2014航复习 曲线运动万有引力(1)

合集下载

2014广东各地一二模曲线运动、万有引力选择题汇总

2014广东各地一二模曲线运动、万有引力选择题汇总

一、单选1、我国2013年6月发射的“神州十号”飞船绕地球飞行的周期约为90分钟,取地球半径为6400km,地表重力加速度为g。

设飞船绕地球做匀速圆周运动,则由以上数据无法估测A.飞船线速度的大小B.飞船的质量C.飞船轨道离地面的高度D.飞船的向心加速度大小2.如图所示的a、b、c三颗地球卫星,其半径关系为r a=r b<r c,下列说法正确的是A.卫星a、b的质量一定相等B.它们的周期关系为T a=T b>T cC.卫星a、b的机械能一定大于卫星cD.它们的速度关系为v a=v b>v c3.北斗卫星系统由地球同步轨道卫星与低轨道卫星两种卫星组成,这两种卫星在轨正常运行时A.同步卫星运行的周期较大B.低轨卫星运行的角速度较小C.同步卫星运行可能飞越广东上空D.所有卫星运行速度都大于第一宇宙速度4.“嫦娥”为圆形。

下列说法正确的是A.探测器在轨道Ⅱ上运动时不需要火箭提供动力B.探测器在轨道Ⅲ经过P点时的加速度小于在轨道Ⅱ经过P时的加速度C.探测器在P点由轨道Ⅱ进入轨道Ⅲ必须加速D.轨道Ⅱ是月球卫星绕月球做匀速圆周运动的唯一轨道5.无风时气球匀速竖直上升,速度为3m/s.现吹水平方向的风,使气球获4m/s的水平速度,气球经一定时间到达某一高度h,则A.气球实际速度的大小为7m/sB.气球的运动轨迹是曲线C.若气球获5m/s的水平速度,气球到达高度h的路程变长D.若气球获5m/s的水平速度,气球到达高度h的时间变短6.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,但速度变小,则变轨后卫星A.处于平衡状态B.重力势能增大C.万有引力变大D.运行周期变小7.公园里的“飞天秋千”游戏并始前,座椅由钢丝绳竖直悬吊在半空.秋千匀速转动时,绳与竖直方向成某一角度θ,其简化模型,如图所示.若保持运动周期不变,要使夹角θ变大,可将A.钢丝绳变长B.钢丝绳变短C.座椅质量增大D.座椅质量减小a8.如右图所示,有M 和N 两颗人造地球卫星,都环绕地球做匀速圆周运动。

