2014一轮复习指导资料 第3章 第5节 两角和与差的正弦、余弦和正切公式
高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式

高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎪⎭⎫ ⎝⎛∈+≠+Z k k ,2,,ππβαβα 两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎪⎭⎫ ⎝⎛∈+≠+≠Z k k k ,且42ππαππα 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角. 二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎪⎪⎭⎫ ⎝⎛+=+=2222cos ,sin b a ab a b ϕϕ三、考点解析考点一 三角函数公式的直接应用例、(1)已知sin α=35,α∈⎪⎭⎫ ⎝⎛ππ,2,tan β=-12,则tan(α-β)的值为( ) A .-211 B.211 C.112 D .-112(2)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( ) A .-229 B .-429 C.229 D.429[解题技法]应用三角公式化简求值的策略:(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.跟踪训练1.已知sin α=13+cos α,且α∈⎪⎭⎫ ⎝⎛2,0π,则)4sin(2cos παα+的值为( ) A .-23 B.23 C .-13 D.132.已知sin α=45,且α∈⎪⎭⎫ ⎝⎛23,2ππ,则sin ⎪⎭⎫ ⎝⎛+32πα的值为________. 考点二 三角函数公式的逆用与变形用例、(1)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解题技法]两角和、差及倍角公式的逆用和变形用的技巧:(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin α=⎝⎛⎭⎫sin α2±cos α22;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1; cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.跟踪训练1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b 2.已知cos ⎪⎭⎫ ⎝⎛-6πα+sin α=435,则sin ⎪⎭⎫ ⎝⎛+6πα=________. 3.化简sin 2⎪⎭⎫ ⎝⎛-6πα+sin 2⎪⎭⎫ ⎝⎛+6πα-sin 2α的结果是________.考点三 角的变换与名的变换考法(一) 三角公式中角的变换典例、已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎪⎭⎫ ⎝⎛--54,53,若角β满足sin(α+β)=513,则cos β的值为________.[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+ββα22a 等.考法(二) 三角公式中名的变换典例、已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.[解题技法]三角函数名的变换技巧:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.跟踪训练1.已知tan θ+1tan θ=4,则cos 2⎪⎭⎫ ⎝⎛+4πα=( ) A.12 B.13 C.14 D.152.若sin ⎪⎭⎫ ⎝⎛+4πA =7210,A ∈⎪⎭⎫ ⎝⎛ππ,4,则sin A 的值为( ) A.35 B.45 C.35或45 D.343.已知sin α=-45,α∈⎥⎦⎤⎢⎣⎡ππ223,,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136 C .-613 D .-136课后作业1.sin 45°cos 15°+cos 225°sin 165°=( )A .1 B.12 C.32 D .-122.若2sin x +cos ⎪⎭⎫ ⎝⎛-x 2π=1,则cos 2x =( ) A .-89 B .-79 C.79 D .-7253.若cos ⎪⎭⎫ ⎝⎛-6πα=-33,则cos ⎪⎭⎫ ⎝⎛-3πα+cos α=( ) A .-223 B .±223C .-1D .±1 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A. 3 B.2 C.22 D.335.若α∈⎪⎭⎫ ⎝⎛ππ,2,且3cos 2α=sin ⎪⎭⎫ ⎝⎛-απ4,则sin 2α的值为( ) A .-118 B.118 C .-1718 D.17186.已知sin 2α=13,则cos 2⎪⎭⎫ ⎝⎛-4πα=( ) A .-13 B.13 C .-23 D.237.已知sin ⎪⎭⎫ ⎝⎛+2πα=12,α∈⎪⎭⎫ ⎝⎛-0,2π,则cos ⎪⎭⎫ ⎝⎛-3πα的值为________. 8.已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________. 9.若tan ⎪⎭⎫ ⎝⎛-4πα=16,则tan α=________. 10.化简:sin 235°-12cos 10°cos 80°=________. 11.已知tan α=2.(1)求tan ⎪⎭⎫ ⎝⎛+4πα的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.。
第五节 两角和与差的正弦、余弦和正切公式

数学
第五节
两角和与差的正弦、余弦和正切公式
结束
7 3 25 2. (人教 A 版教材习题改编)已知 sin(α-π)= , 则 cos 2α=________.
