数学北师大版九年级上册认识一元二次方程.2认识一元二次方程
北师大新版九年级数学上册教案带教学反思

北师大新版九年级数学上册教案带教学反思北师大新版九年级数学上册教案及教学反思第一章代数基础第一节:一元二次方程及其解法教学目标:一、理解一元二次方程的概念及一般形式。
二、掌握一元二次方程的求解方法(直接开平、因式分解、配方法等)。
三、培养学生的运算能力和问题解决能力。
教学过程:一、导入新课:通过复习线性方程,引导学生理解方程的重要性,并提出一元二次方程的概念。
二、新课讲解:讲解一元二次方程的概念、一般形式及解的性质。
通过实例演示各种解法。
三、课堂练习:学生独立解决一元二次方程问题,教师巡视指导。
四、布置作业:给学生布置相关习题,加强一元二次方程的解法练习。
教学反思:学生对一元二次方程概念的理解较为到位,但在应用因式分解法解决方程时存在困难,需要更多的实践训练。
在后续教学中,我将加强对因式分解法的讲解和练习。
第二节:二次函数及其性质教学目标:一、理解二次函数的定义和基本形式。
二、掌握二次函数的性质(开口方向、顶点、对称轴等)。
三、能应用二次函数的性质解决实际问题。
教学过程:一、导入新课:回顾一元二次方程,引出二次函数的概念。
二、新课讲解:讲解二次函数的定义、基本形式及性质。
展示二次函数的应用。
三、课堂互动:让学生观察不同形式的二次函数,总结其性质。
四、布置作业:让学生解决与二次函数相关的实际问题。
教学反思:学生对二次函数的基本概念理解较好,但在应用二次函数性质解决实际问题时存在困难。
在今后的教学中,我将更多地结合生活实际,帮助学生理解并应用二次函数。
第二章几何基础第一节:圆的基本性质教学目标:一、理解圆的概念和性质。
二、掌握圆的周长和面积计算。
三、能应用圆的基本性质解决实际问题。
教学过程:一、导入新课:通过生活中的圆形物体,引出圆的概念。
二、新课讲解:讲解圆的基本性质、周长和面积的计算方法。
展示圆的应用。
三、实践操作:让学生通过实际操作,加深对圆的认识和理解。
四、布置作业:让学生观察生活中的圆形物体,并尝试用所学知识解决实际问题。
2022-2023北师大版九年级数学上册教案:2.1 认识一元二次方程

第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.体会方程的模型思想.阅读教材P31~32,完成下列问题:(一)知识探究1.只含有________个未知数,并且都可以化成ax2+bx+c=0(a,b,c为常数,a________)的形式的________方程,这样的方程叫做一元二次方程.2.我们把____________(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中________,________,________分别为二次项、一次项和常数项,________,________分别称为二次项系数和一次项系数.(二)自学反馈1.下列方程中,是一元二次方程的是( )A.x-y2=1 B.x2-1=0C.1x2-1=0 D.x22-x-13=02.将方程(2x+1)x=(3x-2)x+2化简整理写成一般形式后,其中a、b、c分别是( ) A.2-3,1, 2 B.2-3,1,- 2C.3-2,-3, 2D.3-2,1, 2活动1 小组讨论例1判断下列方程是否为一元二次方程:(1)1-x2=0;(2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0;(5)(x+3)2=(x-3)2; (6)9x2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.判断一个方程是不是一元二次方程,首先需要将方程化简,使方程的右边为0,然后观察其是否具备以下三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.例2将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:方程(8-2x)(5-2x)=18化成一元二次方程的一般形式是2x2-13x+11=0,其中的二次项系数、一次项系数及常数项分别是2,-13,11.(1)将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx,则b=0;若没有出现常数项,则c=0.活动2 跟踪训练1.下列方程哪些是一元二次方程?(1)7x 2-6x =0;(2)2x 2-5xy +6y =0; (3)2x 2-13x -1=0;(4)y22=0;(5)x 2+2x -3=1+x 2.2.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x 2-1=4x; (2)4x 2=81;(3)4x(x +2)=25; (4)(3x -2)(x +1)=8x -3.3.已知方程(a -4)x 2-(2a -1)x -a -1=0. (1)a 取何值时,方程为一元二次方程? (2)a 取何值时,方程为一元一次方程?4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x. 