福建省漳浦县道周中学2014年高考物理总复习 专题三 曲线运动 万有引力与航天

福建省漳浦县道周中学2014年高考物理总复习 专题三 曲线运动 万有引力与航天

福建省漳浦县道周中学2014年高考物理总复习 专题三 曲线运动 万有引力与航天一、圆周运动的运动学分析 1.匀速圆周运动(1)特点:线速度的大小不变,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的.(2)性质:是线速度大小不变而方向时刻变化的变速曲线运动,是加速度大小不变而方向时刻改变的变加速曲线运动.(3)向心加速度和向心力:仅存在向心加速度.向心力就是做匀速圆周运动的物体所受外力的合力.(4)质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直且指向圆心.2.传动装置特点(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同.(2)皮带传动:不打滑的摩擦传动和皮带(或齿轮)传动的两轮边缘上各点线速度大小相等.(3)在讨论v 、ω、r 三者关系时,应采用控制变量法,即保持其中一个量不变来讨论另外两个量的关系.【例1】 (宁夏理综高考.30)如图3所示为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )图3A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为r 1r 2nD.从动轮的转速为r 2r 1n图4[针对训练1] 如图4所示,轮O 1、O 3固定在同一转轴上,轮O 1、O 2用皮带连接且不打滑.在O 1、O 2、O 3三个轮的边缘各取一点A 、B 、C ,已知三个轮的半径比r 1∶r 2∶r 3=2∶1∶1,求:(1)A 、B 、C 三点的线速度大小之比v A ∶v B ∶v C ; (2)A 、B 、C 三点的角速度之比ωA ∶ωB ∶ωC ; (3)A 、B 、C 三点的向心加速度大小之比a A ∶a B ∶a C . 二、圆周运动中的动力学问题分析 1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.分析下列各情景中的向心力来源 图形 向心力来源星绕地球做汽车通过拱形桥时(1)圆周可看成是牛顿第二定律应用的进一步延伸.将牛顿第二定律F =ma 应用于圆周运动,F 就是向心力,a 就是向心加速度,即得:F =ma n =m v 2R =m ω2R =m 4π2T2R(2)基本思路①明确研究对象.②分析运动情况:即做什么性质的圆周运动(匀速圆周运动?变速圆周运动?);确定轨道所在的平面和圆心位置,从而确定向心力的方向.③分析受力情况(注意不要把向心力作为某一性质的力进行分析),在向心方向求合外力(即选定向心方向为正方向).④由牛顿第二定律列方程,根据已知量和要求量选择合适的向心加速度公式. ⑤求解或进行必要的讨论.图5【例2】 (2010·山东省泰安市高三第二轮复习质量检测)如图5所示,物块P 置于水平转盘上随转盘一起运动,图中c 沿半径指向圆心,a 与c 垂直,下列说法正确的是( )A .当转盘匀速转动时,P 受摩擦力方向为b 方向B .当转盘加速转动时,P 受摩擦力方向可能为a 方向C .当转盘加速转动时,P 受摩擦力方向可能为c 方向D .当转盘减速转动时,P 受摩擦力方向可能为d 方向图6【例3】 如图6所示,在光滑的水平面上有两个质量相同的球A 和球B ,A 、B 之间以及B 球与固定点O 之间分别用两段轻绳相连并以相同的角速度绕着O 点做匀速圆周运动,如果OB =2AB ,则绳OB 与绳BA 的张力之比为( ) A .2∶1 B .3∶2 C .5∶3 D .5∶2[针对训练2] 2009年10月10日,美国空军“雷鸟”飞行表演队在泰国首都曼谷进行了精彩的飞行表演.飞行员驾机在竖直平面内做圆环特技飞行,若圆环半径为1 000 m ,飞行速度为100 m /s ,求飞行在最高点和最低点时飞行员对座椅的压力是自身重力的多少倍.(g =10 m /s 2) 考点一 同步卫星同步卫星的五个“一定”1.轨道平面一定:轨道平面与赤道平面共面. 2.周期一定:与地球自转周期相同,即T =24 h. 3.角速度一定:与地球自转的角速度相同.4.高度一定:由G Mm (R +h )2=m 4π2T 2(R +h )得同步卫星离地面的高度h = 3GMT 24π2-R .5.速率一定:v =GMR +h. 考点二 万有引力定律及其应用 重力与重力加速度1.关于重力(1)在地面上,忽略地球自转时,认为物体的向心力为零.各处位置均有mg =GMm R2(2)由于F n =mR ω2非常小,所以对一般问题的研究认为F n =0,mg =GMm R22.重力加速度(1)任意星球表面的重力加速度:在星球表面处,由于万有引力近似等于重力,G MmR2=mg ,g =GM R2.(R 为星球半径,M 为星球质量)(2)星球上空某一高度h 处的重力加速度:G Mm +2=mg′,g′=GM +2随着高度的增加,重力加速度逐渐减小.【例1】 (2009·江苏单科·3)英国《新科学家(New Scientist )》杂志评选出了2008年度世界8项科学之最,在XTEJ 1650—500双星系统中发现的最小黑洞位列其中,若某黑洞的半径R 约为45 km ,质量M 和半径R 的关系满足M R =c22G(其中c 为光速,G 为引力常量),则该黑洞表面重力加速度的数量级为( ) A .108 m /s 2 B .1010 m /s 2 C .1012 m /s 2 D .1014 m /s 2二、天体质量和密度的估算1.解决天体圆周运动问题的一般思路利用万有引力定律解决天体运动的一般步骤 (1)两条线索①万有引力提供向心力F =F n .②重力近似等于万有引力提供向心力.(2)两组公式①G Mm r 2=m v 2r =m ω2r =m 4π2T2r②mg r =m v 2r =m ω2r =m 4π2T2r(g r 为轨道所在处重力加速度)2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R.由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g 4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r 进行计算.①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r3GT2;②若已知天体的半径R ,则天体的密度ρ=M V =M 43πR 3=3πr3GT 2R3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.【例2】 已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g.某同学根据以上条件,提出一种估算地球质量M 的方法:同步卫星绕地心做圆周运动,由G Mm h 2=m(2πT 2)2h 得M =4π2h 3GT 22.(1)请判断上面的结果是否正确,并说明理由.如不正确,请给出正确的解法和结果. (2)请根据已知条件再提出两种估算地球质量的方法并解得结果. 三、对人造卫星的认识及变轨问题 1.人造卫星的动力学特征 万有引力提供向心力,即G Mm r 2=m v 2r =mr ω2=m(2πT )2r 2.人造卫星的运动学特征(1)线速度v :由G Mm r 2=m v 2r 得v = GMr ,随着轨道半径的增大,卫星的线速度减小.(2)角速度ω:由G Mm r2=m ω2r 得ω=GMr3,随着轨道半径的增大,卫星的角速度减小. (3)周期:由G Mm r 2=m 4π2T 2r ,得T =2π r3GM,随着轨道半径的增大,卫星的运行周期增大.3.卫星的稳定运行与变轨运行分析 (1)什么情况下卫星稳定运行?卫星所受万有引力恰等于做匀速圆周运动的向心力时,将保持匀速圆周运动.满足的公式:G Mm r 2=mv2r.(2)变轨运行分析:当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力就不再等于所需的向心力,卫星将做变轨运行.①当v 增大时,所需向心力mv2r 增大,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v =GM r知其运行速度要减小,但重力势能、机械能均增加.②当卫星的速度突然减小时,向心力mv2r减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v = GMr知其运行速度将增大,但重力势能、机械能均减少(卫星的发射和回收就是利用了这一原理).图3【例3】 (2010·江苏单科·6)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道 Ⅰ 进入椭圆轨道 Ⅱ ,B 为轨道 Ⅱ 上的一点,如图3所示.关于航天飞机的运动,下列说法中不正确的有( ) A .在轨道 Ⅱ 上经过A 的速度小于经过B 的速度B .在轨道 Ⅱ 上经过A 的动能小于在轨道 Ⅰ 上经过A 的动能C .在轨道 Ⅱ 上运动的周期小于在轨道 Ⅰ 上运动的周期D .在轨道 Ⅱ 上经过A 的加速度小于在轨道 Ⅰ 上经过A 的加速度 四、环绕速度与发射速度的比较及地球同步卫星 1.环绕速度与发射速度的比较近地卫星的环绕速度v = G MR=gR =7.9 km /s ,通常称为第一宇宙速度,它是地球周围所有卫星的最大环绕速度,是在地面上发射卫星的最小发射速度.不同高度处的人造卫星在圆轨道上的运行速度v = G Mr,其大小随半径的增大而减小.但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大. 2.地球同步卫星特点(1)地球同步卫星只能在赤道上空.(2)地球同步卫星与地球自转具有相同的角速度和周期. (3)地球同步卫星相对地面静止. (4)同步卫星的高度是一定的.【例4】 我国成功发射一颗绕月运行的探月卫星“嫦娥一号”.设该卫星的运行轨道是圆形的,且贴近月球表面.已知月球的质量约为地球质量的181,月球的半径约为地球半径的14,地球上的第一宇宙速度约为7.9 km /s ,则该探月卫星绕月运行的速率约为( )A .0.4 km /sB .1.8 km /sC .11 km /sD .36 km /s 五、双星问题【例5】 (2010·重庆理综)月球与地球质量之比约为1∶80.有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O 做匀速圆周运动.据此观点,可知月球与地球绕O 点运动的线速度大小之比约为( ) A .1∶6 400 B .1∶80C.80∶1 D.6 400∶1六、万有引力定律与抛体运动的结合【例6】(2011·象山北仓两城适应性考试)在太阳系中有一颗行星的半径为R,若在该星球表面以初速度v0竖直上抛一物体,则该物体上升的最大高度为H.已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计(万有引力常量G未知).则根据这些条件,可以求出的物理量是( )A.该行星的密度B.该行星的自转周期C.该星球的第一宇宙速度D.该行星附近运行的卫星的最小周期。

【名师讲解】高三物理一轮复习:四 曲线运动,万有引力与航天(53张PPT)

【名师讲解】高三物理一轮复习:四 曲线运动,万有引力与航天(53张PPT)
小船渡河问题、绳拉物体问题和各种抛体运动
(如平抛等)都是典型实例。复习圆周运动问题
时,要认真分析向心力的来源,确定向心力是解
决圆周运动问题的关键。 万有引力定律及其应用
是高考的热点内容,常以天体问题或人类航天技 术为背景考查其相关知识。
四、高考命题趋向
第一节 一、知识要点
1、曲线运动
曲线运动,运动的合成分解
(1)曲线运动的方向:做曲线运动的物体在某一点(或 某一时刻)的速度方向是在曲线的这一点的 切线 方向.
(2)曲线运动的性质 由于曲线运动的速度方向不断变化,所以曲线运动一定 是 变速 运动,一定存在 加速度 . (3)物体做曲线运动的条件 物体所受合外力(或加速度)的方向与它的速度方 向 不在同一直线上 . ①如果这个合外力是大小和方向都恒定的,即所受的力为恒 力,物体就做 匀变速曲线运动,如平抛运动. ②如果这个合外力大小恒定,方向始终与速度垂直,物体就 匀速圆周 运动. 做
二、巩固训练
【练习1】 . (教学案第107页练习1)我国嫦娥一号探月卫星 经过无数人的协作和努力,终于在2007年10月24日晚6点05 分发射升空。如图所示,嫦娥一号探月卫星在由地球飞向月 球时,沿曲线从M点向N点飞行的过程中,速度逐渐减小, 在此过程中探月卫星所受合力的方向可能的是 ( c ) N N N N
2m
3m 3m 18m
3 10m / s < V < 12 2m / s
2.13m
第三节 一、知识要点
匀速圆周运动及离心运动
1.圆周运动的几个重要概念 (1)线速度:V 切线方向 ①方向:就是圆弧在该点的 。 ②大小:v=x/t 单位: m/s ③物理意义:描述质点沿圆弧运动的 快慢 ④计算式: v = 2π R/T (2)角速度:ω ①方向,中学阶段不研究 ②大小, ω= φ/t (φ是圆心角)单位: rad/s . ③物理意义:描述质点绕圆心转动的快慢 ④计算式: ω=2π/T

