山东省2016年高三数学寒假作业1含答案

合集下载

山东省2016年高三数学寒假作业9 含答案

山东省2016年高三数学寒假作业9 含答案

【KS5U 】新课标2016年高三数学寒假作业9一、选择题.1。

“a=﹣l ”是“直线(a ﹣1)x ﹣y ﹣l=0与直线2x ﹣ay+l=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2。

若向量m= (-1,4)与n=(2,t)的夹角为钝角,则函数f(t)=t 2—2t+1的值域是 ( )A .()1,8181,4⎛⎫+∞ ⎪⎝⎭B .1,4⎛⎫+∞ ⎪⎝⎭C. [0,81) (81,+∞)D. [0,+∞)3.已知{}n b 是正项等比数列,且2122log log b b ++…22015log 2015b +=,则32013b b •的值是A 、2B 、4C 、6D 、84.若12cos 13x =,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-5125。

已知,则=( )A .2B .4C .D .8 6.已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .7 7.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为( )A.4B.8C.12D.248.如图,若执行该程序,输出结果为48,则输入k值为()A.4 B.5 C.6 D.79。

过双曲线﹣=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若|FE|=|EP|,则双曲线离心率为( )A.B.C.D.10.已知双曲线(a>0,b>0)的一条渐近线方程是x﹣y=0,它的一个焦点在抛物线y2=﹣4x的准线上,则双曲线的方程为()A.4x2﹣12y2=1 B.4x2﹣y2=1 C.12x2﹣4y2=1 D.x2﹣4y2=1二.填空题.11。

已知等差数列{a n}中,a2=2,a4=8,若a bn=3n﹣1,则b2015= .12.已知θ∈(0,π),且sin(θ﹣)=,则tan2θ=.13.若向量,满足||=||=|+|=1,则•的值为.14.设变量x,y满足约束条件,则z=x﹣3y的最小值.三、解答题。

2016年高考理科数学山东卷(含答案解析)

2016年高考理科数学山东卷(含答案解析)

数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么P (A+B )=P (A )+P (B );如果事件,A B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足其中i 为虚数单位,则z =( )A. 12i +B. 12i -C. 12i -+D. 12i --2. 设集合{}{}22,,10xA y y xB x x ==∈=-<R ,则AB =( )A. 1,1-()B. 0,1()C. 1,-+∞()D. 0,+∞()3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[,30],样本数据分组为17.5[,20),20,2[ 2.5),22.5[,25),25,2[7.5),27.5[,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A. 56B. 60C. 120D. 1404. 若变量x ,y 满足+2,2-39,0,x y x y x ⎧⎪⎨⎪⎩≤≤≥则22+x y 的最大值是( )A. 4B. 9C. 10D. 125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.12+33π B.12+33π C.12+36π D. 216π+6. 已知直线a ,b 分别在两个不同的平面αβ,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期是( )A.2πB. πC. 32πD. 2π8. 已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13,若n ⊥(t m+n ),则实数t 的值为( )A. 4B. 4-C.94 D. 94-9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f = ( )A. 2-B. 1-C. 0D. 210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )A. y=sin xB. y=ln xC. x y=eD. 3y=x232i,z z +=--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分. 11. 执行如图所示的程序框图,若输入的a b ,的值分别为0和9,则输出的i 的值为 .12. 若251)ax x+(的展开式中5x 的系数是80-,则实数a =________.13. 已知双曲线2222y 100E a b a bx =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.14. 在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为_______. 15. 已知函数2|| ()24 x x m x mx m x m f x ⎧⎨-+⎩=,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)在ABC △中,角,,A B C 的对边分别为a,b,c ,已知2(tanA+tanB)=tanA tanB+cosB cosA. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.17. (本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC ;(Ⅱ)已知1232EF =FB =AC =,AB =BC ,求二面角F -BC -A 的余弦值.18. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+. (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .19. (本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(Ⅰ)“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和X 的分布列和数学期望EX .20. (本小题满分13分)已知221()(ln ),R x f x a x x a x -=-+∈. (Ⅰ)讨论()f x 的单调性; (Ⅱ)当1a =时,证明3()()2f x f x '>+对于任意的[]1,2x ∈成立.21. (本小题满分14分)平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率是32,抛物线2:2E x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .(ⅰ)求证:点M 在定直线上;(ⅱ)直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析(0,A B=+∞【提示】求解指数函数的值域化简案.【考点】并集及其运算【答案】D【答案】B【解析】()n tm n⊥+,()0n tm n∴+=,2||||cos,||0t m n m n n∴<>+=,4||3||m n=,1,3m n<>=,231||||||043t n n n∴+=,104t∴+=,4t∴=-.【提示】若(π)n t n⊥+,则(π)0n t n+=,进而可得实数t的值.【考点】平面向量数量积的运算【答案】D12x>时,1122f x f x⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,11x-≤≤【解析】输入的数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)22232b c a =,即为a.2b24,x mx m x m-+>⎩x m >时,程()f x b =m ∴的取值范围是【提示】作出函数(Ⅱ)2a b +=22)b a b =+0b >,∴由余弦定理231cos 122c ab -≥sin tan cos A A A =cos cos A B +G 、H 为GQ EF ∴∥又EF BO ∥GQ BO ∴∥且∴平面GQH GH ⊂面GQH GH ∴∥平面(Ⅱ)AB BC =数学试卷 第13页(共18页)数学试卷 第14页(共18页)数学试卷 第15页(共18页),又OO '⊥面OA 为x 轴,建立空间直角坐标系,则(23,0,0)C -,(0,23,0)B 3,0),(23,3,FC =---(23,23,0)CB =,由题意可知面的法向量为(0,0,3)OO '=,设000(,,)n x y z FCB 的法向量,则00n FC n CB ⎧=⎪⎨=⎪⎩,即0=⎪⎩,取01x =,则1,2,n ⎛=-- ⎝7cos ,7||||OO n OO n OO n ''∴<>==-'二面角--F BC A 的平面角是锐角,二面角--F BC A 的余弦值为77n n a b =+1n n a b -∴=1n n a a -∴-11a b =+1112b =+14b ∴=,4n b ∴=+(Ⅱ)1)2nn C ,126[2232(1)2]n n T n ∴=++++…①,2316[22322(1)2]n n n n ++++++…②,②可得:231112222(1)2]2(12)6(1)212)232n n n n n n n n n ++++++++-+--+-=-…,232n n +.【提示】(Ⅰ)求出数列{}n a 的通项公式,再求数列(Ⅱ)求出数列{}n c 的通项,利用错位相减法求数列【考点】数列的求和,数列递推式【答案】(Ⅰ)“星队”至少猜对22112233232211443433C ⎛⎫⎛⎫⎛⎫⎛⎫⎛-+-+ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝队”两轮得分之和为X 可能为22321143144⎫⎛⎫--=⎪ ⎪⎭⎝⎭,22332322101111443433144⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯--+--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦323232323232323225111111114343434343434343144⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+--+--+--= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3232114343144⎛⎫⎛⎫--=⎪ ⎪⎝⎭⎝⎭223322236011443334144⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦222363144⎛⎫= ⎪⎝⎭,的分布列如下图所示: 12346572 25144x 1)2x数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)1a =32ln x x =-()F x f =0001122y FG x x =⎛⎫+= ⎪⎝⎭30000000022004441111424148x y x x x y PM x y x x +-⎛⎫-=+= ⎪++⎝⎭220220)(41)(21)x x x ++,令12x +22221(122)(1)(21)2122t t t t t t t t t -⎫++-⎪+-+-⎭===0001212FG x x y ⎛⎫+ ⎪⎝⎭=00414x y x x -+,整理可得t 的二次方程,进而得到最大值及此时【考点】椭圆的简单性质。

