西南大学网络教育2020年春0158]《高等代数》作业标准答案
西南大学20年6月[0350]数学教育学机考大作业参考答案
![西南大学20年6月[0350]数学教育学机考大作业参考答案](https://img.taocdn.com/s3/m/a1cac769f705cc17552709b4.png)
西南大学网络与继续教育学院课程考试试题卷
类别:网教2020年5月
课程名称:数学教育学(方法论)【0350】
A卷大作业满分:100 分
要答案:wangjiaofudao
一、简述题(共计30分)
1. 简述教学评价对数学教学的功能。
(10分)
2. 简述数学教学原则中的“渗透数学思想方法原则”(20分)
二、实践与综合运用题(共计70分)
(一)选择以下知识点之一(共计30分)
分数的概念(小学)
平方差公式(初中)
函数的单调性(高中)
(1)分析教材,指出该知识点渗透了哪些数学思想方法(10分)
(2)分析学生学习该知识点的思维障碍或者容易出现的典型错误及原因(10分)(提示:该知识点的“思维障碍”与“典型错误”可选择其中之一进行分析), (3)提出相应的教学策略(10分)
(没有固定评分标准,根据回答情况酌情给分)(二)根据所提出的教学策略,设计简要的教学过程(40分)
答题提示:教学过程设计具有整体性,各环节衔接自如,结构紧凑;在渗透数学思想方法、突破学生思维障碍或纠正典型错误上与上述(一)的回答有一定的联系。
(没有固定评分标准,根据回答情况酌情给分)。
西南大学2020年春季高等代数【0158】课程考试大作业参考答案

答:若系数 满足公式 ,且 不全为0,则称n维向量组 线性相关。
二、(15分)设 , ,求 除 的商式与余式。
答:
商式:
余式:
三、(15分)设 ,求 。
答:
使用初等行变换,可以得到
之后将第一行乘-2加到第三行得到 ,之后将第一行乘-1加到第二行得到 ,之后将第二行乘上-1有
可以写为
这样的形式,
即
由于
因此过渡矩阵 即为
六、(10分)设 是数域P上全体n阶方阵关于矩阵加法及数与矩阵的数乘构成的线性空间, 。பைடு நூலகம்明:W是V的子空间。
答:
要证明W是V的子空间,即证明W对于矩阵数乘和矩阵加法运算封闭。
,满足 与 ,若证明 ,则说明对于矩阵加法运算封闭
由于
得证
若证明 ,则说明对于矩阵数乘封闭
西南大学培训与继续教育学院课程考试试题卷
学期:2020年春季
课程名称【编号】: 高等代数【0158】 A卷
考试类别:大作业 满分:100 分
一、给出下面两个概念的定义(共2小题,15分/小题,共30分)
1.数域P上多项式p(x)在P上不可约。
答:在数域P上,p(x)无法写成两个次数较低的多项式之乘积的多项式。
得证
综上,由于W对于矩阵数乘和矩阵加法都满足,因此W是V的子空间。
,之后将第二行乘-1加到第一行 ,最后将第三行乘上2加到第二行,乘上-1加到第一行
因此
四、(15分)求下面的齐次线性方程组的一个基础解系
。
答:该方程组可以化为
左边矩阵可以变形为:
,
若设 , 那么就可以求得一个基础解系
其中
五、(15分)设 , ,
西南大学《线性代数》网上作业及参考答案

===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。
西南大学2020年春季数学课程标准解读【0692】课程考试大作业参考答案

所确定的、学生发展所必需的最基本的数学知识、技能。一般认为,数学基本思想指对数学及其对象,数学概念和数学结构以及数学方法的本质性认识。它蕴含在数学知识形成、发展和应用过程中,制约着学科发展的主线和逻辑架构,也是数学知识和方法在更高层次上的抽象与概括。数学基本活动经验,是指学生通过亲身经历数学活动过程所获得的具有个性特征的经验。这里有两个关键词体现了其核心要义:一是“活动”,一是“亲身经历”。“四基”不是相互独立和割裂的,而是一个密切联系,相互交融的有机整体,在课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体家现,是学生数学学科核心素养得以提升的保障。
【情境】在高中函数概念的教学中,为什么要强调函数是实数集合之间的对应关系?