2014届一轮复习第4章曲线运动_万有引力与航天

2014届一轮复习第4章曲线运动_万有引力与航天

必修2 第四章 曲线运动 万有引力与航天第 1 课时 曲线运动 质点在平面内的运动基础知识归纳1.曲线运动(1)曲线运动中的速度方向做曲线运动的物体,速度的方向时刻在改变,在某点(或某一时刻)的速度方向是曲线上该点的 切线 方向.(2)曲线运动的性质由于曲线运动的速度方向不断变化,所以曲线运动一定是 变速 运动,一定存在加速度.(3)物体做曲线运动的条件物体所受合外力(或加速度)的方向与它的速度方向 不在同一直线 上.①如果这个合外力的大小和方向都是恒定的,即所受的合外力为恒力,物体就做 匀变速曲线 运动,如平抛运动.②如果这个合外力大小恒定,方向始终与速度方向垂直,物体就做 匀速圆周 运动.③做曲线运动的物体,其轨迹向合外力所指一方弯曲,即合外力总是指向曲线的内侧.根据曲线运动的轨迹,可以判断出物体所受合外力的大致方向.说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将 增大 ,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将 减小 .2.运动的合成与分解(1)合运动与分运动的特征①等时性:合运动和分运动是 同时 发生的,所用时间相等.②等效性:合运动跟几个分运动共同叠加的效果 相同 .③独立性:一个物体同时参与几个分运动,各个分运动 独立 进行,互不影响.(2)已知分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,遵循 平行四边形 定则.①两分运动在同一直线上时,先规定正方向,凡与正方向相同的取正值,相反的取负值,合运动为各分运动的代数和.②不在同一直线上,按照平行四边形定则合成(如图所示).③两个分运动垂直时,x 合=22y x x x +,v 合=22y x v v +,a 合=22y x a a + (3)已知合运动求分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解.重点难点突破一、怎样确定物体的运动轨迹1.同一直线上的两个分运动(不含速率相等,方向相反的情形)的合成,其合运动一定是直线运动.2.不在同一直线上的两分运动的合成.(1)若两分运动为匀速运动,其合运动一定是匀速运动.(2)若两分运动为初速度为零的匀变速直线运动,其合运动一定是初速度为零的匀变速直线运动.(3)若两分运动中,一个做匀速运动,另一个做匀变速直线运动,其合运动一定是匀变速曲线运动(如平抛运动).(4)若两分运动均为初速度不为零的匀加(减)速直线运动,其合运动不一定是匀加(减)速直线运动,如图甲、图乙所示.图甲情形为匀变速曲线运动;图乙情形为匀变速直线运动(匀减速情形图未画出),此时有2121a a v v =. 二、船过河问题的分析与求解方法1.处理方法:船在有一定流速的河中过河时,实际上参与了两个方向的运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中船的运动),船的实际运动是这两种运动的合运动.2.对船过河的分析与讨论.设河宽为d ,船在静水中速度为v 船,水的流速为v 水.(1)船过河的最短时间如图所示,设船头斜向上游与河岸成任意夹角θ,这时船速在垂直河岸方向的速度分量为v 1=v 船sin θ,则过河时间为t =θsin 1船v d v d =,可以看出,d 、v 船一定时,t 随sin θ增大而减小.当θ=90°时,即船头与河岸垂直时,过河时间最短t min =船v d ,到达对岸时船沿水流方向的位移x =v 水t min =船水v v d . (2)船过河的最短位移①v 船>v 水如上图所示,设船头斜指向上游,与河岸夹角为θ.当船的合速度垂直于河岸时,此情形下过河位移最短,且最短位移为河宽d .此时有v 船cos θ=v 水,即θ=arccos 船水v v . ②v 船<v 水如图所示,无论船向哪一个方向开,船不可能垂直于河岸过河.设船头与河岸成θ角,合速度v 合与河岸成α角.可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据cos θ=水船v v ,船头与河岸的夹角应为θ=arccos 水船v v ,船沿河漂下的最短距离为x min =(船水v v -cos θ) θsin 船v d .此情形下船过河的最短位移x =d v v d 船水=θ cos . 三、如何分解用绳(或杆)连接物体的速度1.一个速度矢量按矢量运算法则分解为两个速度,若与实际情况不符,则所得分速度毫无物理意义,所以速度分解的一个基本原则就是按实际效果进行分解.通常先虚拟合运动(即实际运动)的一个位移,看看这个位移产生了什么效果,从中找到两个分速度的方向,最后利用平行四边形画出合速度和分速度的关系图,由几何关系得出它们的关系.2.由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(杆)方向的分速度大小相同求解.典例精析1.曲线运动的动力学问题【例1】光滑平面上一运动质点以速度v 通过原点O ,v 与x 轴正方向成α角(如图所示),与此同时对质点加上沿x 轴正方向的恒力F x 和沿y 轴正方向的恒力F y ,则( )A.因为有F x ,质点一定做曲线运动B.如果F y >F x ,质点向y 轴一侧做曲线运动C.质点不可能做直线运动D.如果F x >F y cot α,质点向x 轴一侧做曲线运动【解析】当F x 与F y 的合力F 与v 共线时质点做直线运动,F 与v 不共线时做曲线运动,所以A 、C 错;因α大小未知,故B 错,当F x >F y cot α时,F 指向v 与x 之间,因此D 对.【答案】D【思维提升】(1)物体做直线还是曲线运动看合外力F 与速度v 是否共线.(2)物体做曲线运动时必偏向合外力F 一方,即合外力必指向曲线的内侧.【拓展1】如图所示,一物体在水平恒力作用下沿光滑的水平面做曲线运动,当物体从M 点运动到N 点时,其速度方向恰好改变了90°,则物体在M 点到N 点的运动过程中,物体的动能将( C )A.不断增大B.不断减小C.先减小后增大D.先增大后减小【解析】水平恒力方向必介于v M 与v N 之间且指向曲线的内侧,因此恒力先做负功后做正功,动能先减小后增大,C 对.2.小船过河模型【例2】小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s.(1)若船在静水中的速度为v 2=5 m/s ,求:①欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?②欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?(2)若船在静水中的速度v 2=1.5 m/s ,要使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【解析】(1)若v 2=5 m/s①欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示,合速度为倾斜方向,垂直分速度为v 2=5 m/st =51802==⊥v d v d s =36 s v 合=2221v v +=525 m/s s =v 合t =905 m②欲使船渡河航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一角度α.垂直河岸过河这就要求v ∥=0,所以船头应向上游偏转一定角度,如图所示,由v 2sinα=v 1得α=30°所以当船头向上游偏30°时航程最短. s =d =180 mt =324s 32518030 cos 2==︒=⊥v d v d s (2)若v 2=1.5 m/s与(1)中②不同,因为船速小于水速,所以船一定向下游漂移,设合速度方向与河岸下游方向夹角为α,则航程s =αsin d ,欲使航程最短,需α最大,如图所示,由出发点A 作出v 1矢量,以v 1矢量末端为圆心,v 2大小为半径作圆,A 点与圆周上某点的连线即为合速度方向,欲使v 合与水平方向夹角最大,应使v 合与圆相切,即v 合⊥v 2.sin α=535.25.112==v v 解得α=37° t =2.118037 cos 2=︒=⊥v d v d s =150 s v 合=v 1cos 37°=2 m/s s =v 合•t =300 m 【思维提升】(1)解决这类问题的关键是:首先要弄清楚合速度与分速度,然后正确画出速度的合成与分解的平行四边形图示,最后依据不同类型的极值对应的情景和条件进行求解.(2)运动分解的基本方法:按实际运动效果分解.【拓展2】在民族运动会上有一个骑射项目,运动员骑在奔驰的马背上,弯弓放箭射击侧向的固定目标.