活动3 课堂小结1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式是ax 2+bx +c =0(a ≠0),特别强调a ≠0.【预习导学】 (一)知识探究1.一 ≠0 整式 2.ax 2+bx +c =0 ax 2bx c a b (二)自学反馈 1.D 2.C 【合作探究】 活动2 跟踪训练1.(1)、(4)是一元二次方程.2.(1)5x 2-4x -1=0,二次项系数、一次项系数及常数项分别是5,-4,-1.(2)4x 2-81=0,二次项系数、一次项系数及常数项分别是4,0,-81.(3)4x 2+8x -25=0,二次项系数、一次项系数及常数项分别是4,8,-25.(4)3x 2-7x +1=0,二次项系数、一次项系数及常数项分别是3,-7,1.3.(1)当a -4≠0即a ≠4时,方程为一元二次方程.(2)a -4=0,且2a -1≠0时,原方程为一元一次方程.即a =4时,原方程为一元一次方程.4.(1)根据题意,得4x 2=25,将其化成一元二次方程的一般形式是4x 2-25=0.(2)根据题意,得x(x -2)=100,将其化成一元二次方程的一般形式是x 2-2x -100=0.(3)根据题意,得x =(1-x)2,将其化成一元二次方程的一般形式是x 2-3x +1=0.第2课时 一元二次方程的解1.经历估计一元二次方程解的过程,增进对方程解的认识.2.能根据实际问题建立一元二次方程的数学模型.(难点)阅读教材P33~34,完成下列问题:(一)知识探究1.能使一元二次方程左、右两边都________的未知数的值,叫做一元二次方程的解.2.估计一元二次方程的解,应先确定方程解的大致范围,然后在这一范围内有规律地取一些未知数的值,如果把一个值代入方程使得左边的计算结果________右边的计算结果,把另一个值代入方程使得左边的计算结果________右边的计算结果,那么方程的解就在这两个值________.(二)自学反馈幼儿园某教室矩形地面的长为8 m,宽为5 m,现准备在地面正中间铺设一块面积为18 m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?活动1 小组讨论例如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?(1)如果设梯子底端滑动x m,那么你能列出怎样的方程?解:根据题意,得72+(x+6)2=102,即x2+12x-15=0.(2)x 0 0.5 1 1.5 2 …x2+12x-15 -15 -8.75 -2 5.25 13 …(3)x … 1.1 1.2 1.3 1.4 …x2+12x-15 …-0.59 0.84 2.29 3.76 …活动2 跟踪训练1.根据下列表格的对应值可知,方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解x的范围是( )x 3.23 3.24 3.25 3.26ax2+bx+c -0.06 -0.02 0.03 0.09A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.262.根据关于x的一元二次方程x2+px+q=0,可列表如下:x 0 0.5 1 1.1 1.2 1.3x2+px+q -15 -8.75 -2 -0.59 0.84 2.29则方程x2+px+q=0的正数解满足( )A.解的整数部分是0,十分位是5B.解的整数部分是0,十分位是8C.解的整数部分是1,十分位是1D.解的整数部分是1,十分位是23.为估算方程x2-2x-8=0的解,填写下表,由此可判断方程x2-2x-8=0的解为________.x -2 -1 0 1 2 3 4x2-2x-8 0 -5 -8 -9 -8 -5 04.某大学为改善校园环境,计划在一块长80 m,宽60 m的长方形场地建一个长方形网球场,网球场占地面积为3 500 m2.四周为宽度相等的人行走道,如图所示,若设人行走道宽为x m.(1)你能列出相应的方程吗?(2)x可能小于0吗?说说你的理由.(3)x可能大于40吗?可能大于30吗?说说你的理由.(4)你知道人行走道的宽是多少吗?说说你的求解过程.活动3 课堂小结1.一元二次方程的解(根)的概念.2.用估算方法求一元二次方程的近似解的步骤:(1)先确定大致范围;(2)再取值计算,逐步逼近.【预习导学】(一)知识探究1.相等 2.小于大于之间(二)自学反馈x 0 0.5 1 1.5 2 2.5(8-2x)(5-2x) 40 28 18 10 4 0故可知所求的宽为1 m.【合作探究】活动2跟踪训练1.C 2.C 3.-2和44.(1)(80-2x)(60-2x)=3 500,即x2-70x+325=0.(2)x的值不可能小于0,因为人行走道的宽度不可能为负数.(3)x的值不可能大于40,也不可能大于30,因为当x>30时,网球场的宽60-2x<0,这是不符合实际的,当然x更不可能大于40.(4)人行走道的宽为5 m,求解过程如下:x 2 3 4 5 6 7 …x2-70x+325 189 124 61 0 -59 -116 …显然,当x=5时,x-70x+325=0,∴人行走道的宽为5 m.。
