七年级上册数学第四章角的计算

合集下载

七年级数学上册第四章几何图形初步《角:余角和补角(方位角)》

七年级数学上册第四章几何图形初步《角:余角和补角(方位角)》

新2024秋季七年级人教版数学上册第四章几何图形初步《角:余角和补角(方位角)》听课记录一、教学目标(核心素养)核心素养目标:1.空间观念:通过余角和补角的概念学习,增强学生的空间想象能力,理解角之间的互补与互余关系。

2.逻辑推理:掌握余角和补角的性质,学会运用这些性质进行角的计算和推理。

3.数学运算:提高学生的数学运算能力,尤其是在处理角的加减运算时能够准确无误。

4.问题解决:能够应用余角和补角的知识解决实际问题,如计算方位角等。

二、导入教师行为:•教师首先展示一个直角,并提问:“同学们,你们知道这个角是多少度吗?”学生回答后,教师继续引导:“如果我们从这个直角中减去一个角,得到的角与原来的角之间有什么关系呢?”•教师引入余角和补角的概念,简要说明它们各自的定义和性质。

学生活动:•学生积极思考并回答教师的问题,对直角有基本的认识。

•认真倾听教师讲解余角和补角的概念,初步理解它们之间的关系。

过程点评:•导入环节通过学生熟悉的直角入手,自然引出余角和补角的概念,激发了学生的学习兴趣和好奇心。

•教师的提问和引导有助于学生建立新旧知识之间的联系,为后续学习打下基础。

三、教学过程(一)余角和补角的概念讲解教师行为:•详细讲解余角和补角的定义,强调“和为90度”与“和为180度”的关键特征。

•通过图示和实例,帮助学生直观理解余角和补角的概念及其在空间几何中的应用。

学生活动:•认真听讲,记录关键信息,尝试用自己的话复述余角和补角的定义。

•观察图示和实例,加深对余角和补角概念的理解。

过程点评:•教师讲解清晰,图文并茂,有助于学生理解和掌握余角和补角的概念。

•学生积极参与,通过复述和观察,进一步巩固了所学知识。

(二)余角和补角的性质应用教师行为:•设计一系列练习题,包括角的加减运算、判断角的余角和补角等,让学生独立完成。

•巡视课堂,及时发现并解决学生在解题过程中遇到的问题。

•邀请学生分享解题思路和答案,进行集体讨论和纠正。

人教版七年级数学课件《角的和、差、倍、分》

人教版七年级数学课件《角的和、差、倍、分》
∠1+ ∠2 =180º-100º=80º
达标检测
人教版数学七年级上册
3.如图所示,∠AOB=∠ COD=90°, ∠AOD=146°, ∠BOC=_3_4__°__.
4.如果∠AOB=34°,∠BOC=18°,那么∠AOC的度数是( C )
A.52°
B.16°
C.52°或16° D.52°或18°
1.如图①,若∠AOC=35°,∠BOC=40°,则 ∠AOB= 75 °.
2.如图②,若∠AOB= 60°,∠BOC=40°,则∠AOC= 20 °. 3.若∠AOB =60°,∠AOC =30°,则∠BOC= 90或30 °.
B C
A C
A C
O
A
O
BO
B
图①
图②
C
知识精讲
人教版数学七年级上册
5. 已知∠AOB=38°,∠BOC=25°,那么∠AOC 的度数是13°或63° .
达标检测
人教版数学七年级上册
6.图中∠1=∠2, 试判断∠BAD和∠EAC的大小, 并说明理由.
解: ∠BAD=∠EAC
理由:∵∠1=∠2 ∴∠1+∠DAC =∠2+∠DAC,
E D
∴∠BAD=∠EAC.Fra bibliotek1C
2
B
知识精讲
人教版数学七年级上册
如图所示: (1) ∠AOC是哪两个角的和?
∠AOC =∠AOB +∠BOC.
(2) ∠AOB是哪两个角的差?
∠AOB =∠AOC -∠BOC =∠AOD-∠BOD.
(3) 如果∠AOB=∠COD,则∠AOC与∠BOD 的大小关系如何?
O
∠AOC =∠BOD.
D C