假设运动员骑马奔驰的速度为v 1,运动员静止时射出的弓箭速度为v 2,跑道离固定目标的最近距离为d ,则( BC )A.要想命中目标且箭在空中飞行时间最短,运动员放箭处离目标的距离为12v dv B.要想命中目标且箭在空中飞行时间最短,运动员放箭处离目标的距离为22221v v v d + C.箭射到靶的最短时间为2v d D.只要击中侧向的固定目标,箭在空中运动的合速度的大小为v =2221v v +易错门诊3.绳(杆)连物体模型【例3】如图所示,卡车通过定滑轮牵引河中的小船,小船一直沿水面运动.在某一时刻卡车的速度为v ,绳AO 段与水平面夹角为θ,不计摩擦和轮的质量,则此时小船的水平速度多大?【错解】将绳的速度按右图所示的方法分解,则v 1即为船的水平速度v 1=v •cos θ【错因】上述错误的原因是没有弄清船的运动情况.船的实际运动是水平向左运动,每一时刻船上各点都有相同的水平速度,而AO 绳上各点的运动比较复杂.以连接船上的A 点来说,它有沿绳的速度v ,也有与v 垂直的法向速度v n ,即转动分速度,A 点的合速度v A 即为两个分速度的矢量和v A =θcos v 【正解】小船的运动为平动,而绳AO 上各点的运动是平动加转动.以连接船上的A点为研究对象,如图所示,A 的平动速度为v ,转动速度为v n ,合速度v A 即与船的平动速度相同.则由图可以看出v A =θcos v 【思维提升】本题中不易理解绳上各点的运动,关键是要弄清合运动就是船的实际运动,只有实际位移、实际加速度、实际速度才可分解,即实际位移、实际加速度、实际速度在平行四边形的对角线上.第 2 课时 抛体运动的规律及其应用基础知识归纳 1.平抛运动(1)定义:将一物体水平抛出,物体只在 重力 作用下的运动.(2)性质:加速度为g 的匀变速 曲线 运动,运动过程中水平速度 不变 ,只是竖直速度不断 增大 ,合速度大小、方向时刻 改变 . (3)研究方法:将平抛运动分解为水平方向的 匀速直线 运动和竖直方向的 自由落体运动,分别研究两个分运动的规律,必要时再用运动合成方法进行合成.(4)规律:设平抛运动的初速度为v 0,建立坐标系如图.速度、位移: 水平方向:v x =v 0,x =v 0t 竖直方向:v y =gt ,y =21gt 2 合速度大小(t 秒末的速度): vt=22yx v v + 方向:tan φ=00v gt v v y = 合位移大小(t 秒末的位移):s =22y x +方向:tan θ=00222/v gt t v gt x y == 所以tan φ=2tan θ 运动时间:由y =21gt 2得t = 2 g y (t 由下落高度y 决定). 轨迹方程:y = 2 220x v g(在未知时间情况下应用方便).可独立研究竖直分运动:a.连续相等时间内竖直位移之比为1∶3∶5∶…∶(2n -1)(n =1,2,3…)b.连续相等时间内竖直位移之差为Δy =gt 2一个有用的推论:平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半.2.斜抛运动(1)将物体斜向上射出,在 重力 作用下,物体做曲线运动,它的运动轨迹是 抛物线 ,这种运动叫做“斜抛运动”.(2)性质:加速度为g 的 匀变速曲线 运动.根据运动独立性原理,可以把斜抛运动看成是水平方向的 匀速直线 运动和竖直方向的 上抛 运动的合运动来处理.取水平方向和竖直向上的方向为x 轴和y 轴,则这两个方向的初速度分别是:v 0x =v 0cos θ,v 0y =v 0sin θ.重点难点突破一、平抛物体运动中的速度变化水平方向分速度保持v x =v 0,竖直方向,加速度恒为g ,速度v y =gt ,从抛出点看,每隔Δt 时间的速度的矢量关系如图所示.这一矢量关系有两个特点:1.任意时刻v 的速度水平分量均等于初速度v 0;2.任意相等时间间隔Δt 内的速度改变量均竖直向下,且Δv =Δv y =g Δt .二、类平抛运动平抛运动的规律虽然是在地球表面的重力场中得到的,但同样适用于月球表面和其他行星表面的平抛运动.也适用于物体以初速度v 0运动时,同时受到垂直于初速度方向,大小、方向均不变的力F 作用的情况.例如带电粒子在电场中的偏转运动、物体在斜面上的运动以及带电粒子在复合场中的运动等等.解决此类问题要正确理解合运动与分运动的关系.三、平抛运动规律的应用平抛运动可看做水平方向的匀速直线运动和竖直方向的自由落体运动的合运动.物体在任意时刻的速度和位移都是两个分运动对应时刻的速度和位移的矢量和.解决与平抛运动有关的问题时,应充分注意到两个分运动具有独立性和等时性的特点,并且注意与其他知识的结合.典例精析1.平抛运动规律的应用【例1】(2009•广东)为了清理堵塞河道的冰凌,空军实施投弹爆破.飞机在河道上空高H 处以速度v 0水平匀速飞行,投掷炸弹并击中目标.求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小(不计空气阻力).【解析】设飞行的水平距离为s ,在竖直方向上H =21gt 2 解得飞行时间为t =g H 2 则飞行的水平距离为s =v 0t =v 0g H 2 设击中目标时的速度为v ,飞行过程中,由机械能守恒得mgH +2021mv =21mv 2解得击中目标时的速度为v =202v gH +【思维提升】解平抛运动问题一定要抓住水平与竖直两个方向分运动的独立性与等时性,有时还要灵活运用机械能守恒定律、动能定理、动量定理等方法求解.【拓展1】用闪光照相方法研究平抛运动规律时,由于某种原因,只拍到了部分方格背景及小球的三个瞬时位置(见图).若已知闪光时间间隔为t =0.1 s ,则小球运动中初速度大小为多少?小球经B 点时的竖直分速度大小多大?(g 取10 m/s 2,每小格边长均为L =5cm).【解析】由于小球在水平方向做匀速直线运动,可以根据小球位臵的水平位移和闪光时间算出水平速度,即抛出的初速度.小球在竖直方向做自由落体运动,根据匀变速直线运动规律即可算出竖直分速度.因A 、B (或B 、C )两位臵的水平间距和时间间隔分别为x AB =2L =(2×5) cm =10 cm =0.1 m t AB =Δt =0.1 s所以,小球抛出的初速度为v 0=ABAB t x =1 m/s 设小球运动至B 点时的竖直分速度为v By 、运动至C 点时的竖直分速度为v Cy ,B 、C 间竖直位移为y BC ,B 、C 间运动时间为t B C .根据竖直方向上自由落体运动的公式得BC B C gy v v y y 222=- 即(v By +gt BC )2-BC B gy v y22= v By =BCBC BC t gt y 222- 式中y BC =5L =0.25 m t BC =Δt =0.1 s 代入上式得B 点的竖直分速度大小为v By =2 m/s 2.平抛运动与斜面结合的问题【例2】如图所示,在倾角为θ的斜面上A 点以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上B 点所用的时间为( ) A.g v θ sin 20 B. g v θ tan 20 C. g v θ sin 0 D. gv θ tan 0 【解析】设小球从抛出至落到斜面上的时间为t ,在这段时间内水平位移和竖直位移分别为x =v 0t ,y =21gt 2 如图所示,由几何关系可知 tan θ=002221v gt t v gt x y == 所以小球的运动时间t =g v θ tan 20 【答案】B【思维提升】上面是从常规的分运动方法来研究斜面上的平抛运动,还可以变换一个角度去研究.如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的竖直上抛运动.小球“上、下”一个来回的时间等于它从抛出至落到斜面上的运动时间,于是立即可得t =gv g v g v y y θθθ tan 2 cos sin 22000== 采用这种观点,还可以很容易算出小球从斜面上抛出后的运动过程中离斜面的最大距离、从抛出到离斜面最大的时间、斜面上的射程等问题.【拓展2】一固定的斜面倾角为θ,一物体从斜面上的A 点平抛并落到斜面上的B 点,试证明物体落在B 点的速度与斜面的夹角为定值.【证明】作图,设初速度为v 0,到B 点竖直方向速度为v y ,设合速度与竖直方向的夹角为α,物体经时间t 落到斜面上,则tan α=yx gt t v gt v v v y x 2200===α为定值,所以β=(2π-θ)-α也为定值,即速度方向与斜面的夹角与平抛初速度无关,只与斜面的倾角有关.3.类平抛运动【例3】如图所示,有一倾角为30°的光滑斜面,斜面长L 为10 m ,一小球从斜面顶端以10 m/s 的速度沿水平方向抛出,求:(1)小球沿斜面滑到底端时的水平位移x ;(2)小球到达斜面底端时的速度大小(g 取10 m/s 2).