5
2- 3 tan 7.5° 2 3.计算: =________. 2
1-tan 7.5°
数学
第五节
两角和与差的正弦、余弦和正切公式
结束
能利用两角差的余弦公式推导出二倍角的正弦、余弦、正切公式, 了解它们的内在联系.
数学
第五节
两角和与差的正弦、余弦和正切公式
结束
(二)小题查验
1.判断正误
θ 2θ (1)cos θ=2cos -1=1-2sin 2 2
2
( √ )
(2)二倍角的正弦、余弦、正切公式的适用范围是任意角 ( × )
(3)存在角 α,使得 sin 2α=2sin α 成立 ( √ )
tan(α+β)(1-tan αtan β),且对任意角 α,β 都成立
( × )
数学
第五节
两角和与差的正弦、余弦和正切公式
结束
3 2.(人教 A 版教材例题改编)已知 sin α=- ,α 是第四象限角,则 5
π 10 cosα+4=________.
7 2
1 2 . 3.计算 cos 42°cos 18° -cos 48°cos 72° 的值为________
π 1 2 4 . ( 北师大版教材例题改编 ) 若 tan(α + β) = , tan β-4 = ,则 5 4
3 π 22 . tanα+ 的值为________
4
数学
第五节
两角和与差的正弦、余弦和正切公式
第3章-第5节 两角和与差的正弦、余弦和正切公式

高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
(2)在锐角△ABC 中,sin Asin B 和 cos Acos B 大小不确定 ( )
课 时 作 业
tan α+tan β (3)公式 tan(α+β)= 可以变形为 tan α+tan β 1-tan αtan β =tan(α+β)(1-tan αtan β),且对任意角 α,β 都成立(
【答案】 C
课 时 作 业
菜
单
高三一轮总复习理科数学 · (安徽专用)
π 2 2 3.(2013· 课标全国卷Ⅱ)已知 sin 2α= ,是 cos α+4 = 3
自 主 落 实 · 固 基 础
( 1 A. 6 1 B. 3 1 C. 2 2 D. 3
)
典 例 探 究 · 提 知 能
菜 单
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 时 作 业
高三一轮总复习理科数学 · (安徽专用)
θ π θ (2)由 θ∈(0,π),得 0< < ,∴cos >0. 2 2 2
自 主 落 实 · 固 基 础
因此 2+2cos θ=
θ 4cos =2cos . 2 2
2θ
θ θ 又(1+sin θ+cos θ)(sin -cos ) 2 2 θ θ θ θ 2θ =(2sin cos +2cos )(sin -cos ) 2 2 2 2 2
菜 单
)
高三一轮总复习理科数学 · (安徽专用)
(4)公式 asin x+bcos x= a2+b2sin(x+φ)中 φ 的取值与
自 主 落 实 · 固 基 础
a,b 的值无关(
)
第三章 第5节 两角和与差的正弦、余弦和正切公式

第三章 第五节 两角和与差的正弦、余弦和正切公式1.2cos10°-sin20°sin70°的值是 ( )A.12B.32C. 3D. 2 解析:原式=2cos(30°-20°)-sin20°sin70°=2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70°=3cos20°cos20°= 3.答案:C2.2+2cos8+21-sin8的化简结果是 ( ) A .4cos4-2sin4 B .2sin4 C .2sin4-4cos4 D .-2sin4 解析:原式=4cos 24+2(sin4-cos4)2=2|cos4|+2|sin4-cos4|, ∵5π4<4<3π2,∴cos4<0,sin4<cos4. ∴原式=-2cos4+2(cos4-sin4)=-2sin4. 答案:D3.(2010·辽宁模拟)已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)=________.解析:∵tan β=cos α-sin αcos α+sin α,∴tan β=1-tan α1+tan α=tan(π4-α).又∵α、β均为锐角,∴β=π4-α,即α+β=π4,∴tan(α+β)=tan π4=1.答案:14.sin(π4-x )=35,则sin2x 的值为 ( )A.725 B.1425 C.1625 D.1925解析:∵sin(π4-x )=35∴22cos x -22sin x =22(cos x -sin x )=35. ∴cos x -sin x =325. ∴(cos x -sin x )2=1-sin2x =1825, ∴sin2x =725. 答案:A5.已知α为钝角,且sin(α+π12)=13,则cos(α+5π12)的值为 ( ) A.22+36 B.22-36 C .-22+36 D.-22+36解析:∵α为钝角,且sin(α+π12)=13, ∴cos(α+π12)=-223, ∴cos(α+5π12)=cos[(α+π12)+π3]=cos(α+π12)cos π3-sin(α+π12)sin π3=(-223)·12-13·32=-22+36. 答案:C6.已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值.解:(1)法一:因为x ∈⎝⎛⎭⎫π2,3π4, 所以x -π4⎝⎛⎭⎫π4,π2,sin ⎝⎛⎭⎫x -π4=1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin[⎝⎛⎭⎫x -π4+π4]=sin(x -π4)cos π4+cos(x -π4)sin π4=7210×22+210×22=45. 法二:由题设得22cos x +22sin x =210即cos x +sin x =15.又sin 2x +cos 2x =1,从而25sin 2x -5sin x -12=0, 解得sin x =45或sin x =-35.