人教版七年级数学上第四章几何图形初步知能素养小专题(六) 角度的计算习题课件

人教版七年级数学上第四章几何图形初步知能素养小专题(六) 角度的计算习题课件

七年级 数学 上册 人教版
类型四:分类讨论思想求角度 7.(辉县期末)在平面上,已知∠AOB=80°,∠BOC=50°,若 OM 平分 ∠AOB,ON 平分∠BOC,求∠MON 的度数.
七年级 数学 上册 人教版
解:分两种情况计算:
如图①,当 OC 落在∠AOB 的内部时,
因为 OM 平分∠AOB,
七年级 数学 上册 人教版
(2)因为 OC 平分∠AOD,∠COE=∠1+∠3=70°, 所以∠3=∠4=70°-∠1. 又因为∠1+∠2+∠3+∠4=180°, 所以∠1+∠2+2(70°-∠1)=180°, 所以∠2=40°+∠1, 因为∠2=3∠1,即 40°+∠1=3∠1,所以∠1=20°, 所以∠2=3∠1=3×20°=60°. 即∠2 的度数为 60°.
七年级 数学 上册 人教版
如答图①,当∠AOD 在∠AOB 外部时,
因为∠COD=∠AOC+∠AOD=60°,
OE 是∠COD 的平分线,
1
1
所以∠COE=2∠COD=2×60°=30°,
所以∠AOE=∠AOC-∠COE=10°;
答图①
七年级 数学 上册 人教版
如答图②,当∠AOD 在∠AOB 内部时, 因为∠COD=∠AOC-∠AOD=20°, OE 是∠COD 的平分线, 所以∠COE=12∠COD=12×20°=10°, 所以∠AOE=∠AOC-∠COE=30°. 所以∠AOE 的度数为 10°或 30°.
答图②
七年级 数学 上册 人教版
(3)若把“∠AOB=70°,∠BOC=30°”改为“∠AOB 是锐角,且∠AOB =n°,∠BOC=25n°”,(2)中的其余条件不变,请直接写出∠AOE 的度数 为________(用含 n 的式子表示).