【解析】(1)在斜面上小球沿v 0方向做匀速运动,垂直v 0方向做初速度为零的匀加速运动,加速度a =g sin 30° x =v 0t① L =21g sin 30°t 2 ② 由②式解得t =︒30 sin 2g L ③ 由①③式解得x =v 0︒30 sin 2g L =105.010102⨯⨯ m =20 m (2)设小球运动到斜面底端时的速度为v ,由动能定理得mgL sin 30°=21mv 2-2021mv v =101010220⨯+=+gL v m/s ≈14.1 m/s 【思维提升】物体做类平抛运动,其受力特点和运动特点类似于平抛运动,因此解决的方法可类比平抛运动——采用运动的合成与分解.关键的问题要注意:(1)满足条件:受恒力作用且与初速度的方向垂直.(2)确定两个分运动的速度方向和位移方向,分别列式求解.易错门诊【例4】如图所示,一高度为h =0.2 m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5 m/s 的速度在水平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10 m/s 2).【错解】小球沿斜面运动,则θ sin h =v 0t +21g sin θ•t 2,可求得落地的时间t . 【错因】小球应在A 点离开平面做平抛运动,而不是沿斜面下滑.【正解】落地点与A 点的水平距离x =v 0t =v 0102.0252⨯⨯=g h m =1 m 斜面底宽l =h cot θ=0.2×3m =0.35 m因为x >l ,所以小球离开A 点后不会落到斜面,因此落地时间即为平抛运动时间.所以t =102.022⨯=gh s =0.2 s 【思维提升】正确解答本题的前提是熟知平抛运动的条件与平抛运动的规律.第 3 课时 描述圆周运动的物理量 匀速圆周运动基础知识归纳1.描述圆周运动的物理量(1)线速度:是描述质点绕圆周 运动快慢 的物理量,某点线速度的方向即为该点 切线 方向,其大小的定义式为 tl v ∆∆=. (2)角速度:是描述质点绕圆心 运动快慢 的物理量,其定义式为ω=t∆∆θ,国际单位为 rad/s . (3)周期和频率:周期和频率都是描述圆周 运动快慢 的物理量,用周期和频率计算线速度的公式为 π2π2 rf T r v ==,用周期和频率计算角速度的公式为 π2π2 f T==ω.(4)向心加速度:是描述质点线速度方向变化快慢的物理量,向心加速度的方向指向圆心,其大小的定义式为 2rv a =或 a =r ω2 . (5)向心力:向心力是物体做圆周运动时受到的总指向圆心的力,其作用效果是使物体获得向心加速度(由此而得名),其效果只改变线速度的 方向 ,而不改变线速度的 大小 ,其大小可表示为2rv m F = 或 F =m ω2r ,方向时刻与运动的方向 垂直 ,它是根据效果命名的力. 说明:向心力,可以是几个力的合力,也可以是某个力的一个分力;既可能是重力、弹力、摩擦力,也可能是电场力、磁场力或其他性质的力.如果物体做匀速圆周运动,则所受合力一定全部用来提供向心力.2.匀速圆周运动(1)定义:做圆周运动的物体,在相同的时间内通过的弧长都 相等 .在相同的时间内物体与圆心的连线转过的角度都 相等 .(2)特点:在匀速圆周运动中,线速度的大小 不变 ,线速度的方向时刻 改变 .所以匀速圆周运动是一种 变速 运动.做匀速圆周运动的物体向心力就是由物体受到的 合外力 提供的.3.离心运动(1)定义:做匀速圆周运动的物体,当其所受向心力突然 消失 或 力不足以 提供向心力时而产生的物体逐渐远离圆心的运动,叫离心运动.(2)特点:①当合F =mr ω2的情况,即物体所受合外力等于所需向心力时,物体做圆周运动.②当合F <mr ω2的情况,即物体所受合外力小于所需向心力时,物体沿曲线逐渐远离圆心做离心运动.了解离心现象的特点,不要以为离心运动就是沿半径方向远离圆心的运动.③当合F >mr ω2的情况,即物体所受合外力大于所需向心力时,表现为向心运动的趋势.重点难点突破一、描述匀速圆周运动的物理量之间的关系共轴转动的物体上各点的角速度相同,不打滑的皮带传动的两轮边缘上各点线速度大小相等.二、关于离心运动的问题物体做离心运动的轨迹可能为直线或曲线.半径不变时物体做圆周运动所需的向心力是与角速度的平方(或线速度的平方)成正比的.若物体的角速度增加了,而向心力没有相应地增大,物体到圆心的距离就不能维持不变,而要逐渐增大使物体沿螺线远离圆心.若物体所受的向心力突然消失,将沿着切线方向远离圆心而去.三、圆周运动中向心力的来源分析向心力可以是重力、弹力、摩擦力等各种力,也可以是某些力的合力,或某力的分力.它是按力的作用效果来命名的.分析物体做圆周运动的动力学问题,应首先明确向心力的来源.需要指出的是:物体做匀速圆周运动时,向心力才是物体受到的合外力.物体做非匀速圆周运动时,向心力是合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和).典例精析1.圆周运动各量之间的关系【例1】(2009•上海)小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度.他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t 内踏脚板转动的圈数为N ,那么踏脚板转动的角速度ω= ;要推算自行车的骑行速度,还需要测量的物理量有 ;自行车骑行速度的计算公式v = .【解析】根据角速度的定义式得ω=tN t π2=θ;要求自行车的骑行速度,还要知道自行车后轮的半径R ,牙盘的半径r 1、飞轮的半径r 2、自行车后轮的半径R ;由v 1=ωr 1=v 2=ω2r 2,又ω2=ω后,而v =ω后R ,以上各式联立解得v =2121π2tr Nr R R r r =ω 【答案】t N π2;牙盘的齿轮数m 、飞轮的齿轮数n 、自行车后轮的半径R (牙盘的半径r 1、飞轮的半径r 2、自行车后轮的半径R );nm R ω或2πR nt mN (2πR t r N r 21或21r r R ω) 【思维提升】在分析传动问题时,要抓住不等量和相等量的关系.同一个转轮上的角速度相同,而线速度跟该点到转轴的距离成正比.【拓展1】如图所示,O 1为皮带传动装置的主动轮的轴心,轮的半径为r 1;O 2为从动轮的轴心,轮的半径为r 2;r 3为与从动轮固定在一起的大轮的半径.已知r 2=1.5r 1,r 3=2r 1.A 、B 、C 分别是三个轮边缘上的点,那么质点A 、B 、C 的线速度之比是 3∶3∶4 ,角速度之比是 3∶2∶2 ,向心加速度之比是 9∶6∶8 ,周期之比是 2∶3∶3 .【解析】由于A 、B 轮由不打滑的皮带相连,故v A =v B又由于v =ωr ,则235.111===r r r r A B B A ωω 由于B 、C 两轮固定在一起 所以ωB =ωC由v =ωr 知4325.111===r r r r v v C B C B 所以有ωA ∶ωB ∶ωC =3∶2∶2 v A ∶v B ∶v C =3∶3∶4 由于v A =v B ,依a =rv 2得23==A B B A r r a a 由于ωB =ωC ,依a =ω2r 得43==C B C B r r a a a A ∶a B ∶a C =9∶6∶8 再由T =ωπ2知T A ∶T B ∶T C =31∶21∶21=2∶3∶3 2.离心运动问题【例2】物体做离心运动时,运动轨迹( )A.一定是直线B.一定是曲线C.可能是直线,也可能是曲线D.可能是圆【解析】一个做匀速圆周运动的物体,当它所受的向心力突然消失时,物体将沿切线方向做直线运动,当它所受向心力逐渐减小时,则提供的向心力比所需要的向心力小,物体做圆周运动的轨道半径会越来越大,物体的运动轨迹是曲线. 【答案】C【思维提升】理解离心运动的特点是解决本题的前提.【拓展2】质量为M =1 000 kg 的汽车,在半径为R =25 m 的水平圆形路面转弯,汽车所受的静摩擦力提供转弯的向心力,静摩擦力的最大值为重力的0.4倍.为了避免汽车发生离心运动酿成事故,试求汽车安全行驶的速度范围.(取g =10 m/s 2)【解析】汽车所受的静摩擦力提供向心力,为了保证汽车行驶安全,根据牛顿第二定律,依题意有kMg ≥M Rv 2,代入数据可求得v ≤10 m/s 易错门诊3.圆周运动的向心力问题【例3】如图所示,水平转盘的中心有个竖直小圆筒,质量为m 的物体A 放在转盘上,A 到竖直筒中心的距离为r .物体A 通过轻绳、无摩擦的滑轮与物体B 相连,B 与A 质量相同.物体A与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A 才能随盘转动.【错解】当A 将要沿盘向外滑时,A 所受的最大静摩擦力F m ′指向圆心,则F m ′=m 2m ωr ①由于最大静摩擦力是压力的μ倍,即 F m ′=μF N =μmg②。