【分析】初中学习的函数概念表述为:如果在一个变化过程中有两个变量 和 ,对于变量 的每一个值,变量 都有唯一的值与它对应,那么称 是 的函数。它强调的是用函数描述一个变化过程。例如,在匀速直线运动中(速度为 ),路程 随着时间 的变化而变化,因此路程是时间的函数,记为 。再如,在单价 、数量 、总价 的关系中,总价 随着数量 的变化而变化,因此总价是数量的函数,记为 ,通常把这样的表述称为函数的“变量说”。
学科价值《普通高中数学课程标准(2017年版)》指出:
数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中。数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。
从上述表述可以看到,对数学抽象的数学学科价值集中反映在两个层面上。
第一,上述表述是对数学发生、发展的重要性(决定性)价值的揭示。第二,上述表述是对数学抽象在数学学科理论系统中的功能性价值的揭示。在2017年课程性质中明确了数学课程的社会功能和教育功能强调了高中数学课程,是义务教育阶段后普通高级中学的主要课程,具有基础性,选择性和发展性,必修课程,面向全体学生构建共同基础,选择性必修课程,选修课程,充分考虑学生的不同成长需求,提供多样性的课程,供学生自主选择,高中数学课程,为学生的可持续发展,和终身学习创造条件。
西南大学网络教育2020年春1245]《几何学》作业标准答案
![西南大学网络教育2020年春1245]《几何学》作业标准答案](https://img.taocdn.com/s3/m/07efdd566f1aff00bfd51e8f.png)
1、直线3x+2y+3=0的齐次线坐标是( ).(2,-3,0).(3,2,3).(-2,3,3).(3,2,0)2、下列命题叙述正确的是( ).椭球面是旋转曲面.球面是旋转曲面.单叶双曲面是旋转曲面.双叶双曲面是旋转曲面3、两直线和的位置关系是( ).平行.相交.重合.异面4、过点(0,0,0)且与向量a=(1,1,1),b=(2,3,4)平行的平面方程是( ) . E. x-2y+z=0.x-2y+z-1=0.x+2y+z=0.x+2y+z+1=05、两平面x+2y+3z=0和2x-y+5=0的位置关系是( ).平行.相交且垂直.重合.相交不垂直6、下列名称属于射影几何的是( ).共线点.平行线段之比.梯形.单比7、不属于仿射几何几何研究的对象是( ).面积之比.交比.二平行线段之比8、点C 是线段AB 的中点,D 为该线段所在直线上的无穷远点,则交比(AB,CD)=( ). A. 0 . -1 . 2 . 19、下列命题叙述正确的是( ).零向量与任何向量不平行 . 两向量的和不可能等于零向量 . 两向量的差可以等于零向量 . 零向量与任何向量不垂直10、点(2,1,0)到平面3x+4y+4=0的距离是( ).2 . 1 .3 . 011、直线关于的极点是( ).C. (0,0,1) . (0,1,0) . (1,1,1) . (1,0,0)12、已知向量a 和b 共线,b 和c 共线,则向量a 和c 的方向是( ).无法判断 . 反向. 同向或反向 . 同向13、已知向量a=(1,1,0),b=(1,2,1),两向量的外积=( ).(-1,1,1) . (1,-1,-1) . (1,-1,1) . (1,1,1)14、已知向量a=(2,1,0), b=(1,0,2),c=(0,1,2),则混合积(abc)是( ).-3 . 6.315、方程xy=0表示的曲面是( ). D. 抛物柱面.xoy和xoz两坐标面.双曲面.xoy和xoz两坐标面的平分面16、已知共点四直线a,b,c,d的交比(ab,cd)=4,则(db,ca)=( ).3. -2.2. -317、向量a,b,c顺次首尾相接构成一个三角形,那么a+b+c=( ) . F. a.b.c.018、在仿射平面上,无穷远直线与通常直线的位置关系是( ) .相交.平行.重合.无法确定19、下列二次曲面属于直纹面的是( ).椭圆抛物面.