最新北师大版九年级数学上册教案(完美版)第二章1.认识一元二次方程第2课时 一元二次方程的根及近似解

第2课时一元二次方程的根及近似解【知识与技能】会进行简单的一元二次方程的试解.【过程与方法】根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.【情感态度】理解方程的解的概念,培养有条理的思考与表达的能力.【教学重点】判定一个数是否是方程的根.【教学难点】会在简单的实际问题中估算方程的解,理解方程解的实际意义.一、情境导入,初步认识学生活动:请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?设梯子底端距墙为xm,那么,根据题意,可得方程为x2+82=102.整理,得x2-36=0.列表:问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为xm,则长为(x+2)m.根据题意,得x(x+2)=120.整理,得x2+2x-120=0.列表:【教学说明】通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围.二、思考探究,获取新知提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?(1)问题1中x=6是x2-36=0的解;问题2中,x=10是x2+2x-120=0老师点评:的解.(2)如果抛开实际问题,问题1中还有x=-6的解;问题2中还有x=-12的解.为了与以前所学的一元一次方程等只有一个解的情况区别,我们也称一元二次方程的解叫做一元二次方程的根.回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也不满足题意.【教学说明】由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.三、运用新知,深化理解1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把它代入等式,看它是否能使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.2.若x=1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,求代数式2014(a+b+c)的值.分析:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这一点同学们要深刻理解.3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0(2)3x2-6=0(3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义来求解.4.x(x-1)=2的两根为(D)A.x1=0,x2=1B.x1=0,x2=-1C.x1=1,x2=2D.x1=-1,x2=25.方程ax(x-b)+(b-x)=0的根是(B)A.x1=b,x2=aB.x1=b,x2=1/aC.x1=a,x2=1/aD.x1=a2,x2=b26.如果x2-81=0,那么x2-81=0的两个根分别是x1= 9 ,x2= -9 .7.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.解:由已知,得a+b=-3,原式=(a+b)2=(-3)2=98.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.解:由题意可知:a+c=b,a-b+c=0,把x=-1代入原方程,得ax2+bx+c=a×(-1)2+b×(-1)+c=a-b+c=0∴-1必是该方程的一个根.9.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在(21xx-)2-2×21xx-+1=0,令21xx-=y,则有y2-2y+1=0,根据上述变形数学思想(换元法)解决小明给出的问题:求(x2-1)2+(x2-1)=0的根.解:设y=x2-1,则y2+y=0,y1=0,y2=-1,当x2-1=0时,x1=1,x2=-1;当x2-1=-1时,x3=x4=0.∴x1=1,x2=-1,x3=x4=0是原方程的根.【教学说明】让学生先独立完成,而后将不会的问题同各小组交流讨论得出结果.四、师生互动,课堂小结本节课应掌握:1.一元二次方程根的概念;2.一个数是否是一元二次方程的根的判断方法;3.求一元二次方程的根的方法.1.布置作业:教材“习题2.2”第1、2题.2.完成练习册中相应练习.本节课通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围,从而会进行简单的一元二次方程的解的计算.。
北师大版九年级数学上册.1认识一元二次方程课件

第二章一元二次方程
情境导入--1
1、教室地面的长为8m,宽为5m,现准备在地面的正中间铺设一块面积为18m²的地毯,四周未铺地毯的条形区域的宽度都相同。求这个宽度。
如果设所求的宽度为xm,那么你能列出怎样的方程?