2016年高考理科数学山东卷(含详细答案)

2016年高考理科数学山东卷(含详细答案)

数学试卷 第1页(共36页)数学试卷 第2页(共36页)数学试卷 第3页(共36页)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么P (A+B )=P (A )+P (B );如果事件,A B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足其中i 为虚数单位,则z =( )A. 12i +B. 12i -C. 12i -+D. 12i --2. 设集合{}{}22,,10xA y y xB x x ==∈=-<R ,则AB =( )A. 1,1-()B. 0,1()C. 1,-+∞()D. 0,+∞()3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[,30],样本数据分组为17.5[,20),20,2[ 2.5),22.5[,25),25,2[7.5),27.5[,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A. 56B. 60C. 120D. 1404. 若变量x ,y 满足+2,2-39,0,x y x y x ⎧⎪⎨⎪⎩≤≤≥则22+x y 的最大值是( )A. 4B. 9C. 10D. 125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.12+33πB.13C.13D. 1+6. 已知直线a ,b 分别在两个不同的平面αβ,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.函数()cos sin )f x x x x x =+-的最小正周期是( )A.2πB. πC. 32πD. 2π8. 已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13,若n ⊥(t m+n ),则实数t 的值为( )A. 4B. 4-C.94D. 94-9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f =( )A. 2-B. 1-C. 0D. 210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )A. y=sin xB. y=ln xC. x y=eD. 3y=x232i,z z +=--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共36页)数学试卷 第5页(共36页)数学试卷 第6页(共36页)第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分. 11. 执行如图所示的程序框图,若输入的a b ,的值分别为0和9,则输出的i 的值为 .12.若25ax (的展开式中5x 的系数是80-,则实数a =________. 13. 已知双曲线2222y 100E a b a b x =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.14. 在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为_______.15. 已知函数2|| ()24 x x m x mx m x m f x ⎧⎨-+⎩=,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)在ABC △中,角,,A B C 的对边分别为a,b,c ,已知2(tanA+tanB)=tanA tanB+cosB cosA. (Ⅰ)证明:2a b c +=;(Ⅱ)求cos C 的最小值.17. (本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC ;(Ⅱ)已知12EF =FB=AC =BC ,求二面角F -BC -A 的余弦值.18. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .19. (本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(Ⅰ)“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和X 的分布列和数学期望EX .20. (本小题满分13分)已知221()(ln ),R x f x a x x a x -=-+∈. (Ⅰ)讨论()f x 的单调性; (Ⅱ)当1a =时,证明3()()2f x f x '>+对于任意的[]1,2x ∈成立.21. (本小题满分14分)平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率是,抛物线2:2E x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .(ⅰ)求证:点M 在定直线上;(ⅱ)直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析A B=+∞(0,,再由并集运算得出答案.3 / 12数学试卷 第10页(共36页) 数学试卷 第11页(共36页)数学试卷 第12页(共36页)【答案】B【解析】()n tm n ⊥+,()0n tm n ∴+=,2||||cos ,||0m n m n n ∴<>+=,4||3||m n =,1cos ,m n <>=,21||||||03n n n +=,104t∴+=,4t ∴=.【提示】若(π)n t n ⊥+,则(π)0n t n +=,进而可得实数【考点】平面向量数量积的运算【解析】输入的5 / 12数学试卷 第16页(共36页) 数学试卷 第17页(共36页)数学试卷 第18页(共36页)22232b c a =,即为2b 可得2320e e --=,解得2e =.2x m >时,7 / 12(Ⅱ)2a b +=22)b a b =+231122c ab -≥G 、H 为GQ EF ∴∥又EF BO ∥数学试卷 第22页(共36页) 数学试卷 第23页(共36页)数学试卷 第24页(共36页)GH ⊂面GH ∴∥平面(Ⅱ)AB BC =AC ⊥,又OO '⊥面为原点,OA 为x 轴,,(2FC =-,(23,2CB =法向量为(0,0,3)OO '=,设(,,)n x y z 为面FCB 00n FC n CB ⎧=⎪⎨=⎪⎩,即,则1,2,n ⎛⎫=-- ⎪, 7,7||||OO n OO n OO n ''<>==-'二面角--F BC A 的平面角是锐角,779 / 12n n a b =+1n n a b -∴=1n n a a -∴-11a b =+1112b =+14b ∴=,4n b ∴=+1)2n , 126[2232(1)2]n n ++++…①,2316[22322(1)2]n n n n ++++++…②,②可得:11121)2]1)2)232n n n n n ++++=-,232n n +.【提示】(Ⅰ)求出数列{c 22112233232211443433C ⎛⎫⎛⎫⎛⎫⎛⎫⎛-+-+ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝数学试卷 第28页(共36页) 数学试卷 第29页(共36页)数学试卷 第30页(共36页)22213⎛⎫-= ⎪⎝⎭332322101111443433144⎤⎛⎫⎛⎫⎛⎫⎛⎫--+--=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦323232323232323225111111114343434343434343144⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+--+--+--=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 323212114343144⎛⎫⎛⎫⨯--=⎪ ⎪⎝⎭⎝⎭, 223322236011443334144⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦222363144⎛⎫=⎪⎝⎭, 的分布列如下图所示:1)2xa=,令(Ⅱ)1=-,)lnx x11 / 12数学试卷 第34页(共36页) 数学试卷 第35页(共36页)数学试卷 第36页(共36页)0001122y FG x x =⎛⎫+= ⎪⎝⎭30000000022004441111424148x y x x x y x y x x +-⎛⎫-=+= ⎪++⎝⎭,则20122(1)(4(2x S S x +=+(1)t ≥,则121(122)(1)(22t t S t -⎛⎫++- ⎪+⎝⎭0001212FG x x y ⎛⎫+ ⎪⎝⎭=,00414x y PM x x -+二次方程,进而得到最大值及此时的坐标.。