因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)因为x ∈⎝⎛⎭⎫π2,3π4,故cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35.sin2x =2sin x cos x =-2425,cos2x =2cos 2x -1=-725.所以sin ⎝⎛⎭⎫2x +π3=sin2x cos π3+cos2x sin π3=-24+7350.7.已知A 、B ( ) A.5π4 B.7π4 C.5π4或7π4 D.9π4解析:由已知可得cos A =-255,cos B =-31010,∴cos(A +B )=cos A cos B -sin A sin B =22, 又∵π2A <π,π2<B <π,∴π<A +B <2π,∴A +B =7π4.答案:B8.在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 等于 ( ) A .30° B .150° C .30°或150° D .60°或120°解析:已知两式两边分别平方相加,得25+24(sin A cos B +cos A sin B )=25+24sin(A +B )=37, ∴sin(A +B )=sin C =12,∴C =30°或150°.当C =150°时,A +B =30°,此时3sin A +4cos B <3sin30°+4cos0°=112,这与3sin A +4cos B =6相矛盾,∴C =30°. 答案:A9.如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点.已知A 、B 的横坐标分别为210,255.(1)求tan(α+β)的值; (2)求α+2β的值.解:(1)由已知条件及三角函数的定义可知,cos α=210,cos β=255.因α为锐角,故sin α >0,从而sin α=1-cos 2α=7210,同理可得sin β=55.因此tan α=7,tan β=12. 所以tan(α+β)=tan α+tan β1-tan αtan β=7+121-7×123.(2)tan(α+2β)=tan[(α+β)+β]=-3+121-(-3)×12=-1.又0<α<π2,0<β<π20<α+2β<3π2,从而由tan(α+2β)=-1得α+2β=3π4.10.(2010·晋城模拟)已知向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( ) A .-34 B .-14 C.34 D.14解析:a ·b =4sin(α+π6)+4cos α- 3=23sin α+6cos α-3=43sin(α+π3)-3=0,∴sin(α+π3)=14.∴sin(α+4π3)=-sin(α+π3)=-14. 答案:B11.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值为________.解析:∵cos(α-π6)+sin α=32cos α+32sin α=453,∴12cos α+32sin α=45, ∴sin(α+7π6)=-sin(α+π6)=-(32sin α+12cos α) =-45答案:-4512.(文)已知点M (1+cos2x,1),N (1,3sin2x +a )(x ∈R ,a ∈R ,a 是常数),设y =OM ON(O 为坐标原点).(1)求y 关于x 的函数关系式y =f (x ),并求f (x )的最小正周期;(2)若x ∈[0,π2]时,f (x )的最大值为4,求a 的值,并求f (x )在[0,π2]上的最小值.解:(1)依题意得:O M =(1+cos2x,1),O N=(1,3sin2x +a ), ∴y =1+cos2x +3sin2x +a =2sin(2x +π6)+1+a .∴f (x )的最小正周期为π.(2)若x ∈[0,π2],则(2x +π6)∈[π6,7π6,∴-12sin(2x +π6)≤1,此时y max =2+1+a =4,∴a =1, y min =-1+1+1=1.(理)已知α、β为锐角,向量a =(cos α,sin α),b =(cos β,sin β),c =(12,-12).(1)若a·b =22,a·c =3-14,求角2β-α的值; (2)若a =b +c ,求tan α的值. 解:(1)∵a·b =(cos α,sin α)·(cos β,sin β)=cos αcos β+sin αsin β =cos(α-β)=22, ① a·c =(cos α,sin α)·(12,-12)=12cos α-12sin α=3-14, ② 又∵0<α<π2,0<β<π2,∴-π2α-β<π2由①得α-β=±π4,由②得α=π6.由α、β为锐角,∴β=5π12.从而2β-α=23π.(2)由a =b +c 可得⎩⎨⎧cos β=cos α-12, ③sin β=sin α+12, ④③2+④2得cos α-sin α=12,∴2sin αcos α=34.又∵2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=34, ∴3tan 2α-8tan α+3=0. 又∵α为锐角,∴tan α>0, ∴tan α=8±82-4×3×36=8±286 =4±73.。
【方法】高考数学一轮复习第3章三角函数解三角形第5节两角和与差的正弦余弦和正切公式教师用书