高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解课件

高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解课件

解析:工件同时参与了水平向右的匀速运动和竖直方向的匀速 运动,水平和竖直方向的速度都不变,根据矢量合成的平行四 边形法则,合速度大小和方向均不变。
考点一 物体做曲线运动的条件及轨迹分析
1.曲线运动的条件:物体所受合外力(或加速度)方向与运动方 向不共线。 2.曲线运动的类型 (1)匀变速曲线运动:合力(加速度)恒定不变。 (2)变加速曲线运动:合力(加速度)变化。 3.合外力方向与轨迹的关系:物体做曲线运动的轨迹一定夹 在合外力方向与速度方向之间,速度方向与轨迹相切,合外力 方向指向轨迹的“凹”侧。
[解析] (1)小船参与了两个分运动,即船随水漂流的运动和船在 静水中的运动。因为分运动之间具有独立性和等时性,故小船
渡河的时间等于垂直于河岸方向的分运动的时间,即
t
=d= v船
200 4
s=50 s。小船沿水流方向的位移 s 水=v 水t=2×50 m=100 m,
即船将在正对岸下游 100 m 处靠岸。
小船渡河的时间为
t=v船sdin
,当 θ
θ=90°,即船头与河岸垂直时,
渡河时间最短,最短时间为 tmin=50 s。
(4)因为 v 船=3 m/s<v 水=5 m/s,所以船不
可能垂直于河岸横渡,不论航向如何,总
被水流冲向下游。如图丙所示,设船头(v 船)
与上游河岸成 θ 角,合速度 v 与下游河岸成
考点三 运动分解中的两类模型
1.小船渡河模型 渡河时 间最短
当船头方向垂直于河岸时,渡河时间最短, 最短时间 tmin=vd船
渡河位 移最短
如果 v 船>v 水,当船头方向与上游夹角 θ 满 足 v 船 cos θ=v 水时,合速度垂直于河岸,渡 河位移最短,等于河宽 d 如果 v 船<v 水,当船头方向(即 v 船方向)与合 速度方向垂直时,渡河位移最短,等于dv水

曲线运动+万有引力定律知识点总结

曲线运动+万有引力定律知识点总结

曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。

(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。

(注意:合外力为零只有两种状态:静止和匀速直线运动。

)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。

2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。

(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。

3.匀变速运动:加速度(大小和方向)不变的运动。

也可以说是:合外力不变的运动。

4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。

(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。

①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。

②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。

③当合力方向与速度方向垂直时,物体的速率不变。

(举例:匀速圆周运动)平抛运动基本规律1.速度:xyv vv gt=⎧⎨=⎩合速度:22yxvvv+=方向:oxyvgtvv==θtan2.位移212x v ty gt=⎧⎪⎨=⎪⎩合位移:22x x y=+合方向:ovgtxy21tan==α3.时间由:221gty=得gyt2=(由下落的高度y决定)4.平抛运动竖直方向做自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

5.tan 2tan θα= 速度与水平方向夹角的正切值为位移与水平方向夹角正切值的2倍。

6.平抛物体任意时刻瞬时速度方向的反向延长线与初速度方向延长线的交点到抛出点的距离都等于水平位移的一半。

高二物理期末必考知识点总结

高二物理期末必考知识点总结

高二物理期末必考知识点总结1【曲线运动万有引力】1.曲线运动(1)物体作曲线运动的条件:运动质点所受的合外力(或加速度)的方向跟它的速度方向不在同一直线(2)曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向.质点的速度方向时刻在改变,所以曲线运动一定是变速运动.(3)曲线运动的轨迹:做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总向圆心弯曲等.2.运动的合成与分解(1)合运动与分运动的关系:①等时性;②独立性;③等效性.(2)运动的合成与分解的法则:平行四边形定则.(3)分解原则:根据运动的实际效果分解,物体的实际运动为合运动.3.平抛运动(1)特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动.(2)运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动.①建立直角坐标系(一般以抛出点为坐标原点O,以初速度vo方向为x轴正方向,竖直向下为y轴正方向);②由两个分运动规律来处理。