椭球面.双叶双曲面.双曲抛物面20、下列关于二次曲线奇异点的性质表述正确的是(). B. 退化的二次曲线只有两个奇异点.非退化的二次曲线无奇异点.退化的二次曲线不可能只有一个奇异点.退化的二次曲线只有一个奇异点判断题21、两向量平行,可推出两直线平行. A.√. B.×22、二次曲线的直径是通过中心的有穷远直线. A.√. B.×23、配极对应不保交比. A.√. B.×24、圆柱面是旋转曲面. A.√. B.×25、旋转曲面的母线是唯一的. A.√. B.×26、无穷远直线是射影不变图形. A.√. B.×27、柱面和锥面的准线是唯一的. A.√. B.×28、无穷远点有非齐次坐标. A.√. B.×29、二次曲线的秩不能大于3. A.√. B.×30、三向量有两向量共线,则这三向量必共面. A.√. B.×31、直线与平面只有一个交点. A.√. B.×32、二维射影变换和一维射影变换有许多共同的性质. A.√. B.×33、射影平面上的点有齐次坐标方程. A.√. B.×34、双重外积是一个向量. A.√. B.×35、柱面不是直纹面. A.√. B.×36、椭圆抛物面是中心对称曲面. A.√. B.×37、三个非零向量之和不可能是零向量. A.√. B.×38、二次曲线的一直径两端点的切线平行该直径的共轭直径. A.√. B.×39、中心射影可以把圆变成抛物线. A.√. B.×40、任何一个三元一次方程表示空间一个平面. A.√. B.×41、三个向量a,b,c,那么是有意义的. A.√. B.×42、射影平面上任何一条直线总与无穷远直线相交. A.√. B.×主观题43、两射影点列成透视对应的充要条件是__________参考答案:两点列底的交点自对应44、点(1,1,1)到平面x+2y+3z+4=0的距离是_____参考答案:45、曲面与y-z=0在yoz面上的射影曲线是_____________参考答案:y-z=0,x=046、两射影线束成透视对应的充要条件是______参考答案:两线束中心的连线自对应47、已知向量a=(3,5,7),b=(0,4,3),c=(-1,2,-4),设u=3a+4b-c,v=2b+c,参考答案:35448、已知射影对应使参数为0,1,-3分别对应0,2,6,该射影对应参数表示式________参考答案:49、无穷远直线的线坐标是________参考答案:[0,0,1]50、设向量a,b,c满足a+b+c=0,那么_______参考答案:51、曲面与y-z=0的交线在xoz面上的射影曲线为____________参考答案:52、如果向量a,b,c满足a+b+c=0,那么_____参考答案:53、已知平行四边形ABCD中顶点A,B,C的坐标分别为(1,0,2),(0,3,-1),(2,-1,3),则对角线交点的坐标是_____参考答案:(3/2,-1/2,5/2)54、求直线关于二次曲线的极点参考答案:8-4-1.docx解:设极点的坐标为(a,b,c),则有11111=110-110-2abcλ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,解得aλ=-,2bλ=,0c=,从而所求的极点为(-1,2,0)55、将空间曲线,绕z轴旋转,求这旋转曲面的方程参考答案:56、求射影变换,,的不变元素参考答案: 6-4-3.pdf57、求双曲线的渐近线方程参考答案:7-4-2.doc解:二次曲线的齐次坐标方程是2212121323432100x x x x x x x x -++-=,二次曲线矩阵是 13/213/245150⎛⎫⎪- ⎪ ⎪-⎝⎭,可求出313233::46:26:7A A A =-所以渐近线方程为 2246462626()3()()4()07777x x y y +++-+-=58、证明方程表示一柱面参考答案:证明:因为方程可改写为,从而有,,其中为参数,这就写成了直线族的方程,又因为这族直线的方向为.