【关键字】方法第五节两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos_αsin_β;(2)cos(α±β)=cos_αcos_β∓sin_αsin_β;(3)tan(α±β)=.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3)tan 2α=.3.有关公式的变形和逆用(1)公式T(α±β)的变形:①tan α+tan β=tan(α+β)(1-tan_αtan_β);②tan α-tan β=tan(α-β)(1+tan_αtan_β).(2)公式C2α的变形:①sin2α=(1-cos 2α);②cos2α=(1+cos 2α).(3)公式的逆用:①1±sin 2α=(sin α±cos α)2;②sin α±cos α=sin.4.辅助角公式asin α+bcos α=sin(α+φ).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(2)在锐角△ABC中,sin Asin B和cos Acos B大小不确定.( )(3)公式tan(α+β)=可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)公式asin x+bcos x=sin(x+φ)中φ的取值与a,b的值无关.( )[答案] (1)√(2)×(3)×(4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=( )A.- B.C.- D.D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=,故选D.]3.若tan θ=-,则cos 2θ=( ) A .- B .- C.D.D [∵cos 2θ==.又∵tan θ=-,∴cos 2θ==.]4.(2017·云南二次统一检测)函数 f(x)=sin x +cos x 的最小值为________. -2 [函数f(x)=2sin 的最小值是-2.]5.若锐角α,β满足(1+tan α)(1+tan β)=4,则α+β=________. [由(1+tan α)(1+tan β)=4, 可得=,即tan(α+β)=. 又α+β∈(0,π),∴α+β=.]三角函数式的化简(1)化简:=________. 【导学号:】 (2)化简:.(1)2cos α [原式==2cos α.] (2)原式= ===cos 2x.[规律方法] 1.三角函数式的化简要遵循“三看”原则(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式. (2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,最常见的是“切化弦”.(3)三看“结构特征”,分析结构特征,找到变形的方向. 2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.[变式训练1] (2017·浙江镇海中学测试卷一)已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎪⎫α-π4=( )A .-255B .-3510C .-31010D.255A [2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin αsin α+cos α22sin α+cos α=22sin α,由tan ⎝ ⎛⎭⎪⎫α+π4=12,得tan α=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=tan ⎝ ⎛⎭⎪⎫α+π4-tan π41+tan ⎝⎛⎭⎪⎫α+π4tanπ4=-13,即3sin α=-cos α,又sin 2α+cos 2α=1,所以sin α=±1010, 而-π2<α<0,所以sin α=-1010,故2sin 2α+sin 2αcos ⎝⎛⎭⎪⎫α-π4=-255.]三角函数式的求值☞角度1 给角求值(1)2cos 10°-sin 20°sin 70°=( )A.12B.32C. 3D. 2(2)sin 50°(1+3tan 10°)=________. (1)C(2)1[(1)原式=2cos 30°-20°-sin 20°sin 70°=2cos 30°·cos 20°+sin 30°·sin 20°-sin 20°sin 70°=3cos 20°cos 20°= 3.(2)sin 50°(1+3tan 10°)=sin 50°⎝⎛⎭⎪⎫1+3·sin 10°cos 10°=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.]☞角度2 给值求值(1)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A.725B.15 C .-15D .-725(2)(2017·浙江金华十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )A.1+358 B.1+538 C.1-358D.1-538(1)D (2)A [(1)∵cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin 2α=cos ⎝⎛⎭⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725. (2)由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14.∵α为锐角,∴cos α=154,∴sin ⎝ ⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A.] ☞角度3 给值求角已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12 B.π3 C.π4D.π6C [∵α,β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝ ⎛⎭⎪⎫-1010=22.∴β=π4.][规律方法] 1.“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3.“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,最后确定角.三角变换的简单应用已知函数f (x )=sin 2x -sin 2⎝ ⎛⎭⎪⎫x -π6,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.