将地面四周未铺地毯的条形区域的四个矩形面积相加后,再减去重复的四个小正方形的面积,即可得四周条形区域的面积,从而列出方程:
2×5x+2×8x-4x2=5×8-18
方法1
(2)将地毯四周的一些条形适当平移,可列出方程:
(5-2x)(8-2x)=18,
2×5x+2x(8-2x)=5×8-18
2×8x+2x(5-2x)=5×8-18
方法2
视察下面等式:102 + 112 + 122 = 132 + 142 你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?
当堂检测
1、根据题意列出一元二次方程:已知直角三角形的三边长为连续的整数,求它的三边长。并写出所列方程的二次项,二次项系数,一次项和常数项。
当堂检测
2、把方程(3x+2)2=4(x-3)2一元二次方程的一般情势,并写出它的二次项系数,一次项和常数项。
当堂检测
3、把下列方程化成一元二次方程的一般情势,并写出它的二次项系数,一次项系数和常数项。
x2 +12x -15=0
只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数, a≠0)的情势,这样的方程叫做一元二次方程.
一元二次方程的概念
ax2+bx +c = 0(a , b , c为常数, a≠0)
认识一元二次方程 北师大版九年级数学上册

课堂练习
1. 下表是某同学求代数式x²-x的值的情况,根据表格可知方 程x²-x=2的解是( D )
x x2-x
-2 -1 0 1 2 3 …
6
2 0026…
A. x=-1 C. x=2
B. x=0 D. x1=-1,x2=2
课堂练习
2. 根据表格,选取一元二次方程ax²+bx+c=0(a≠0)的一 个近似解取值范围( C )
解:设所求的宽度为 x m,根据 题意可列方程:
(8 - 2x) (5 - 2x) =18
新知讲解
x 满足方程(8-2x)(5-2x)=18.
(1)x 可能小于 0 吗?可能大于 4 吗?可能大于 2.5 吗?说说 你的理由.
x 不可能小于 0,因为当x<0时,不符合题意; 不可能大于4,因为当x>4时,8-2x<0,不符合题意; 不可能大于2.5,因为当x>2.5时,5-2x<0不符合题意.
2.1 认识一元二次方程
新知导入
1. 什么是一元二次方程? 只含有一个未知数 x 的整式方程 1 ,并且都可以化成ax²+bx +c =0(a,b,c 为常数,a ≠ 0)的形式,这样的方程叫做一元二次方程.
2. 把一元二次方程3x²+2x=5化成一元二次方程的一般形式, 并说出它的二次项、一次项系数和常数项.
1 < x<1.5
x²+12x -15=0
新知讲解
你还能进一步
缩小范围吗? (3)你能猜出滑动距离 x(m)的大致范围吗?