4.圆周运动(1)描述圆周运动的物理量①线速度:描述质点做圆周运动的快慢,大小v=s/t(s是t时间内通过弧长),方向为质点在圆弧某点的线速度方向沿圆弧该点的切线方向②角速度:描述质点绕圆心转动的快慢,大小ω=φ/t(单位rad/s),φ是连接质点和圆心的半径在t时间内转过的角度.其方向在中学阶段不研究.③周期T,频率f---------做圆周运动的物体运动一周所用的时间叫做周期.做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数叫做频率.④向心力:总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小.大小〔注意〕向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力.(2)匀速圆周运动:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动.(3)变速圆周运动:速度大小方向都发生变化,不仅存在着向心加速度(改变速度的方向),而且还存在着切向加速度(方向沿着轨道的切线方向,用来改变速度的大小).一般而言,合加速度方向不指向圆心,合力不一定等于向心力.合外力在指向圆心方向的分力充当向心力,产生向心加速度;合外力在切线方向的分力产生切向加速度.5.万有引力定律(1)万有引力定律:宇宙间的一切物体都是互相吸引的.两个物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.公式:(2)应用万有引力定律分析天体的运动①基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供.即F引=F向得:应用时可根据实际情况选用适当的公式进行分析或计算.②天体质量M、密度ρ的估算:(3)三种宇宙速度①第一宇宙速度:v1=7.9km/s,它是卫星的最小发射速度,也是地球卫星的环绕速度.②第二宇宙速度(脱离速度):v2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度.③第三宇宙速度(逃逸速度):v3=16.7km/s,使物体挣脱太阳引力束缚的最小发射速度.(4)地球同步卫星所谓地球同步卫星,是相对于地面静止的,这种卫星位于赤道上方某一高度的稳定轨道上,且绕地球运动的周期等于地球的自转周期,即T=24h=86400s,离地面高度同步卫星的轨道一定在赤道平面内,并且只有一条.所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着.(5)卫星的超重和失重“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同.“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用.高二物理期末必考知识点总结21.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3I并=I1+I2+I3+电压关系U总=U1+U2+U3+U总=U1=U2=U3功率分配P总=P1+P2+P3+P总=P1+P2+P3+高二物理期末必考知识点总结3恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3I并=I1+I2+I3+电压关系U总=U1+U2+U3+U总=U1=U2=U3功率分配P总=P1+P2+P3+P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

物理必修2曲线运动和万有引力与航天检测专题复习

物理必修2曲线运动和万有引力与航天检测专题复习

高三物理一轮复习曲线运动练习1.关于曲线运动,下列说法中正确的是( )A.曲线运动一定是变速运动B.曲线运动速度的方向不断变化,但速度的大小可以不变C.曲线运动的速度方向可能不变D.曲线运动的速度大小和方向一定同时改变2.物体做曲线运动的条件为( )A.物体运动的初速度不为零B.物体所受的合外力为变力C.物体所受的合外力的方向与速度的方向不在同一条直线上D.物体所受的合外力的方向与加速度的方向不在同一条直线上3.如图所示,物体在恒力F 作用下沿曲线从A 运动到B ,这时突然使它所受力反向、大小不变,即由F 变为-F ,在此力作用下,关于物体以后的运动情况,下列说法正确的是()A.物体可能沿曲线Ba 运动B.物体可能沿直线Bb 运动C.物体可能沿曲线Bc 运动 D .物体可能沿原曲线由B 返回A4、如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A 的受力情况是( )A .绳的拉力大于A 的重力B .绳的拉力等于A 的重力C .绳的拉力小于A 的重力D .绳的拉力先大于A 的重力,后变为小于重力 5、.小船在静水中的速度已知,今小船要渡过一条河,渡河时小船船头垂直指向河岸,若船行到河中间时,水流速度突然增大,则( )A.小船渡河时间不变B.小船渡河时间增加C.小船到达对岸地点在预定点下游某处D.无法确定渡河时问及到达对岸地点如何变化6.一架飞机水平地匀速飞行.从飞机上每隔1s 释放一个铁球,先后共释放4个.若不计空气阻力,从飞机上观察4个球( )A.在空中任何时刻总是排成抛物线,它们的落地点是等间距的B.在空中任何时刻总是排成抛物线,它们的落地点是不等间距的C.在空中任何时刻总是在飞机正下方排成竖直的直线,它们的落地点是等间距的D.在空中任何时刻总是在飞机正下方排成竖直的直线,它们的落地点是不等间距的7.平抛运动是( )A.匀速率曲线运动B.匀变速曲线运动C.加速度不断变化的曲线运动D.加速度恒为重力加速度的曲线运动8.以速度v 0水平抛出一物体,当其竖直分位移与水平分位移相等时,此物体的( )A.竖直分速度等于水平分速度B.0 C.运动时间为02v g D.发生的位移为20g9.如图所示,以9.8m /s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在斜角为30°的斜面上,可知物体完成这段飞行的时间是()ABC .2D s10、如图所示倾角为θ的斜面长为L ,在顶端A 点水平抛出一石子,它刚好落在这个斜面底端B 点,则抛出石子的初速度v 0=________.(第511、如图所示,在与水平方向成θ的山坡上的A点,以初速度V0水平抛出的一个物体最后落在山坡的B点,则AB之间的距离和物体在空中飞行的时间各是多少?12.关于质点做匀速圆周运动的说法,以下正确的是( )A.因为2var=,所以向心加速度与转动半径成反比 B.因为2a rω=,所以向心加速度与转动半径成正比C.因为vrω=,所以角速度与转动半径成反比D.因为2nωπ=(n为转速),所以角速度与转速成反比13.如图所示,小物体A与水平圆盘保持相对静止,跟着圆盘一起做匀这圆周运动,则A的受力情况是( )A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.重力、支持力、向心力、摩擦力D.以上均不正确4.如图所示.在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是( )A.重力B.弹力C.静摩擦力D.滑动摩擦力15.如图所示的圆锥摆中,小球的质量m=50g,绳长为1m,小球做匀速运动的半径r=0.2m,转速n=120r/min,(1)小球的向心力加速度是多大?(2)所受向心力是多大?16.如图所示的皮带传动装置中,轮A和B同轴,A、B、C分别是三个轮边缘上的质点,且r A=r C=2r B,则三个质点的向心加速度之比a A:a B:a C等于( )A.4:2:1B.2:1:2C.1:2:4D.4:1:417.用长短不同、材料相同的同样粗细的绳子各拴着一个质量相同的小球在光滑水平面上做匀速圆周运动,如图所示,则( )A.两个小球以相同的线速度运动时,长绳易断B.两个小球以相同的角速度运动时,短绳易断C.两个小球以相同的角速度运动时,长绳易断D.以上说法都不对18.一木块放于水平转盘上,与转轴的距离为r若木块与盘面问的最大静摩擦力是木块重力的μ倍,则转盘转动的角速度最大是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线运动 天体例1.如图,已知虚线AB 是一个带电粒子在电场中的运动轨迹,实线是该电场的电场线,请标出A 、B 两点受到电场力的方向。

例 2.如图所示,在河岸上利用定滑轮拉绳使小船靠岸,拉绳的速度为v ,求当船头的绳索与水平方向夹角为θ时,船靠岸的速度是多少?例3. 一条河宽度为200m ,河水流动速度是s m v /21=,船在静水中航行的速度为s m v /42=,现使船渡河(1)如果要求船划到对岸航程最短,则船头应指向什么方向?最短航程是多少?所用时间为多长?(2)如果要求船划到对岸时间最短,则船头应指向什么方向?最短时间是多少?航程是多少?(3)如果,水速不是2m/s ,而是5m/s ,重新求上两问。

例4. 如图所示,以9.8 m/s 的水平初速度抛出的物体飞行一段时间后垂直撞在倾角为30° 的斜面上,这个物体的飞行时间为( ) A.31s B. 32s C. 3s D. 2 s例5.如图在倾角为θ的斜面顶端A 处以速度V 0水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求(1)小球从A 运动到B 处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大?例6.如右图所示,一小球由距地面高为H 处自由下落,当它下落了距离为h 时与斜面相碰,碰后小球以原来的速率水平抛出。