[解] (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π.6分 (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.14分[规律方法] 1.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.2.把形如y =a sin x +b cos x 化为y =a 2+b 2sin(x +φ),可进一步研究函数的周期、单调性、最值与对称性.[变式训练2] (1)(2016·山东高考)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π(2)(2014·全国卷Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.【导学号:】(1)B (2)1 [(1)法一:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =4⎝⎛⎭⎪⎫32sin x +12cos x ⎝ ⎛⎭⎪⎫32cos x -12sin x=4sin ⎝ ⎛⎭⎪⎫x +π6cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π3, ∴T =2π2=π.法二:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3, ∴T =2π2=π.故选B.(2)f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ). ∴f (x )max =1.] [思想与方法]三角恒等变换的三种变换角度(1)变角:设法沟通所求角与已知角之间的关系.常用的拆角、拼角方法是:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β.(2)变名:尽可能减少函数名称,其方法是“弦切互化”,“升幂与降幂”“1”的代换等.(3)变式:对式子变形要尽可能有理化、整式化、降低次数等. [易错与防范]1.三角函数是定义域到值域的多对一的映射,时刻关注角的范围是防止增解的有效措施.求角的某一三角函数值时,应选择在该范围内是单调函数,若已知正切函数值,则选正切函数;否则,若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.2.计算形如y =sin(ωx +φ),x ∈[a ,b ]形式的函数最值时,不要将ωx +φ的范围和x 的范围混淆.课时分层训练(十九)两角和与差的正弦、余弦和正切公式A 组 基础达标 (建议用时:30分钟)一、选择题1.已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4等于( ) A.16 B.13 C.12D.23A [因为cos 2⎝⎛⎭⎪⎫α+π4=1+cos 2⎝ ⎛⎭⎪⎫α+π42=1+cos ⎝⎛⎭⎪⎫2α+π22=1-sin 2α2=1-232=16,故选A.]2.cos 85°+sin 25°cos 30°c os 25°等于( )A .-32B.22C.12D .1C [原式=sin 5°+32sin 25°cos 25°=sin 30°-25°+32sin 25°cos 25°=12cos 25°cos 25°=12.]3.(2017·杭州二次质检)函数f (x )=3sin x 2cos x2+4cos 2x2(x ∈R )的最大值等于( )A .5B.92C.52D .2B [由题意知f (x )=32sin x +4×1+cos x 2=32sin x +2cos x +2≤94+4+2=92,故选B.]4.(2017·浙江模拟训练卷(三))若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( ) 【导学号:】A.35 B.45 C.74D.34D [由θ∈⎣⎢⎡⎦⎥⎤π4,π2,得sin θ≥cos θ>0,则sin θ+cos θ=1+sin 2θ=9+67+716=3+74,sin θ-cos θ=1-sin 2θ=9-67+716=3-74,两式相加得sin θ=34.]5.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6 C.π4D.π3D [依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin2α-β=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32.故β=π3.] 二、填空题6.sin 250°1+sin 10°________. 12 [sin 250°1+sin 10°=1-cos 100°21+sin 10° =1-cos 90°+10°21+sin 10°=1+sin 10°21+sin 10°=12.]7.(2017·浙江模拟训练卷(四))已知函数f (x )=4cos 2x +(sin x +3cos x )2,则函数f (x )的最小正周期为________,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数f (x )的值域为________.【导学号:】π [4+3,4+23] [f (x )=7cos 2x +sin 2x +23sin x cos x =1+3(1+cos 2x )+3sin 2x =4+23sin ⎝⎛⎭⎪⎫2x +π3,故函数f (x )的最小正周期为π.∵x ∈⎣⎢⎡⎦⎥⎤0,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,∴12≤sin ⎝⎛⎭⎪⎫2x +π3≤1,∴4+3≤f (x )≤4+23,故函数f (x )的值域为[4+3,4+23].] 8.化简2+2cos 8+21-sin 8=________. -2sin 4 [2+2cos 8+21-sin 8 =21+cos 8+21-2sin 4cos 4=2×2cos 24+2sin 4-cos 42=-2cos 4+2(cos 4-sin 4)=-2sin 4.] 三、解答题9.