x
x²+12x-15=0
1.1 -0.59
1.2 0.84
1.3 2.29
1.4 3.75
北师大版九年级上册第二章知识点

九年级第二章一元二次方程一、认识一元二次方程知识点1 :一元二次方程的意义1.一元二次方程:只含有一个未知数x的整式方程,并且都可以化成ax²+bx+c=0(a、b、c为常数,a不等于0)的形式,这样的方程叫一元一次方程。
2.一元二次方程必须同时满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2。
知识点2 :一元二次方程的一般形式1.一元二次方程的一般形式:ax²+bx+c=0(a、b、c为常数,a不等于0)其中,ax²、bx、c分别称为二次项,一次项,常数项,a、b分别乘为二次项系数,一次项系数。
2.一元二次方程的特殊形式:特殊形式二次项系数一次项系数常数项ax²+bx=0(a≠0,b≠0)a b0ax²+c=0(a≠0,b≠0)a0c ax²=o(a≠0)a003 确定一元二次方程各项系数的一般步骤:原方程化简成一般形式ax²+bx+c=0确定a、b、c(勿漏符号)知识点3:根据实际问题列一元二次方程从实际问题中抽象出一元二次方程的一般步骤:(1)审清题意,设出合适的未知数;(2) 找出已知量与未知量之间的等量关系; (3) 列出一元二次方程,并化为一般形式。
知识点4:一元二次方程的解1 一元二次方程的解:使一元二次方程左右两边的值相等的未知数的值,叫做一元二次方程的解。
2 判断一元二次方程的解得办法知识点5:用估算法求一元二次方程的近似解1 当x 取某一个值时,代数式ax ²+bx +c (a 、b 、c 为常数,a ≠0)的值无限接近于0,此时即可近似地将x 看成该方程的解。
2 用估算法求二元一次方程的近似解的步骤:(1) 先列表,再列出几组x 的值,并分别计算ax ²+bx +c=0(a 、b 、c 为常数,a 不等于0)中ax ²+bx +c=0的值;(2) 在列表中找出可能使ax ²+bx +c 的值等于0的未知数的取值范围;(3) 在(2)中确定的取值范围内进一步列表,计算,估计取值范围,直到近似解符合题中的经确定的要求为止。
北师大版初中九年级上册数学课件 《认识一元二次方程》一元二次方程PPT课件

(2) x表示长方形的实际宽,不可能小于0
(3)不可能,因为长与宽的和是15, x可能大于15.
(1)根据题意列方程。 (2)x可能小于0吗?说出理由. (3)x可能大于15吗?说出理由. (4)能否想一个办法求得长方形的长x?
x
15-x
x
1
2
3
4
5
6
7
x2 -15x+54
40
28
18
10
4
0
解:如果设花边的宽为 x m ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:
(8-2x)
(5-2x)
(8-2x)(5 -2x) = 18.
整理, 得
8m
10m
解:设梯子底端滑动x米,则由题意可得方程:
问题2 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
当a=2,b≠0时是一元一次方程;
3、 关于x的方程ax2 -2bx+a=2x2 , 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
变式练习(1): (k+3)x|k|-1 -5x+6=0 是关于x的一元二次方程, 则k= .
变式练习(2):关于x的一元二次方程(m-1)x2 +5x+m2-1=0 的常数项是0, 则m= .
一元二次方程
没有未知数,不是方程
不是等式,不是方程
一元一次方程
二元一次方程
不是等式,不是方程
(1)2+3=5 (2)3x+2 (3)5x+3=18 (4)x-2y=5
一元一次方程、二元一次方程、分式方程
分式方程
2.1认识一元二次方程 说课稿-北师大版九年级数学上册

2.1 认识一元二次方程说课稿-北师大版九年级数学上册一、教材分析本节课是北师大版九年级数学上册的第二单元第一节课,主要内容是认识一元二次方程。
通过本节课的学习,旨在让学生了解一元二次方程的特点和解法,培养学生的逻辑思维和分析问题的能力。
二、教学目标1.知识目标:–了解一元二次方程的定义和基本特点;–掌握一元二次方程的一般形式和标准形式;–掌握一元二次方程的解的概念和求解方法。
2.能力目标:–能够分析和解决与一元二次方程相关的问题;–能够运用一元二次方程解决实际问题。
3.情感目标:–培养学生的逻辑思维和分析问题的能力;–培养学生的数学兴趣和学习兴趣。
三、教学重难点1.教学重点:–了解一元二次方程的定义和基本特点;–掌握一元二次方程的一般形式和标准形式;–掌握一元二次方程的解的概念和求解方法。
2.教学难点:–进一步理解一元二次方程的解的概念和求解方法;–能够运用一元二次方程解决实际问题。
四、教学过程1. 导入(5分钟)首先,教师可通过提问和引入实际问题的方式,引起学生对一元二次方程的兴趣和注意。
如:你还记得在何种情况下会遇到一元二次方程吗?在实际生活中,我们能用到一元二次方程解决哪些问题呢?2. 新知引入(10分钟)教师可通过讲解一元二次方程的定义和基本特点,帮助学生了解一元二次方程的概念。
然后,引入一元二次方程的一般形式和标准形式,并对其进行详细解释。
同时,通过数学公式和实例演示,让学生掌握一元二次方程的基本形式和特点。
3. 学习活动(25分钟)学生通过小组合作的方式,完成教科书上的练习题,加深对一元二次方程的理解和掌握。
同时,教师在课堂上进行指导和解答,引导学生思考和讨论。
4. 拓展应用(10分钟)教师设计拓展应用题,让学生运用所学知识解决实际问题。
通过讨论和答题的方式,检验学生掌握情况,培养学生的应用能力。
5. 归纳总结(5分钟)教师对本节课的内容进行归纳总结,强调一元二次方程的定义、特点以及解的概念和求解方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y2 +12 y -15 =0.