山东省2016年高三数学寒假作业1 含答案

山东省2016年高三数学寒假作业1 含答案

【KS5U】新课标2016年高三数学寒假作业1一、选择题.1。

设集合{}{}{}A B C x x b a a A b B====-∈∈,则C中元素的个数是1,2,3,4,5,|,,()A. 3 B。

4 C。

5 D。

62。

下列命题正确的是( )A.“x<1”是“x2﹣3x+2>0”的必要不充分条件B.对于命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R均有x2+x ﹣1≥0C.若p∧q为假命题,则p,q均为假命题D.命题“若x2﹣3x+2=0,则x=2"的否命题为“若x2﹣3x+2=0,则x≠2”3.化简的结果为( )A.5 B.C.﹣D.﹣54.已知函数y=ax2+bx﹣1在(﹣∞,0]是单调函数,则y=2ax+b的图象不可能是()A.B.C.D.5。

下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是()A.y=2|x|B.y=x3C.y=﹣x2+1 D.y=cosx6.若函数在上单调递增,则实数a的取值范围( )A.(0,1] B.(0,1) C.[1,+∞)D.(0,+∞)7.已知点B(1,0),P是函数y=e x图象上不同于A(0,1)的一点.有如下结论:①存在点P使得△ABP是等腰三角形;②存在点P使得△ABP是锐角三角形;③存在点P使得△ABP是直角三角形.其中,正确的结论的个数为()A.0 B.1 C.2 D.38.设f(x)=|lgx|,若函数g(x)=f(x)﹣ax在区间(0,4)上有三个零点,则实数a的取值范围是( )A.B.C.D.9.已知某个几何体的三视图如下,根据图中标出的尺寸,那么可得这个几何体最长的棱长是()A.2 B.C.2D.210。

设等差数列{a n}的前n项和为S n,若a1=﹣11,a4+a6=﹣6,则当S n取最小值时,n等于( )A.6 B.7 C.8 D.9二.填空题。

11.命题“若a、b都是偶数,则a+b是偶数"的逆命题是.12.△ABC 的内角A,B,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列,若,则a +c的值为.13。