因此这是一族平行直线族,所以原方程表示的曲面是这族平行直线生成59、已知圆锥面的顶点是原点,对称轴的方程是,轴线与母线的夹角为,求证:参考答案:3-5-2.pdf60、求证点坐标方程,与线坐标方程表示同一曲线参考答案:7-6-2.docx证明:将2y 2px =化为齐次坐标方程221320x px x -=,它的线坐标方程为12312300-0100000p u u p u u u u =-,即221320pu u u -=,同理可求出221320pu u u -=的点坐标方程为12312300-10001000x px x x x x =-,即221320x px x -=,其非齐次坐标方程为2y 2px =. 因此方程2y 2px =与221320pu u u -=表示同一条曲线。
西南大学《线性代数》网上作业及参考答案

===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。
2020年7月电大《高等代数专题研究》期末考试试题及参考答案

10. 可逆
三、计算题(本题共 45 分,每小题 15 分)
001
001
11. 解 : 偶中心)=(如,幻, a3)) 1
0
0
1
, IT)=
0
0 l#-0 ,
1-2 1-2 l-2
1-2 1_2 1_2
所以 /3 1, /32, 队是 一 组基 . ...................................................... .. .. ... ........ (5 分)
C. (J 为正交变换
D. a 为对称变换
5. 线性空间 V 上的双线性函数 J(a,/3) 在不同基下的度量矩阵(
).
A. 相似
B. 相等
C. 正交相似
D. 相合
217
得分 1 评卷人
二、填空题(本题共 20 分,每小题 4 分)
6. 有理数域上的不可约多项式的次数是
次的.
7. 在有限维线性空间中,任意两个基所含 向量的个数是
E1= (1, 0, 0) ,Ez = ( 0 , 1, 0) , E3= (0, 0 , 1) 下的矩阵.
13. 用正交线性替换化实二次型式 +2 式 +3 式 — 4x 心 z -4xzX3 为标准形.
得分 1 评卷人
四、证明题(本题 15 分)
14. 设 J(x) ,g(x) 是数 域 P 上的 一元多项式,且 (f(x),g(x))=l. 证明: (f( x) ,J (x ) + g (x)) = 1.
001
因为 C/31 , /32,/33)=(a1,a2,a3) I 1 0 1-2 1 2-
0 I,·· ······························ · ····· · ······ 00 分) 1 _2
西南大学[0044]线性代数大作业答案春季
![西南大学[0044]线性代数大作业答案春季](https://img.taocdn.com/s3/m/c47ee4f125c52cc58bd6be9e.png)
0044 20201单项选择题1、....2、矩阵A与B相似,则下列说法不正确的是().style="text-indent:32px">A与B有相同的特征值... A = B..R(A) = R(B)3、....4、....5、....6、.必有r个列向量线性无关.任意r个列向量都构成最大线性无关组.任何一个列向量都可以由其它r个列向量线性表出.任意r个列向量线性无关7、.0.1..0或1..8、.2.4..19、. C. 必有一列向量可有其余列向量线性表示.必有两列元素对应成比例.任一列向量是其余列向量的线性组合.必有一列元素全为010、. D. A有n个互异特征值.A是实对称阵.A有n个线性无关的特征向量.A的特征向量两两正交判断题11、. A.√. B.×12、. A.√. B.×13、. A.√. B.×14、. A.√. B.×15、. A.√. B.×16、. A.√. B.×17、. A.√. B.×18、. A.√. B.×19、. A.√. B.×20、设A、B为两个不可逆的同阶方阵,则|A|=|B| (). A.√. B.×21、转置运算不改变方阵的行列式、秩和特征值. ( ) . A.