人教版七年级数学上册第四章4.3《角》例题与讲解

人教版七年级数学上册第四章4.3《角》例题与讲解

4.3 角1.角的定义及其表示方法(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.角也可以看作是由一条射线绕着它的端点旋转而形成的图形.当终边和始边成一条直线时,形成等角;当终边和始边重合时,形成周角.(2)角的表示方法:有四种表示角的方法:①用一个阿拉伯数字表示单独的一个角,在角内用一段弧标注; ②用一个大写英文字母表示单独的一个角,当角的顶点处有两个或两个以上的角时,不能用这种方法表示角;③用一个小写希腊字母表示单独的一个角;④用三个大写英文字母表示任意一个角,这时表示顶点的字母一定要写在中间. 破疑点 角的理解 (1)角的大小与边的长短无关,只与构成角的两条射线张开的幅度大小有关,角可以度量,可以比较大小,可以进行运算;(2)如果没有特别说明,所说的角都是指小于平角的角.【例1-1】 下列说法正确的是( ).A .平角是一条直线B .一条射线是一个周角C .两边成一条直线时组成的角是平角D .一个角不是锐角就是钝角解析:要做对这类题目,一定要理解概念,严格按照概念进行判断,才能得出正确的结论.平角、周角都是特殊角,虽然它们与一般角形象不符,但是它们仍然是角,它们都具有一个顶点和两条边,只不过平角的两边成一条直线,周角的两边重合成一条射线罢了. 答案:C【例1-2】 如图,以点B 为顶点的角有几个?请分别把它们表示出来.分析:.射线BA 与BD ,BA 与BC ,BD 与BC 各组成一个角.表示顶点的字母必须写在中间.当一个顶点处有多个角时,不能用一个表示顶点的大写字母表示,所以不能把∠ABC 错写成“∠B ”.书写力求规范,如用数字或希腊字母表示角时要在靠近顶点处加弧线注上阿拉伯数字或小写的希腊字母.注意:角的符号一定要用“∠”,而不能用“<”. 解:以B 为顶点的角有3个,分别是∠ABC ,∠ABD ,∠DBC .2.角的度量与换算(1)角度制:以度、分、秒为单位的角的度量制,叫做角度制.(2)角度的换算:角的度量单位是度、分、秒,把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份就是1分的角,记作1′;把1分的角60等分,每一份就是1秒的角,记作1″.谈重点 角度的换算 (1)度、分、秒的换算是60进制,与时间中的时、分、秒的换算相同;(2)角的度数的换算有两种方法:①由度化成度、分、秒的形式(即从高位向低位化),用乘法,1°=60′,1′=60″;②由度、分、秒化成度的形式(即从低位向高位化),1″=⎝⎛⎭⎫160′,1′=⎝⎛⎭⎫160°,用除法.度及度、分、秒之间的转化必须逐级进行转化,“越级”转化容易出错.【例2】 (1)将70.23°用度、分、秒表示;(2)将26°48′36″用度表示.分析:(1)70.23°实际是70°+0.23°,这里70°不要变,只要将0.23°化为分,然后再把所得的分中的小数部分化为秒.将0.23°化为分,只要用0.23乘以60′即可.(2)将26°48′36″用度表示,应先将36″化成分,然后再将分化成度就可以了.将36″化成分,可以用⎝⎛⎭⎫160′乘以36.解:(1)将0.23°化为分,可得0.23×60′=13.8′,再把0.8′化为秒,得0.8×60″=48″.所以70.23°=70°13′48″.(2)把36″化成分,36″=⎝⎛⎭⎫160′×36=0.6′,48′+0.6′=48.6′,把48.6′化成度,48.6′=⎝⎛⎭⎫160°×48.6=0.81°. 所以26°48′36″=26.81°.3.角的比较与运算(1)角的比较: ①度量法:用量角器量出角的度数,然后按照度数比较角的大小,度数大的角大,度数小的角小;反之,角大度数大,角小度数小. ②叠合法:把两个角的顶点和一边分别重合,另一边放在重合边的同旁,通过另一边的位置关系比较大小.解技巧 角的比较 ①在度量法中,注意三点:对中、重合、度数;②在叠合法中,要注意顶点重合,一边重合,另一边落在重合这边的同侧.(2)角的和差:角的和、差有两种意义,几何意义和代数意义.几何意义对于今后读图形语言有很大帮助,代数意义是今后角的运算的基础.①几何意义:如图所示,∠AOB 与∠BOC 的和是∠AOC ,表示为∠AOB +∠BOC =∠AOC ;∠AOC 与∠BOC 的差为∠AOB ,表示为∠AOC -∠BOC =∠AOB .②代数意义:如已知∠A =23°17′,∠B =40°50′,∠A +∠B 就可以像代数加减法一样计算,即∠A +∠B =23°17′+40°50′=64°7′,∠B -∠A =40°50′-23°17′=17°33′.(3)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,射线OC 是∠AOB 的平分线,则有∠1=∠2=12∠AOB 或∠AOB =2∠1=2∠2.警误区 角的平分线的理解 角的平分线是一条射线,不是线段,也不是直线,它必须满足下面的条件:①是从角的顶点引出的射线,且在角的内部;②把已知角分成了两个角,且这两个角相等.【例3】 如图所示,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE =20°,∠AOD =40°,求∠DOE 的度数.解:∵OE平分∠BOC,∴∠BOE=∠COE.∵OD平分∠AOC,∴∠AOD=∠COD.又∵∠BOE=20°,∠AOD=40°,∴∠COE=20°,∠COD=40°.∴∠DOE=∠COE+∠COD=20°+40°=60°.4.余角和补角(1)余角和补角的概念:①余角:如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角;②补角:如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.(2)性质:余角的性质:同角(等角)的余角相等.用数学式子表示为:∠1+∠2=90°,∠3+∠4=90°,又因为∠2=∠4,所以∠1=∠3.补角的性质:同角(等角)的补角相等.用数学式子表示为:∠1+∠2=180°,∠3+∠4=180°,又因为∠2=∠4,所以∠1=∠3.(3)方位角:在航海、航空、测绘中,经常会用到一种角,它是表示方向的角,叫做方位角.通常以正北、正南方向为基准,描述物体运动的方向.通常要先写北或南,再写偏东还是偏西.警误区余角和补角的理解余角和补角是成对出现的,它们之间互相依存,只能说∠1的余角是∠2,∠2的余角是∠1,或者说∠1与∠2互余,而不能说∠1是余角.