山东春季高考数学真题 含答案

山东春季高考数学真题 含答案

山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合A ={}1,3,B ={}2,3,则A B U 等于( )A. ∅B. {}1,2,3C. {}1,2D. {}3【答案】B 【解析】因为A ={}1,3,B ={}2,3,所以A B U {}1,2,3=. 2.已知集合A ,B ,则“A B ⊆”是“A B =”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】A B A B=⇒⊆Q,又A B A B A B⊆⇒=或Ø,∴“A B⊆”是“A B=”的必要不充分条件.3.不等式23x+>的解集是()A. ()(),51,-∞-+∞U B. ()5,1-C. ()(),15,-∞-+∞U D.()1,5-【答案】A【解析】23123235x xxx x+>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为()(),51,-∞-+∞U.4.若奇函数()y f x=在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是()第4题图GD21GD22GD23GD24GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( )A. ()224--= B. 33122a a -=C. ()021-=- D. 4141a a-⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a-=,C 中()021-=,故D 选项正确.6.已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A.143.2 C 【答案】 B 【解析】 3a Q 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( ).31 C【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C 18=种,②两名女生一名男生1243C C 12=种,所以一共有181230+=种.8.下列说法正确的是( ) A.函数()2y x a b =++的图像经过点(a ,b )B.函数x y a =(a >0且a ≠1)的图像经过点(1,0)C.函数log a y x =(a >0且a ≠1)的图像经过点(0,1)D.函数a y x =(∈R α)的图像经过点(1,1)【答案】D 【解析】A 中,函数()2y x a b =++的图像经过点(-a ,b );B 中,函数x y a =(a >0且a ≠1)的图像经过点(0,1);C 中,函数log a y x =(a >0且a ≠1)的图像经过点(1,0);D 中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量OBuuu r的坐标是( )第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A 【解析】Q A (1,-2),C (3,1),()()1231OA OB ∴=-=u u u r u u u r,,,,又OA CB =u u u r u u u r , ()4,1OB OC CB OC OA ∴=+=+=-u u u r u u u r u u u r u u u r u u u r.10.过点P (1,2)与圆225x y +=相切的直线方程是( )A. 230x y -+=B. 250x y -+=C. 250x y +-=D.250x y +=【答案】B 【解析】将点P ()1,2代入圆方程,可知点P 在圆上,又因为将点代入C,D 等式不成立,可排除C,D ,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),5即圆心到直线230x y -+=的距离55d =≠圆心到直线250x y -+=的距离55d '==则只有B 符合.11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是( )A.天然气B.核能C.水利发电D.再生能源表 我国各种能源消费的百分率【答案】D 【解析】 根据表1可知,从2011年到2014年,天然气:5.6 4.5100%24.4%4.5-⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.16.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源.12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A. 34,55⎛⎫- ⎪⎝⎭B. 43,55⎛⎫- ⎪⎝⎭C. 34,55⎛⎫- ⎪⎝⎭D. 43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长度为226810+=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.13.关于x ,y 的方程y mx n =+和221x y m n+=在同一坐标系中的图象大致是( )GD27GD28GD29GD30【答案】D 【解析】 当221x y m n +=的图象为椭圆时,00m n >>,,则y mx n=+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160【答案】B 【解析】 ()2nx -Q 的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T xx -=-=-,则其系数为160-.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A.421 B. 121C. 114D. 27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=. 16.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是( ) GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,2y =,D 选项中,当2,4x y π==. 17.在ABC △中,若2AB BC CA ===u u u r u u u r u u u r,则AB BC ⋅u u u r u u u r 等于( )A. 23-B. 23C.-2【答案】C 【解析】因为2AB BC CA ===u u u r u u u r u u u r,所以ABC △是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC ⋅=⋅⋅︒=-u u u r u u u r u u u r u u u r.18.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是( )第18题图 GD35.4 C【答案】B 【解析】 由图可知,目标函数z x y =+在点(2,2)处取得最大值,即max 224z =+=.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是( ) A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则m C.若,,l m l αα∥∥则∥m D.若,,l m l αα⊥⊥∥则m【解析】A,B,C 选项,直线l 与m 相交、平行、异面都有可能;D 选项,∵,m α∥,∴存在一个平面β,使得αβ∥,且m β∈,∵,l α⊥∴l β⊥,l m ⊥.20.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120FM F M ⋅=u u u u r u u u u r,那么点M 到x 轴的距离是( )2D. 1【答案】B 【解析】 椭圆22126x y +=,即2a b c ====,设点M 的坐标为00()x y ,,又120F M F M ⋅=u u u u r u u u u rQ ,∴点M 又在以原点为圆心,半径为2的圆上,圆方程为224x y +=,即2204x y +=①,又2200126x y +=②,联立①②得0y =M 到x卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上) 21.已知tan 3α=,则sin cos sin cos αααα+-的值是 .【答案】2【解析】分式上下同除以cos α得sin cos tan 1cos sin cos tan 1cos αααααααα++=--,把tan 3α=代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于 . 【答案】3π【解析】设正方体的边长为x ,2661x x =⇒=,则边长为1,243S r =π=π球. 23.如果抛物线28y x =上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是 .【答案】5【解析】因为抛物线28y x =上的点M 到y 轴的距离是3,所以点M 的横坐标为3,再将3x =代入得到y =±(3,M ±,又因为28y x =,准线22px =-=-,则点M 到该抛物线焦点F 的距离是5. 24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出 名.【答案】33【解析】恰好选到二年级学生的概率是,恰好选到一年级学生的概率是,则选到三年级学生的概率是,那么需要从三年级抽取100×=33人. 25.设命题p ;函数()()215f x x a x =+-+在(],1-∞上是减函数;命题q :()2,lg 230x x ax ∀∈++>R .若p q ∨⌝是真命题,p q ∧⌝是假命题,则实数a 的取值范围是 .【答案】(-或()-∞+∞U ,【解析】 Q p q ∨⌝是真命题,p q ∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<<,则1a -<<pq 同为假时,a 或a ≤数a 的取值范围为(1-或()-∞+∞U ,. 三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)?【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}n a 的前n 项和223n S n =-.求: (1)第二项2a ;(2)通项公式n a .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-. 28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点.(1)求证:平面DMB ⊥平面DAM ;(2)若AMB ∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.GD36第28题图【解】(1)∵M 是下底面圆周上不与点,A B 重合的点,∴,,A M B 在一个平面上,又∵四边形ABCD 是圆柱的轴截面,∴边AB 过圆心,DA ⊥平面AMB ,DA BM ⊥,根据定理以直径为斜边的三角形为直角三角形,所以AM BM ⊥, ∵,DA AM ⊂平面DAM ,且DA AM A =I ,∴BM ⊥平面DAM ,又∵BM ⊂平面DMB ,∴平面DMB ⊥平面DAM . (2)设底面圆的半径为x ,圆柱的高为h ,又∵AMB △2x ,所以221(2)2ABMS x x ==△,所以2133D AMB AMB x h V S h -=⋅=△,2V S h x h =⋅=π圆柱所以2233D AMBV x hx h V -π==π圆柱.29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面内),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则22222010103m AB AP BP -=-=,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ △中,由正弦定理得,sin sin AQ AB ABQ AQB =∠∠,即21031032102m sin 45sin 603AQ AQ =⇒==︒︒,在APQ △中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP =+-⋅∠2220(102)220102cos1054002003=+-⨯⨯︒=+,10(13)103PQ =+=+P ,Q 两点之间的距离为10103+.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2. (1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-r是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN△面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b-=,()()122,02,0F F -Q ,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即222213b c a -=-=准方程为2213y x -=,离心率221c e a ===,渐近线方程为33b y a =±== (2)Q 向量()2,1n =-r是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩216190x x ⇒-+=,12121619x x x x +==,,则12MN x =-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,5d ∴==,则1130225PMN S MN d =⨯=⨯⨯=△。