√. B.×22、. A.√. B.×23、. A.√. B.×24、. A.√. B.×主观题25、参考答案:26、参考答案:27、设三阶方阵A的三个特征值为1,2,3,则|A + E| = ( ).参考答案:2428、参考答案:29、参考答案:30、参考答案:31、参考答案:k>132、参考答案:333、参考答案:34、参考答案:35、参考答案:36、参考答案:237、参考答案:38、设线性方程组A x =0,A是4×5阶矩阵,如果R(A)=3,则其解空间的维数为( ).参考答案:239、参考答案:40、参考答案:41、参考答案:42、参考答案:43、参考答案:44、参考答案:45、参考答案:46、参考答案:47、参考答案:48、2.参考答案:49、参考答案:50、参考答案:51、参考答案:52、1.参考答案:53、参考答案:54、参考答案:55、参考答案:56、参考答案:57、参考答案:58、参考答案:59、参考答案:60、参考答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数
1、设多项式f(x)|g(x),c是一个非零常数,则cf(x)|g(x)。
2、一个齐次线性方程组的两个解向量的和仍是该方程组的一个解向量。
3、设A是n阶矩阵,若非齐次线性方程组AX=B无解,则|A|=0。
4、设A是可逆矩阵,交换A的第一行和第二行得矩阵B,则B也是可逆矩阵。
7、设A是n阶矩阵,|A|=0,E是n阶单位矩阵,则|A+E|=1。
8、若多项式g(x)|f(x),则g(x)为f(x)与g(x)的一个最大公因式。
9、如果一个向量组线性相关,那么它的任一部分组也线性相关。
11、如果一个二次型是正定的,那么它的函数值恒大于零。
12、数域P上两个不可约多项式的积一定是可约多项式。
13、如果两个n阶矩阵的秩相同,那么它们一定合同。
15、若A,B为n阶对角形矩阵,则AB=BA。
16、6级排列654213的逆序数等于。
13
4
2
2
6
3
-1
3
-4
-1
1.计算下面的4阶行列式的值: 111121*********
1
D -=。
2.设43232()341,()1f x x x x x g x x x x =+---=+--,求((),())f x g x 。
3.设A =
033
110
123
⎛⎫
⎪
⎪
⎪
-⎝⎭
,且2
AB A B
=+,求矩阵B。
4.求下面的齐次线性方程组的基础解系:
123412341
23481020245038620
x x x x x x x x x x x x -++=⎧⎪
++-=⎨⎪++-=⎩。
5.用配方法化下面的二次型为标准形:
22
123131323(,,)222f x x x x x x x x x =+++。
6.设1110A ⎡⎤=⎢⎥
⎣⎦
,2
()1f x x x =++,求f (A )。
7.设3[]V P x =,A 为V 的线性变换,(())()A f x f x '=,求A 在基
21231,,x x ααα===下的矩阵。
8.设32()f x x ax x b =+++,已知f (1) = -3,f (2) = -1,求a ,b 的值。
9.设1222622215A ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
为3阶实对称矩阵,判别A 是否是正定矩阵。
10.在欧氏空间3R 中,求向量12(1,1,1),(1,1,1)ββαα==--,使与正交。
证明题:
1. 设3()91f x x x =+-,证明:f (x )在有理数域上不可约。
约。
2. 设A 为对称矩阵,而B 与A 合同,证明B 也是对称矩阵。
3.设123(1,1,1),(2,2,4),(1,0,2)ααα=-=-=,证明123,,ααα线性无关。
4. 设线性空间V =P [x ],(())()A f x f x '=,证明:A 是V 的线性变换。
5.设12,ηη是齐次线性方程组AX = 0的两个解向量,证明12ηη+也是AX = 0的 解向量。