a2 - 8a - 20=0. m2 - 12m =0 它们有什么共同特点?
1、只含有一个未知数; 2、未知数的最高次数是2. 2 (化成 ax 的形式) bx c 0 a、b、c为常数,a≠0 3、都是整式方程;
大显身手 1、下列方程哪些是关于x的一元二次方程?
5
18m2 8
x
如图,一个长为10m
的梯子斜靠在墙上, 梯子的顶端距地面的 垂直距离为8m.如果 梯子的顶端下滑1m, 那么梯子的底端滑动 多少米?
ym
(6+y)2+72=102
探究3
你能找到五个连续整数, 使前三个数的平方和等于后两个 数的平方和吗?
a2+(a+1)2+(a+2)2=(a+3)2+(a+4)2
作 业:习题2.1 作业:
必做题:知识技能 第 1题
问题解决
第 3题
思考题:如何解一元二次方程?
(1) x 5 x 12
2
8 ( 2) 2 2 x 7 x
a
(3) x xy y 0
2 2 2
y 2 2 ( 4) 0 (5) x x 3 1 x 2 2 (6) 2 x x 0
(1) (4)(6) 是,(2)(3)(5)不是。
内涵与外延
1.关于x的方程(k-3)x2 + 3x-1=0,当 k______ 时,是一元二次方程. ≠3
北师大版九年级(上)
2.1 认识一元二次方程(1)
故市二中 杨春萍
学习目标
1.理解掌握一元二次方程的定义及相关概念。
2.会判断一个方程是否为一元二次方程。
探究一
探究1
(8-2x)(5-2x)=18
幼儿园活动教室矩形地面的长为8米,宽为5 米,现准备在地面的正中间铺设一块面积为18m2 的地毯,四周未铺地毯的条形区域的宽度都相同。 你能求出这个宽度吗?
(m-2)2+(m-1)2+m2=(m+1)2+(m+2)2
将所得各式化简为ax2+bx+c=0的形式:
(8-2x)(5-2x)=18 (6+y)2+72=102 a2+(a+1)2+(a+2)2=(a+3)2+(a+4)2 (m-2)2+(m-1)2+m2=(m+1)2+(m+2)2
2x2 - 13x + 11 = 0 .
2.关于x的方程(k2-1)x2 + 2 (k-1) x + ≠±1 时,是一元二次方 2k + 2=0,当k———— 程.当k——— =-1时,是一元一次方程.
(x-4)2+(x-2)2=x2
2.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去, 横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着 门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去 了.你知道竹竿有多长吗?请根据这一问题列出方程.
A
X
2尺
F
D
x
X-4
X-2 4尺
X2-12x+20=0
B
C
E
小结
1、一元二次方程的定义:
2、一元二次方程的相关概念: (1)一元二次方程的一般式:
(2)一元二次方程的组成: 3、方程思想
目标检测
1.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米。 若设它的一条边长为x米,则根据题意可列关于x的方程为 ( ) B A.x(5+x)=6 B.x(5-x)=6 C.x(10-x)=6 D.x(10-2x)=6 2.把一元二次方程(1+x)(1-x)=2x化为二次项系数大于0的一般形式 是__________. 3.若关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项为0,则 m=_______.