山东省节高三数学寒假作业天天练(第1天) 新人教版

山东省节高三数学寒假作业天天练(第1天) 新人教版

第一节 集合与简易逻辑一. 选择题1命题“对任意的01,23≤+-∈x x R x ”的否定是( )A.不存在01,23≤+-∈x x R xB.存在01,23≥+-∈x x R xC.存在01,23>+-∈x x R xD. 对任意的01,23>+-∈x x R x2.已知==+∈==∈=N M y x R x N x y R y M 则}.2|{},|{222( )A .)}1,1(),1,1{(-B .{1}C .[0,1]D .]2,0[3.设集合{}23S x x =->,{}8T x a x a =<<+,ST =R ,则a 的取值范围是( ) A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-4. 满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .4 5. 0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件6. 给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .07.若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为A .9B .6C .4D .28.下列各小题中,p 是q 的充分必要条件的是①3:62:2+++=>-<m mx x y q m m p ;,或有两个不同的零点②()()()x f y q x f x f p ==-:1:;是偶函数 ③βαβαtan tan :cos cos :==q p ;④A C B C q A B A p U U ⊆=::;A.①②B.②③C.③④D. ①④二.填空题9.设集合U ={1,2,3,4,5},A ={2,4},B={3,4,5},C={3,4},则)()(C C B A U = .10.已知条件p:1≤x ≤4,条件q :|x -2|>1,则p 是⌝q 的___________________条件11.定义集合运算:A ⊙B ={z ︳z = xy (x+y ),x ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为_____________12.非空集合G 关于运算○+满足,①对任意a 、b G ∈,都有a+b G ∈;②存在G e ∈,使对一切G e ∈都有a ○+e=e ○+a=a ,则称G 关于运算○+的融洽集,现有下列集合和运算:(1)G={非负整数},○+整数的加法(2)G={偶数},○+整数的中法(3)G={平面向量},○+平面向量的加法(4)G={二次三项式},○+多项式加法其中为融洽集的为 (写出所有符合题意的序号)三.解答题13.(本小题满分12分)已知函数21)(-+=x x x f 的定义域是集合A ,函数])12(lg[)(22a a x a x x g +++-=的定义域是集合B.(1)求集合A 、B ;(2)若.,的取值范围求实数a B B A =14.(本小题满分12分)设p :不等式1|2|>-+m x x 的解集为R ;q :函数6)34()(23++++=x m mx x x f 在R上有极值.求使命题“p 且q ”为真的实数m 的取值范围.答案:1-8 CDABBCCD9.{}5,2 10.必要不充分 11.18 12.(1),(3)13.解:(1)1|{-≤=x x A 或}2>x ……………………2分a x x B <=|{或}1+>a x ……………………6分(2)由B B A = 得,B A ⊆……………………………………8分因此⎩⎨⎧≤+->211a a …………………………10分 11≤<-∴a∴实数a 的取值范围是(]1,1-……………………12分14.解:由m m x x m x m m x m x m x x 2|2|,)2(2)2(22|2|≥-+⎩⎨⎧<≥-=-+知, 由题意,.21,12,1|2|>>∴>-+m m m x x 即恒成立…………………………4分 又由函数6)34()(23++++=x m mx x x f 在R 上有极值,知03423)(2=+++='m mx x x f 有解,即△≥0. 由△= 0,得m =-1或m = 4.此时函数没有极值.由△>0,得m <-1或m >4.要使“p 且q ”为真命题,则 ……………………8分4,4121>⎪⎩⎪⎨⎧>-<>m m m m 解得或,m ∴的取值范围为).,4(+∞…………………………12分。

2016年山东高考数学试卷

2016年山东高考数学试卷

高考数学试卷一、单选题1.下列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2xf x -= 2.设32x y +=,则函数327x y z =+的最小值是( ) A.12B.6C.27D.303.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位 C .向左平移4π个单位D .向左平移2π个单位4.函数21x y x +=-的定义域为( ) A .{|21}x x x >-≠且B .{|21}x x x ≥-≠且C .)[(21,1,)-⋃+∞D .)((21,1,)-⋃+∞5.下列计算正确的是 A.()22x y x y +=+ B.()2222x y x xy y -=-- C.()()2111x x x +-=-D.()2211x x -=-6.基本再生数R 0与世代间隔T 是肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )7.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.12A.1.2天B.1.8天C.2.5天D.3.5天8.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120°已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.255±B.255C.55D.55±9.已知α、β是方程24420x mx m -++=的两个实根,设()22f m a β=+(1)求函数()f m 的解析式;(2)当m 为何值时,()f m 取得最小值?10.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞11.“1<x <2”是“x <2”成立的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件12.已知函数()f x 的定义域为[0,2],则(2)()1f xg x x =-的定义域为( ) A.[)(]0,11,2 B.[)(]0,11,4C.[0,1)D.(1,4]二、填空题13.定义在(1,1)-上的函数()f x 满足()()()1f x g x g x =--+,对任意的1212,(1,1),x x x x ∈-≠,恒有()()()12120f x f x x x -->⎡⎤⎣⎦,则关于x 的不等式(21)()2f x f x ++>的解集为14.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为____15.已知球的体积为36π,则该球大圆的面积等于______. 三、解答题16.某校高一、高二、高三年级的学生人数之比为4:4:3,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生数为15,则抽取的样本容量为_______17.已知函数()()21log 01+=>-axf x a x 是奇函数 (1)求a 的值与函数()f x 的定义域;(2)若()232log g x x =-对于任意[]1,4x ∈都有()()22log >⋅g x g x k x ,求k 的取值范围.18.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( )A.255±B.255C.55D.55±19.已知函数1()2f x x x=+-.(1)用定义证明函数()f x 在(0,1]上是减函数,在[1,)+∞上是增函数; (2)当函数()lg y f x k =-有两个大于0的零点时,求实数k 的取值范围。

2016山东春季高考数学真题(含答案)

2016山东春季高考数学真题(含答案)