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.[解] (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.6分 (2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.10分又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.14分 10.已知函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫2x -π4cos x .(1)求函数f (x )的定义域;(2)设α是第四象限的角,且tan α=-43,求f (α)的值. 【导学号:】[解] (1)要使f (x )有意义,则需cos x ≠0,∴f (x )的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z.6分 (2)f (x )=1-2⎝ ⎛⎭⎪⎫22sin 2x -22cos 2x cos x=1+cos 2x -sin 2x cos x =2cos 2x -2sin x cos x cos x=2(cos x -sin x ).10分由tan α=-43,得sin α=-43cos α.又sin 2α+cos 2α=1,且α是第四象限角, ∴cos 2α=925,则cos α=35,sin α=-45.故f (α)=2(cos α-sin α)=2⎝ ⎛⎭⎪⎫35+45=145.14分B 组 能力提升 (建议用时:15分钟)1.若cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-22,则cos α+sin α的值为( )A .-72B .-12C.12D.72C [∵cos 2αsin ⎝⎛⎭⎪⎫α-π4=cos 2α-sin 2α22sin α-cos α =-2(sin α+cos α)=-22,∴sin α+cos α=12.] 2.(2017·浙江名校(柯桥中学)交流卷三)若cos ⎝ ⎛⎭⎪⎫α-π3=13,则sin ⎝ ⎛⎭⎪⎫π6+α的值是________;cos ⎝⎛⎭⎪⎫2α+π3的值是________. 13 79 [sin ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α =cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝⎛⎭⎪⎫α-π3=13; cos ⎝ ⎛⎭⎪⎫2α+π3=-cos ⎝⎛⎭⎪⎫2α-2π3=1-2· cos 2⎝⎛⎭⎪⎫α-π3=79.] 3.已知函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域. 【导学号:】 [解] (1)f (x )=2sin x ⎝⎛⎭⎪⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π3+32. 所以函数f (x )的最小正周期为T =π.3分由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z , 所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π12+k π,5π12+k π,k ∈Z .8分 (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3, sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1,12分 f (x )∈⎣⎢⎡⎦⎥⎤0,1+32.故f (x )的值域为⎣⎢⎡⎦⎥⎤0,1+32.15分此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。
第五节 两角和与差的正弦、余弦和正切公式

第五节两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式(1)sin(α±β)=sin αcos β±cos αsin β(异名相乘、加减一致); (2)cos(α∓β)=cos αcos β±sin αsin β(同名相乘、加减相反); (3)tan(α±β)=tan α±tan β1∓tan αtan β(两式相除、上同下异).(1)二倍角公式就是两角和的正弦、余弦、正切中α=β的特殊情况.(2)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α; (2)cos 2α=cos 2α-sin 2α =2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan 2α.[熟记常用结论]1.公式的常用变式:tan α±tan β=tan(α±β)(1∓tan αtan β);tan α·tan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.2.降幂公式:sin 2α=1-cos 2α2;cos 2α=1+cos 2α2;sin αcos α=12sin 2α. 3.升幂公式:1+cos α=2cos 2α2;1-cos α=2sin 2α2;1+sin α=⎝⎛⎭⎫sin α2+cos α22;1-sin α=⎝⎛⎭⎫sin α2-cos α22. 4.常用拆角、拼角技巧:例如,2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-⎝⎛⎭⎫π4-α等. 5.辅助角公式:一般地,函数f (α)=a sin α+b cos α(a ,b 为常数)可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝⎛⎭⎫其中tan φ=ab . [小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)存在实数α,使tan 2α=2tan α.