当h=____H 时,小球落地时的水平位移有最大值。

例7.排球场总长18 m ,网高2.25 m ,如图所示.设对方飞来一球,刚好在3 m 线正上方被我方运动员后排强攻击回.假设排球被击回的初速度方向是水平的,那么可认为排球被击回时做平抛运动.(g 取10 m/s 2)(1)若击球的高度h =2.5 m ,球被击回的水平速度与底线垂直,球既不能触网又不出底线,则球被击回的水平速度在什么范围内?(2)若运动员仍从3 m 线处起跳,起跳高度h 满足一定条件时,会出现无论球的水平初速多大都是触网或越界,试求h 满足的条件.例8.如图所示,a ,b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,B 与D 同在b 轮上,已知大圆的半径是小圆半径的两倍,求ABCD 四点的线速度之比、角速度之比、向心加速度之比:=D C B A v v v v ::: =D C B A ωωωω::: =D C B A a a a a :::例9.小球做匀速圆周运动,半径为R ,向心加速度为 a ,则下列说法错误..的是 A. 小球的角速度R a =ω B. 小球运动的周期aR T π2= C. t 时间内小球通过的路程t aR S = D. t 时间内小球转过的角度t aR =ϕ例10.如图,在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面要比右侧高一些,路面与水平面之间的夹角为θ。

设拐弯路段是半径为R 的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于A Rg v 2arcsinB Rg v 2arctanC Rg v 22arcsin 21D Rgv arc 2cot 例11.长度不同的两根细绳悬于同一点,另一端各系一个质量相同的小球,使它们在同一水平面内作圆锥摆运动,如图所示,则两个圆锥摆相同的物理量是A .周期B .线速度的大小C .向心力D .绳的拉力例12.如图所示,用同样材料做成的A 、B 、C 三个物体放在匀速转动的水平转台上随转台一起绕竖直轴转动.已知三物体质量间的关系m a =2m b =3m c ,转动半径之间的关系是r C =2r A =2r B ,那么以下说法中错误的是A .物体A 受到的摩擦力最大B .物体B 受到的摩擦力最小C .物体C 的向心加速度最大D .转台转速加快时,物体B 最先开始滑动例13.如下图所示,将完全相同的两个小球A 、B ,用长L =0.8 m 的细绳悬于以v =4 m /s 向右匀速运动的小车顶部,两球与小车前后壁接触,由于某种原因,小车突然停止运动,此时悬线的拉力之比F B ∶F A 为(g =10 m /s 2)例14.电风扇在闪光灯下运动,闪光灯每秒闪光30次,风扇的三个叶片互成1200角安装在转轴上.当风扇转动时,若观察者觉得叶片不动,则这时风扇的转速至少是转/分;若观察者觉得有了6个叶片,则这时风扇的转速至少是转/分。

例15.在图中,一粗糙水平圆盘可绕过中心轴OO/旋转,现将轻质弹簧的一端固定在圆盘中心,另一端系住一个质量为m的物块A,设弹簧劲度系数为k,弹簧原长为L。

将物块置于离圆心R处,R>L,圆盘不动,物块保持静止。

现使圆盘从静止开始转动,并使转速ω逐渐增大,物块A相对圆盘始终未滑动。

当ω增大到ω=时,物块A是否受到圆盘的静摩擦力,如果受到静摩擦力,试确定其方向。

例16. 一根1m的绳子,一端固定在O点,一端系着一个质量为100g的小球,在O点正下方90cm处有一个钉子A,把小球提起到悬线成水平状态时放手,则球经过A点的正上方的B点时绳子中的拉力为多少?又如果要令小球能顺利的通过最高点,钉子A离O点的距离d有何限制?例17.如图,质量为2m的小球用长为L的轻绳悬挂于O点,在O点的正下方L/2的A处有一颗钉子,把悬线拉到与竖直方向成某一夹角后释放,当悬线碰到钉子时A 小球的速度突然增大B 小球的角速度突然变大C 小球的向心加速度突然变大D 悬线的张力突然变大例18.如图,直杆上0102两点间距为L,细线O1A,O2A长为L,A端小球质量为m,要使两根细线均被拉直,杆应以多大的角速度ω转动?例19. 火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆。

已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比A.火卫一距火星表面较近B.火卫二的角速度较大C.火卫一的运动速度较大D.火卫二的向心加速度较大例20.已知万有引力常量为G,月球到地球中心距离为R,月球绕地球运动的周期为T,利用这三个数据,可以估算出的物理量有A 月球的质量B 地球的质量C 地球的半径D 月球绕地球运动速度的大小例21.某人造地球卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变,每次测量中卫星的运动可近似看作圆周运动。

某次测量卫星的轨道半径为r 1,后来变为r 2,r 2<r 1,以E k1、E k2表示卫星在这两个轨道上的动能,T 1、T 2表示卫星在这两个轨道上绕地运动的周期,则A .E k2<E k1,T 2<T 1B .E k2<E k1,T 2>T 1C .E k2>E k1,T 2<T 1D .E k2>E k1,T 2>T 1例22. 如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道l ,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3。

轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度小于在轨道l 上的角速度C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度例23.我们的银河系的恒星中大约四分之一是双星。

某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动。

由于文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G 。

由此可求出S 2的质量为A .2122)(4GT r r r -πB .23124GT r πC .2324GT r π D . 21224GT r r π例24.设地球的半径为R ,同步卫星的轨道半径为r ,则赤道地面上的物体和同步卫星的线速度之比_______:21=v v ,第一宇宙速度与同步卫星的线速度之比为_______':'21=v v 。

例25.已知地球半径6400km ,地球表面重力加速度g=10m/s 2,估算第一宇宙速度v=?例26.试论证为什么地球同步卫星的轨道只能在赤道平面的某一固定高度上例27.两颗靠得很近的星叫双星,绕一中心转动,已知双星的质量分别为m 1和m 2相距为L ,万有引力常数为G ,求:(1)双星转动中心位置(2)转动周期例28.在研究宇宙发展演变的理论中,有一种说法叫做“宇宙膨胀说”,认为引力常量G 在缓慢的减小,根据这种理论,试分析现在太阳系中地球的公转轨道半径、周期、速率与很久很久以前相比变化的情况。

例29.如图所示,A 是地球的同步卫星。

另一卫星 B 的圆形轨道位于赤道平面内,离地面高度为 h 。

已知地球半径为 R ,地球自转角速度为ω0,地球表面的重力加速度为 g ,O 为地球中心。

(1)求卫星B 的运行周期。

(2)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,他们再一次相距最近?例30.一水平放置的圆盘绕竖直固定轴转动,在圆盘上沿半径开有一条宽度为2mm 的均匀狭缝.将激光器与传感器上下对准,使二者间连线与转轴平行,分别置于圆盘的上下两侧,且可以同步地沿圆盘半径方向匀速移动,激光器连续向下发射激光束.在圆盘转动过程中,当狭缝经过激光器与传感器之间时,传感器接收到一个激光信号,并将其输入计算机,经处理后画出相应图线.图(a )为该装置示意图,图(b )为所接收的光信号随时间变化的图线,横坐标表示时间,纵坐标表示接收到的激光信号强度,图中31100.1-⨯=∆t s ,32108.0-⨯=∆t s .(1)利用图(b )中的数据求1s 时圆盘转动的角速度;(2)说明激光器和传感器沿半径移动的方向;(3)求图(b )中第三个激光信号的宽度3t ∆.t/s图b图a例31.如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔。

如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离。

重力加速度在原坚直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”。

为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象。

已知引力常数为G。

(1)设球形空腔体积为V,球心深度为d(远小于地球半径),PQ=x,求空腔所引起的Q点处的重力加速度反常(2)若在水平地面上半径L的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积。

相关文档
最新文档