省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合A ={}1,3,B ={}2,3,则A B等于( )A.∅B.{}1,2,3C.{}1,2D.{}3【答案】B 【解析】因为A ={}1,3,B ={}2,3,所以A B {}1,2,3=.2.已知集合A ,B ,则“A B ⊆”是“A B =”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】 B 【解析】A B A B =⇒⊆,又A B A B A B ⊆⇒=或,∴“A B ⊆”是“A B =”的必要不充分条件. 3.不等式23x +>的解集是( ) A.()(),51,-∞-+∞ B.()5,1-C.()(),15,-∞-+∞ D.()1,5-【答案】A 【解析】23123235x x x x x +>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为 ()(),51,-∞-+∞.4.若奇函数()y f x =在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是( )第4题图GD21GD22GD23GD24 GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( )A.()224--= B.33122a a -=C.()21-=- D.4141a a -⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a-=,C 中()021-=,故D 选项正确. 6.已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A.143B.2C.4D.8 【答案】 B 【解析】3a 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( ) A.60 B.31 C.30 D.10【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C 18=种,②两名女生一名男生1243C C 12=种,所以一共有181230+=种. 8.下列说确的是( ) A.函数()2y x a b =++的图像经过点(a ,b )B.函数xy a =(a >0且a ≠1)的图像经过点(1,0)C.函数log a y x =(a >0且a ≠1)的图像经过点(0,1)D.函数a y x =(∈R α)的图像经过点(1,1)【答案】D 【解析】A 中,函数()2y x a b =++的图像经过点(-a ,b );B 中,函数x y a =(a >0且a ≠1)的图像经过点(0,1);C 中,函数log a y x =(a >0且a ≠1)的图像经过点(1,0);D 中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量OB 的坐标是( )第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A 【解析】A (1,-2),C (3,1),()()1231OA OB ∴=-=,,,,又OA CB =,()4,1OB OC CB OC OA ∴=+=+=-.10.过点P (1,2)与圆225x y +=相切的直线方程是( )A.230x y -+=B.250x y -+=C.250x y +-=D.250x y +=【答案】B 【解析】将点P ()1,2代入圆方程,可知点P 在圆上,又因为将点代入C,D 等式不成立,可排除C,D ,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),半径为5,即圆心到直线230x y -+=的距离55d =≠,圆心到直线250x y -+=的距离55d '==,则只有B 符合. 11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是( )A.天然气B.核能C.水利发电D.再生能源表 我国各种能源消费的百分率原油(%) 天然气(%) 原煤(%) 核能(%) 水利发电(%) 再生能源(%) 2011年 17.7 4.5 70.4 0.7 6.0 0.7 2014年17.55.666.01.08.11.8【答案】D 【解析】 根据表1可知,从2011年到2014年,天然气:100%24.4%4.5⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.1 6.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源. 12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A.34,55⎛⎫- ⎪⎝⎭ B.43,55⎛⎫- ⎪⎝⎭ C.34,55⎛⎫- ⎪⎝⎭ D.43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长度为226810+=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.13.关于x ,y 的方程y mx n =+和221x y m n+=在同一坐标系中的图象大致是( ) GD27GD28GD29GD30【答案】D 【解析】 当221x y m n +=的图象为椭圆时,00m n >>,,则y mx n =+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160D.560【答案】B 【解析】()2nx -的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T x x -=-=-,则其系数为160-.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A.421 B.121 C.114 D.27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=. 16.函数sin 24y x π⎛⎫=+⎪⎝⎭在一个周期的图像可能是( ) GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,22y =,D 选项中,当2,42x yπ==.17.在ABC△中,若2AB BC CA===,则AB BC⋅等于()A.23- B.23 C.-2 D.2【答案】C【解析】因为2AB BC CA===,所以ABC△是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC⋅=⋅⋅︒=-.18.如图所示,若,x y满足约束条件210220xxx yx y⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y=+的最大值是()第18题图 GD35A.7B.4C.3D.1【答案】B【解析】由图可知,目标函数z x y=+在点(2,2)处取得最大值,即max224z=+=.19.已知α表示平面,,,l m n表示直线,下列结论正确的是()A.若,,l n m n⊥⊥则l m∥ B.若,,l n m n l⊥⊥⊥则mC.若,,l m lαα∥∥则∥m D.若,,l m lαα⊥⊥∥则m16.D【解析】A,B,C选项,直线l与m相交、平行、异面都有可能;D选项,∵,mα∥,∴存在一个平面β,使得αβ∥,且mβ∈,∵,lα⊥∴lβ⊥,l m⊥.20.已知椭圆22126x y+=的焦点分别是12,F F,点M在椭圆上,如果12FM F M⋅=,那么点M到x轴的距离是()2D.1【答案】B【解析】椭圆22126x y+=,即2a b c==,设点M的坐标为00()x y,,又12FM F M⋅=,∴点M又在以原点为圆心,半径为2的圆上,圆方程为224x y+=,即22004x y+=①,又2200126x y+=②,联立①②得y=点M到x卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知tan3α=,则sin cossin cosαααα+-的值是 .