( ) 答案:(1)√ (2)√ (3)× (4)√ 二、选填题1.cos 18°cos 42°-cos 72°sin 42°=( ) A .-32B.32C .-12D.12解析:选D 原式=cos 18°cos 42°-sin 18°sin 42°=cos(18°+42°)=cos 60°=12.2.若cos α=-45,α是第三象限的角,则sin ⎝⎛⎭⎫α+π4等于( ) A .-210 B.210C .-7210D.7210解析:选C ∵α是第三象限角, ∴sin α=-1-cos 2α=-35,∴sin ⎝⎛⎭⎫α+π4=-35×22+⎝⎛⎭⎫-45×22=-7210. 3.已知tan α=2,所以tan ⎝⎛⎭⎫α-π4=( ) A.14 B.13 C.12D .-3解析:选B ∵tan α=2,∴tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=13. 4.已知cos x =34,则cos 2x =________.解析:∵cos x =34,∴cos 2x =2cos 2x -1=18.答案:185.若tan α=13,tan(α+β)=12,则tan β=________.解析:tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.答案:17考点一公式的直接应用[基础自学过关][题组练透]1.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A 因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.2.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,即sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23,故选A.3.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 解析:∵sin 2α=2sin αcos α=-sin α,α∈⎝⎛⎭⎫π2,π, ∴cos α=-12,∴sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 答案: 34.已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求cos ⎝⎛⎭⎫2x +π3的值. 解:(1)因为x ∈⎝⎛⎭⎫π2,3π4, 所以x -π4∈⎝⎛⎭⎫π4,π2, sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4·sin π4=7210×22+210×22=45. (2)因为x ∈⎝⎛⎭⎫π2,3π4, 故cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35, sin 2x =2sin x cos x =-2425,cos 2x =2cos 2x -1=-725.所以cos ⎝⎛⎭⎫2x +π3=cos 2x cos π3-sin 2x sin π3=-725×12+2425×32=243-750.[名师微点]三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值. 考点二三角函数公式的逆用与变形用[师生共研过关][典例精析](1)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C =________. (2)sin 10°1-3tan 10°=________. (3)化简sin 235°-12cos 10°cos 80°=________.[解析] (1)由tan A tan B =tan A +tan B +1, 可得tan A +tan B1-tan A tan B=-1, 即tan(A +B )=-1,又因为A +B ∈(0,π), 所以A +B =3π4,则C =π4,cos C =22.(2)sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10° =2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.(3)sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10° =-12cos 70°12sin 20°=-1.[答案] (1)22 (2)14(3)-1 [解题技法]两角和、差及倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β). (3)倍角公式变形:降幂公式.[提醒] tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.[过关训练]1.(2019·西安模拟)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4=( ) A.16 B .-16C.12D.23解析:选A cos 2⎝⎛⎭⎫α+π4=1+cos 2⎝⎛⎭⎫α+π42=1-sin 2α2,∵sin 2α=23,∴cos 2⎝⎛⎭⎫α+π4=1-232=16. 2.(2018·益阳模拟)已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-45考点三公式的灵活应用[全析考法过关][考法全析]考法(一) 角的变换[例1] (1)(2019·开封模拟)已知cos ⎝⎛⎭⎫x -π6=13,则cos x +cos ⎝⎛⎭⎫x -π3=( ) A.32B. 3C.12D.33(2)(2019·南昌模拟)设α为锐角,若cos ⎝⎛⎭⎫α+π6=-13,则sin ⎝⎛⎭⎫2α+π12的值为( ) A.725 B.72-818C .