【例4】如图所示,直线AB,CD,EF相交于点O,且∠AOD=90°,∠1=40°,求∠2的度数.解:因为∠AOD+∠AOC=∠AOD+∠BOD=180°,所以∠AOD=∠AOC=∠BOD=90°.又因为∠1+∠FOC=180°,∠DOF+∠FOC=180°,所以∠DOF=∠1=40°.所以∠2=∠BOD-∠DOF=90°-40°=50°.5.运用整体思想解决角的计算问题整体思想就是根据问题的整体结构特征,不拘泥于部分而是从整体上去把握解决问题的一种重要的思想方法.整体思想突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理.整体思想方法在代数式的化简与求值、解方程、几何解证等方面都有广泛的应用,整体代入、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用.【例5】如图所示,∠AOB =90°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,求∠MON 的大小.分析:解决问题的关键是把∠AOC -∠BOC 视为一个整体,代入求值.解:因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC =12∠AOC ,∠MOC =12∠BOC , 所以∠MON =∠NOC -∠MOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12×90°=45°. 6.钟表问题对于钟表问题要掌握基本的数量关系,如走一大格为30度,一小格为6度,分针每分钟转6度,时针每分钟转0.5度,分针是时针转速的12倍等.若已知具体时间,求时针与分针的夹角,只需知道它们相距的格数,便可求得;若是已知时针与分针的夹角求相应的时间,则一般需要建立方程求解.【例6】上午9点时,时针与分针成直角,那么下一次时针与分针成直角是什么时候?解:设经过x 分钟,时针与分针再次成直角,则时针转过(0.5x )°,分针转过(6x )°,如图所示,可列方程360-6x -(90-0.5x )=90,解得x =32811.即过32811分钟,时针与分针再一次成直角.7.角中的实验操作题实验操作题是近年来悄然兴起的一种新形式的考题,它集阅读、作图、实验于一体,要求在规定的条件下进行实验,在动手操作中找出答案.这类题目主要是能画出整个过程中的状态示意图,进而求出点的转动角度.【例7】如图,把作图用的三角尺(含30°,60°的那块)从较长的直角边水平状态下开始,在平面上转动一周,求B 点转动的角度(在点的位置没有发生变化的情况下,一律看作点没有转动).解:如图,从位置①到位置②,B 点转过90°;从位置②到位置③,B 点转过120°;从位置③到位置④,由题意B点看作不动.于是在整个过程中B点转过的角度为90°+120°=210°.8.归纳猜想在角的问题中的运用归纳猜想,是一种很重要的数学思想方法,数学史上的许多重要发现:如哥德巴赫猜想、四色猜想、角谷猜想、费马定理等都是由数学家的探究、猜想、总结而得到的.学习数学必须不断地去探索、猜想,不断地总结规律,才会有新发现.运用n(n-1)2这个式子,能解决很多类似的问题,能达到一石数鸟,这都是大家善于借鉴的结果.在学习过程中,注意不断总结、归纳规律,积累经验,运用总结出来的方法、技巧解决问题.【例8】(1)若在n个人的聚会上,每个人都要与另外所有的人握一次手,问握手总次数是多少?(2)如图①中共有多少条线段?如图②中共有多少个角(指小于平角的角)?解:(1)每个人可与另外(n-1)个人握一次手,n个人就有(n-1)·n次握手,其中各重复一次,所以,握手总次数是n(n-1)÷2次.(2)图①中每两个点构成一条线段(类似于两个人握一次手),所以共有n(n-1)÷2条线段.图②中每条射线都与另外(n-1)条射线构成一个角(类似于握手),所以共有n(n-1)÷2个角.9.方位角的应用(1)如图,画两条互相垂直的直线AB和CD相交于点O,其中一条为水平线,则图中四条射线所指方向就是东西南北四大方向,具体是:向上的射线OA表示正北方向,向下的射线OB表示正南方向,向右的射线OD表示正东方向,向左的射线OC表示正西方向.这四大方向简称为上北下南左西右东.建立这四条方向线后,对于点P,如果点P在射线OA上,则称点P在正北方向;如果点P在射线OB上,则称点P在正南方向;如果点P在射线OC上,则称点P在正西方向;如果点P在射线OD上,则称点P在正东方向.(2)在图中,东西和南北方向线把平面分成四个直角,如果点P在正北方向线OA与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正北方向线OA的夹角是m°,则称点P在北偏东(或西)m°方向;如果点P在正南方向线OB与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正南方向线OB的夹角为m°,则称点P在南偏东(或西)m°方向.例如图中的射线OA,OB,OC,OD分别称为:北偏东40°、北偏西65°、南偏西45°、南偏东20°.对于偏向45°的方位角,有时也可以说成东南(北)方向或西南(北)方向.如图中的OC,除了说成南偏西45°外,还可以说是西南方向,但不要说成南西方向.【例9】如图,OA的方向是北偏东15°,OB的方向是西偏北50°.(1)若∠AOC=∠AOB,则OC的方向是________;(2)OD是OB的反向延长线,OD的方向是____;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是____;(4)在(1)、(2)、(3)的条件下,∠COE=____.解析:(1)∵OB的方向是西偏北50°,∴∠1=90°-50°=40°,∴∠AOB=40°+15°=55°∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°.(2)∵OB的方向是西偏北50°,∴∠1=40°,∴∠DOH=40°,∴OD的方向是南偏东40°.(3)∵OE是∠BOD的平分线,∴∠DOE=90°.∵∠DOH=40°,∴∠HOE=50°,∴OE的方向是南偏西50°.(4)∵∠AOF=15°,∠AOC=55°,∴∠COG=90°-∠AOF-∠AOC=90°-15°-55°=20°.∵∠EOH=50°,∠HOG=90°,∴∠COE=∠EOH+∠HOG+∠COG=50°+90°+20°=160°.答案:(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)160°。