【答案】2【解析】分式上下同除以cosα得sin costan1cossin cos tan1cosαααααααα++=--,把tan3α=代入得原式=2.22.若表面积为6的正方体接于球,则该球的表面积等于 .【答案】3π【解析】设正方体的边长为x,2661x x=⇒=,则边长为1,所以正方体上243S r=π=π球.23.如果抛物线28y x=上的点M到y轴的距离是3,那么点M到该抛物线焦点F的距离是 . 【答案】5【解析】因为抛物线28y x=上的点M到y轴的距离是3,所以点M的横坐标为3,再将3x=代入得到y=±,所以点(3,M±,又因为28y x=,准线22px=-=-,则点M到该抛物线焦点F的距离是5.【答案】33【解析】恰好选到二年级学生的概率是0.32,恰好选到一年级学生的概率是0.35,则选到三年级学生的概率是1-0.35-0.32=0.33,那么需要从三年级抽取100×0.33=33人.25.设命题p;函数()()215f x x a x=+-+在(],1-∞上是减函数;命题q:()2,lg230x x ax∀∈++>R.若p q∨⌝是真命题,p q∧⌝是假命题,则实数a的取值围是 .【答案】(-或()2⎡-∞+∞⎣,【解析】p q ∨⌝是真命题,p q ∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<<,则1a -<<同理,当pq同为假时,a 或a ≤a 的取值围为(-或()2⎡-∞-+∞⎣,,.三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)? 【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}n a 的前n 项和223n S n =-.求: (1)第二项2a ;(2)通项公式n a .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-. 28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点.(1)求证:平面DMB ⊥平面DAM ;(2)若AMB ∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.GD36第28题图【解】(1)∵M 是下底面圆周上不与点,A B 重合的点,∴,,A M B 在一个平面上, 又∵四边形ABCD 是圆柱的轴截面,∴边AB 过圆心,DA ⊥平面AMB ,DA BM ⊥, 根据定理以直径为斜边的三角形为直角三角形,所以AM BM ⊥, ∵,DA AM ⊂平面DAM ,且DAAM A =,∴BM ⊥平面DAM ,又∵BM ⊂平面DMB ,∴平面DMB ⊥平面DAM . (2)设底面圆的半径为x ,圆柱的高为h ,又∵AMB △是等腰直角三角形,所以两个直角边长为2x , 所以221(2)2ABMS x x ==△,所以2133D AMB AMB x h V S h -=⋅=△,2V S h x h =⋅=π圆柱 所以2233D AMBV x hx h V -π==π圆柱. 29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则22222010103m AB AP BP =--,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ △中,由正弦定理得,sin sin AQ ABABQ AQB=∠∠,即21031032102m sin 453AQ AQ ⨯=⇒==︒,在APQ △中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP =+-⋅∠2220(102)220102cos1054002003=+-⨯⨯⨯︒=+,10(13)10103PQ =+=+,P ,Q 两点之间的距离为10103+米.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2.(1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN △面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b -=,()()122,02,0F F -,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即222213b c a -=-,则该双曲线的标准方程为2213y x -=,离心率221c e a ===,渐近线方程为33b y a =±==± (2)向量()2,1n =-是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩.11 / 11 216190x x ⇒-+=,12121619x x x x +==,,则12MN x =-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,d ∴==,则1130225PMN S MN d =⨯=⨯⨯=△。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【KS5U 】新课标2016年高三数学寒假作业1一、选择题.1.设集合{}{}{}1,2,3,4,5,|,,A B C x x b a a A b B ====-∈∈,则C 中元素的个数是( )A. 3B. 4C. 5D.62.下列命题正确的是( )A .“x<1”是“x 2﹣3x+2>0”的必要不充分条件B .对于命题p :∃x ∈R ,使得x 2+x ﹣1<0,则¬p :∀x ∈R 均有x 2+x ﹣1≥0C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若x 2﹣3x+2=0,则x=2”的否命题为“若x 2﹣3x+2=0,则x≠2” 3.化简的结果为( ) A .5 B . C .﹣ D .﹣54.已知函数y=ax 2+bx ﹣1在(﹣∞,0]是单调函数,则y=2ax+b 的图象不可能是( )A .B .C .D . 5.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( )A .y=2|x|B .y=x 3C .y=﹣x 2+1D .y=cosx6.若函数在上单调递增,则实数a 的取值范围( ) A .(0,1] B .(0,1) C .[1,+∞)D .(0,+∞)7. 已知点B (1,0),P 是函数y=e x 图象上不同于A (0,1)的一点.有如下结论:①存在点P 使得△ABP 是等腰三角形;②存在点P 使得△ABP 是锐角三角形;③存在点P 使得△ABP 是直角三角形.其中,正确的结论的个数为( )A.0 B.1 C.2 D.38.设f(x)=|lgx|,若函数g(x)=f(x)﹣ax在区间(0,4)上有三个零点,则实数a的取值范围是( )A.B.C.D.9.已知某个几何体的三视图如下,根据图中标出的尺寸,那么可得这个几何体最长的棱长是( )A.2 B.C.2 D.210.设等差数列{a n}的前n项和为S n,若a1=﹣11,a4+a6=﹣6,则当S n取最小值时,n等于( ) A.6 B.7 C.8 D.9二.填空题.11.命题“若a、b都是偶数,则a+b是偶数”的逆命题是.12.△ABC 的内角A,B,C 所对的边分别为a , b , c ,且a , b , c 成等比数列,若,则a +c的值为.13.已知f(x)=x2+2xf′(1),则f′(0)= .14.已知函数f(x)=x,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则使函数f(x)有极值点的概率为.