是⎰+22a x dx ⎰⎰==tdt dt t a t a sec sec sec 2= ln |sec t + tan t |+C . 因为aa x t 22sec +=, a x t =tan , 所以 ⎰+22a x dx = ln |sec t + tan t |+C C a a x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .解法一: 设x =a tan t , 22 ππ<<-t , 那么⎰⎰⎰==+tdt dt t a t a a x dx sec sec sec 222=ln|sec t +tan t |+C C aa x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .提示:22a x +t a a 222tan +==a sec t , dx =a sec 2t dt ,提示:aa x t 22sec +=, a x t =tan .解法二: 设x =a sh t , 那么⎰+22a x dx C a x C t dt dt t a t a +=+===⎰⎰arsh ch ch C a x a x +⎪⎭⎫ ⎝⎛++=1)(ln 2122)ln(C a x x +++=, 其中C 1=C -ln a .提示: 22a x +222a t sh a +==a ch t , dx =a ch t d t .例23. 求⎰-22a x dx (a >0). 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么 22a x -222sec a t a -=1sec 2-=t a =a tan t ,于是⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec = ln |sec t + tan t |+C . 因为aa x t 22tan -=, a x t =sec , 所以 ⎰-22a x dx = ln |sec t + tan t |+C C a a x a x +-+=||ln 22122)ln(C a x x +-+=, 其中C 1=C -ln a .当x <a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222C a x x +-+--=)ln(22122)ln(C a x x +---=,122222)ln(ln C a x x C a a x x +---=+---=, 其中C 1=C -2ln a .综合起来有⎰-22ax dx C a x x +-+=||ln 22. 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么 ⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec C aa x a x C t t +-+=++=)ln(|tan sec |ln 22 C a x x +-+=)ln(22,其中C 1=C -ln a .当x <-a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222 C a a xx C a x x +---=+-+--=22222ln )ln( 122)ln(C a x x +---=,其中C 1=C -2ln a .提示:22a x -222sec a t a -=1sec 2-=t a =a tan t .提示:aa x t 22tan -=, a x t =sec . 综合起来有C a x x a x dx +-+=-⎰||ln 2222. 补充公式:(16)C x xdx +-=⎰|cos |ln tan ,(17)C x xdx +=⎰|sin |ln cot ,(18)C x x xdx ++=⎰|tan sec |ln sec ,(19)C x x xdx +-=⎰|cot csc |ln csc , (20)C a x a dx x a +=+⎰arctan 1122, (21)C a x a x a dx a x ++-=-⎰||ln 21122, (22)C a x dx x a +=-⎰arcsin 122, (23)C a x x a x dx +++=+⎰)ln(2222, (24)C a x x a x dx +-+=-⎰||ln 2222.§4 3 分部积分法一、教学目的与要求:掌握分部积分公式,并会灵活运用。