七年级数学上册第四章几何图形初步认识4

七年级数学上册第四章几何图形初步认识4

D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:

子长县第二中学七年级数学上册第四章几何图形初步4.3角4.3.2角的比较与运算教学课件新版新人教版3

子长县第二中学七年级数学上册第四章几何图形初步4.3角4.3.2角的比较与运算教学课件新版新人教版3
105°、120°、135°、150°、 165 °180°
75°
15°
观察思考 , 探究新知
动手做一做 : 在纸上画∠AOC , 然后将其剪下来 , 将其沿经过顶点的线対折 , 使边OA与OC重合.将角展开 , 折痕上任取一点记作点B.类比线段中点的定义 , 填 空:
C
∠AOB=∠BOC= 1 ∠AOC ;
即 a + b - c = a + b + ( -c )
➢ 把加减混合运算的算式转化为加法运算后 , 为书写 简单 , 可以省略算式中的括号及它前面的加号.
8 + 3 +〔-5〕+〔-7〕可以写成 : 8 + 3–5 + 7
计算 : (-21)+30-15-(-17).
解 (-21)+ 30-15-(-17) = (-21)+ 30 +(-15)+ 17 = (-21)+ (-15)+ 30 + 17 = -36 + 47 = 11
2
E
D
C
B
O
A
(2) 如果∠AOB=40° , ∠DOE=30° , 那么∠BOD
是多少度 ? 解 : 因为 OB 平分∠AOC ,
E
D
C
B
所以 ∠BOC=∠AOB = 40°.
因为 OD 平分∠COE ,
所以∠COD=∠DOE = 30° ,
O
A
所以 ∠BOD =∠BOC+∠COD = 40°+30°= 70°.
数的
〔-2〕× 3 = -6
发现 : 两数相乘 , 把一个因数换成它的相反数 , 所得的积是原来积的相反数.