三、解答题.15.为了解社会对学校办学质量的满意程度,某学校决定用分层抽样的方法从高中三个年级的家长委员会中共抽取6人进行问卷调查,已知高一、高二、高三的家长委员会分别有54人、1 8人、36人.(I)求从三个年级的家长委员会中分别应抽的家长人数;(Ⅱ)若从抽得的6人中随机抽取2人进行训查结果的对比,求这2人中至少有一人是高三学生家长的慨率.16.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,上顶点为B.Q为抛物线y2=12x 的焦点,且•=0,2+=0.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过定点P(0,2)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k (k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.17.(14分)已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)若函数f(x)没有零点,求a的取值范围.【KS5U 】新课标2016年高三数学寒假作业1参考答案1.【知识点】集合中元素个数的最值.A1【答案解析】B 解析:{}{}1,2,3,4,5,A B ==∵a∈A ,b ∈B ,∴a=1,或a=2或a=3, b=4或b=5,则x=b ﹣a=3,2,1,4,即B={3,2,1,4}.故选:B .【思路点拨】根据集合C 的元素关系确定集合C 即可.2.B【考点】命题的真假判断与应用.【专题】阅读型;分析法.【分析】首先对于选项B 和D ,都是考查命题的否命题的问题,如果两个命题中一个命题的条件和结论分别是另一个命题的条件和结论的否定,则这两个命题称互为否命题. 即可得出B 正确,D 错误.对于选项A 因为“x<1”是“x 2﹣3x+2>0”的充分不必要条件.故选项A 错误.对于选项C ,因为若“p 且q”为假命题,则p 、q 中有一个为假命题,不一定p 、q 均为假命题;故C 错误.即可根据排除法得到答案.【解答】解:对于A :“x<1”是“x 2﹣3x+2>0”的必要不充分条件.因为“x 2﹣3x+2>0”等价于“x<1,x >2”所以:“x<1”是“x 2﹣3x+2>0”的充分不必要条件.故A 错误.对于B :对于命题p :∃x ∈R ,使得x 2+x ﹣1<0,则¬p :∀x ∈R 均有x 2+x ﹣1≥0.因为否命题是对条件结果都否定,所以B 正确.对于C :若p ∧q 为假命题,则p ,q 均为假命题.因为若“p 且q”为假命题,则p 、q 中有一个为假命题,不一定p 、q 均为假命题;故C 错误.对于D :命题“若x 2﹣3x+2=0,则x=2”的否命题为“若x 2﹣3x+2=0则x≠2”.因为否命题是对条件结果都否定,故D 错误.故选B .【点评】此题主要考查充分必要条件,其中涉及到否命题,且命题,命题的真假的判断问题,都是概念性问题属于基础题型.3.B【考点】方根与根式及根式的化简运算.【专题】计算题.【分析】利用根式直接化简即可确定结果.【解答】解:===故选B【点评】本题考查根式的化简运算,考查计算能力,是基础题.4.B【考点】一次函数的性质与图象;二次函数的性质.【专题】数形结合;分类讨论.【分析】先由函数y=ax2+bx﹣1在(﹣∞,0]是单调函数求出a和b所能出现的情况,再对每一中情况求出对应的图象即可.(注意对二次项系数的讨论).【解答】解:因为函数y=ax2+bx﹣1在(﹣∞,0]是单调函数,所以:①当a=0,y=2ax+b的图象可能是A;②当a>0时,﹣≥0⇔b≤0,y=2ax+b的图象可能是C;③当a<0时,﹣≤0⇔b≤0,y=2ax+b的图象可能是D.故y=2ax+b的图象不可能是B.故选 B.【点评】本题主要考查函数的单调性以及一次函数的图象.是对基础知识的考查,属于基础踢.5.C【考点】函数奇偶性的判断;函数单调性的性质.【专题】计算题;函数的性质及应用.【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=2|x|是偶函数,但在(0,+∞)上单调递增,排除A;B中,y=x3是奇函数,排除B;C中,y=﹣x2+1是偶函数,且在(0,+∞)上单调递减;D中,y=cosx是偶函数,但在(0,+∞)上不单调,排除D;故选:C.【点评】本题考查函数的奇偶性、单调性的判断,属基础题,熟记常见基本函数的有关性质是解题关键.6.A【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】根据分段函数的单调性确定a的取值范围.【解答】解:∵当时,y=tanx,单调递增,∴要使f(x)在(﹣)上单调递增,如图的示意图则,即,解得0<a≤1.故实数a的取值范围是(0,1].故选A.【点评】本题主要考查分段函数的单调性的应用,要保证分段函数满足单调递增,同时两个函数在端点处的函数值也存在一定的大小关系,利用数形结合的思想去解决.7.B【考点】命题的真假判断与应用.【专题】探究型.【分析】利用导数法,可判断出线段AB与函数y=e x图象在(0,1)点的切线垂直,进而可判断出三个结论的正误,得到答案.【解答】解:∵函数y=e x的导函数为y′=e x,∴y′|x=0=1,即线段AB与函数y=e x图象在(0,1)点的切线垂直故△ABP一定是钝角三角形,当PA=AB=时,得△ABP是等腰三角形;故①正确,②③错误故正确的结论有1个故选:B【点评】本题以命题的真假判断为载体,考查了指数函数的导数及三角形形状判断,难度不大,属于基础题.8.B【考点】利用导数研究曲线上某点切线方程;根的存在性及根的个数判断.【专题】函数的性质及应用;导数的综合应用.【分析】转化函数的零点为方程的根,利用数形结合,推出3个零点满足的情况,利用函数的导数求出切线的斜率,推出结果即可.【解答】解:函数g(x)=f(x)﹣ax在区间(0,4)上有三个零点,就是g(x)=f(x)﹣ax=0在区间(0,4)上有三个根,也就是f(x)=ax的根有3个,即两个函数y=f(x)与y=ax图象在区间(0,4)上的交点个数为3个.如图:由题意以及函数的图象可知函数有3个零点,直线y=ax过A,与l之间时,满足题意.A(4,lg4),k OA=.设l与y=lgx的切点为(t,f(t)),可得y′=,切线的斜率为:==,即lgt=lge,t=e.可得切线l的斜率为:,a∈.故选:B.【点评】本题考查函数的零点与方程的根的关系,考查数形结合转化思想的应用,是中档题.9.C【考点】由三视图求面积、体积.【专题】对应思想;数形结合法;空间位置关系与距离.【分析】根据几何体的三视图,得出该几何体是底面是等腰三角形,且侧面垂直于底面的三棱锥,画出图形,结合图形即可求出该三棱锥中最长棱是多少.【解答】解:根据几何体的三视图,得;该几何体为底面是等腰三角形,且侧面垂直于底面的三棱锥,如图所示;且三棱锥的高为SD=2,底面三角形边长BC=2,高AD=2;∴该三棱锥的最长棱是SA===2.故选:C.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.10.A【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得.【解答】解:设该数列的公差为d,则a4+a6=2a1+8d=2×(﹣11)+8d=﹣6,解得d=2,所以,所以当n=6时,S n取最小值.故选A.【点评】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力.11.若a+b是偶数,则a、b都是偶数考点:四种命题.专题:简易逻辑.分析:命题“若p,则q”的逆命题是“若q,则p”.解答: 解:“若a 、b 都是偶数,则a+b 是偶数”的逆命题是:“若a+b 是偶数,则a 、b 都是偶数”故答案为:若a+b 是偶数,则a 、b 都是偶数点评:本题考查四种命题间的逆否关系,解题时要注意四种命题间的相互转化. 12.73=+c a73 ac b =2,所以B 为锐角。

相关文档
最新文档