初一上册角的计算

初一上册角的计算

初一上册角的计算
首先,我们需要了解角的基本概念和性质。

角是由两条射线从一个公共端点开始并延伸到无限远所形成的几何图形。

角的大小是由这两条射线之间的夹角来决定的,通常用度数来表示。

假设我们有两个角,角A和角B。

角A的大小是30°,角B的大小是45°。

我们可以使用加法和减法来计算这两个角的和或差。

例如,角A和角B的和可以表示为:30° + 45° = 75°。

角A和角B的差可以表示为:45° - 30° = 15°。

我们也可以使用角的补角来计算一个角的大小。

补角是两个角的和等于180°。

例如,如果一个角是x°,那么它的补角就是180° - x°。

角A和角B的和是:75°
角B和角A的差是:15°
角A的补角是:150°。

七年级数学上册第四章几何图形初步《角:角》

七年级数学上册第四章几何图形初步《角:角》

听课记录新2024秋季七年级人教版数学上册第四章几何图形初步《角:角》一、教学目标(核心素养)核心素养目标:1.空间观念:通过角的学习,使学生形成准确的空间观念,提高对几何图形的理解和识别能力。

2.逻辑推理:在角的定义、分类及性质的学习中,锻炼学生的逻辑推理能力,学会运用数学语言进行表达。

3.数学建模:结合生活实例,培养学生运用角的知识解决实际问题的能力,提高数学建模素养。

4.数学运算:掌握角的度量方法,提高学生的数学运算速度和准确性。

二、导入教师行为:•教师展示生活中的一些常见物品(如时钟、书本、三角板等),引导学生观察并找出其中的角。

•提问:“你们在这些物品中发现了什么共同的图形?”引导学生思考并回答。

•播放多媒体课件,展示角的形成过程,进一步激发学生的兴趣。

学生活动:•学生认真观察教师展示的物品,积极寻找并指出其中的角。

•思考并回答教师的问题,部分学生可能会主动举手分享自己的发现。

过程点评:•导入环节设计巧妙,通过生活实例激发学生的学习兴趣,为后续的角的学习做好了铺垫。

•教师的提问引导得当,促使学生主动思考并积极参与课堂活动。

三、教学过程(一)角的初步认识教师行为:•讲解角的基本定义,强调角是由两条射线的公共端点所形成的图形。

•通过多媒体展示角的形成过程,帮助学生直观理解。

•组织学生分组讨论,找出生活中更多的角,并尝试用自己的语言描述角的特点。

学生活动:•认真听讲,理解角的基本定义。

•观看多媒体展示,加深对角的理解。

•分组讨论,积极发言,分享自己找到的角及其特点。

过程点评:•教师讲解清晰,多媒体展示直观形象,有助于学生理解角的基本定义。

•分组讨论环节设计合理,能够充分发挥学生的主动性和积极性,培养他们的合作能力和表达能力。

(二)角的度量与分类教师行为:•介绍量角器的使用方法,并演示如何用量角器度量角的大小。

•讲解角的分类(锐角、直角、钝角、平角、周角),并通过多媒体展示各类角的特点。

•组织学生进行角的度量练习,巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( )
A .70°
B .90°
C .105°
D .120°
2、如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE .求:∠COE 的度数.
3、如图2,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 等于【 】
A .30°
B .45°
C .50°
D .60°
4、(本题满分14分)
(1)如图①,过平角AOB 的顶点O 画射线OC , OD 、OE 分别是∠AOC 、∠BOC 的平分线. 射
线OD 与OE 之间有什么特殊的位置关系?为什么?
(2)如图②,∠AOB 是直角, OC 是∠AOB 内的一条射线,OD 、OE 分别是∠AOC 、∠BOC 的
平分线.∠DOE 的度数是多少?为什么?
(3)∠AOB 是直角, OC 是∠AOB 外的一条射线,OD 、OE 分别是∠AOC 、∠BOC 的平分线.∠
DOE 的度数是多少?为什么?
5、如图所示已知90AOB ∠=︒,30BOC ∠=︒,OM 平分AOC ∠,ON 平分BOC ∠;
(1)︒=∠_____MON ;
(2)如图∠AOB =900,将OC 绕O 点向下旋转,使∠BOC =02x ,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.
(3) AOB α∠=,BOC β∠=,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求MON ∠的度数;并从你的求解中看出什么什么规律吗?(3分)
6、如图,∠AOB =∠COD =
第8题图
90,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。

7、如图所示,将长方形ABCD 的一角沿AE 折叠,若∠BAD ′=30°,那么∠EAD ′= _________ °.
8、如图(1)所示,∠AOB 、∠COD 都是直角.
(1)试猜想∠AOD 与∠COB 在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.
(2)当∠COD 绕着点O 旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.
O A
B。

相关文档
最新文档