-17250D.25[解析] (1)cos x +cos ⎝⎛⎭⎫x -π3=cos ⎣⎡⎦⎤⎝⎛⎭⎫x -π6+π6+cos ⎣⎡⎦⎤⎝⎛⎭⎫x -π6-π6=2cos ⎝⎛⎭⎫x -π6cos π6=33. (2)∵α为锐角,∴0<α<π2,π6<α+π6<2π3,设β=α+π6,由cos ⎝⎛⎭⎫α+π6=-13,得sin β=223,sin 2β=2sin βcos β=-429,cos 2β=2cos 2β-1=-79,∴sin ⎝⎛⎭⎫2α+π12=sin ⎝⎛⎭⎫2α+π3-π4=sin ⎝⎛⎭⎫2β-π4=sin 2βcos π4-cos 2βsin π4=⎝⎛⎭⎫-429×22-⎝⎛⎭⎫-79×22=72-818.[答案] (1)D (2)B考法(二) 三角函数式的变化[例2] (1)化简:(1+sin θ+cos θ)⎝⎛⎭⎫sin θ2-cos θ22+2cos θ(0<θ<π).(2)求值:1+cos 20°2sin 20°-sin 10°⎝⎛⎭⎫1tan 5°-tan 5°. [解] (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0,∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ)⎝⎛⎭⎫sin θ2-cos θ2 =⎝⎛⎭⎫2sin θ2cos θ2+2cos 2θ2⎝⎛⎭⎫sin θ2-cos θ2 =2cos θ2⎝⎛⎭⎫sin 2θ2-cos 2θ2 =-2cos θ2cos θ,故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝⎛⎭⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝⎛⎭⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.[规律探求]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( )A.12 B.13 C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45 C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45.。
高考数学(文)一轮复习 3-5两角和与差的正弦、余弦和正切公式

∴cosβ=cos[α-(α-β)]
=cosαcos(α-β)+sinαsin(α-β)
=54×3 1010+53×-
10
10
=9
10 50 .
22
板块一
板块二
板块三
板块四
板块五
高考的值.
解 ∵sin(α-β)=- 1100,cos(α-β)=3 1010, cosβ=9 5010,sinβ=135010. ∴sin(α-2β)=sin[(α-β)-β]=sin(α-β)cosβ-cos(α-β)sinβ=-2254.
4.sinα±cosα=
π 2sinα±4.( √ )
5.11- +ttaannθθ=tanπ4+θ.( × )
6.存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.( √ )
7.在锐角△ABC中,sinAsinB和cosAcosB大小不确定.( × )
8
板块一
板块二
板块三
板块四
板块五
4.[课本改编]scions77°°+-csoins1155°°ssiinn88°°的值为(
)
A.2+ 3
B.2- 3
C.2
1 D.2
解析 原式= scions1155°°--88°°+-csoins1155°°ssiinn88°°= csoins1155°°ccooss88°°=tan15°=tan(45°-30°)= 1t+an4ta5n°4-5°ttaann3300°°=
公式名
公式
二倍角的正弦 sin2α= 2sinαcosα
二倍角的余弦 cos2α= cos2α-sin2α=1-2sin2α=2cos2α-1
二倍角的正切
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节
两角和与差的正弦、余弦和正切公式
基础知识回扣
热点考向聚焦
活 页 作 业
考纲要求
1.会用向量的数量积推导出 两角差的余弦公式. 2.能利用两角差的余弦公式 导出两角差的正弦、正切公 式. 3.能利用两角差的余弦公式 导出两角和的正弦、余弦、 正切公式,导出二倍角的正 弦、余弦、正切公式,了解 它们的内在联系.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
∴sin β=sin[(β-α)+α] =sin(β-α)cos α+cos(β-α)sin α 7 2 3 2 4 25 2 2 = 10 ×5+ 10 ×5= 50 = 2 .……………………10 分 π 3 由2<β<π 得 β=4π.……………………………………12 分 2 3 (另也可求得 cos β=- 2 ,得 β=4π).
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
π 4 3 (2)∵0<α<2,sin α=5,∴cos α=5.…………………6 分 π 又 0<α<2<β<π,∴0<β-α<π. 2 π 由 cos(β-α)= 10 ,得 0<β-α<2. 98 7 2 ∴sin(β-α)= 10 = 10 ,……………………………8 分
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
【考向探寻】
利用公式化简三角函数式.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
【典例剖析】 (1) 2+2cos 8+2 1-sin 8的化简结果是 A.4cos 4-2sin 4 C.2sin 4-4cos 4 (2)化简下列各式: 2sin 50° +sin 80° 1+ 3tan 10° ① ; 1+cos 10° 2cos2α-1 ② π π . 2tan4-αsin24+α
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
∵θ 为钝角,∴sin θ>0,cos θ<0, ∴sin θ-cos θ= sin θ-cos θ2 = 1-2sin θcos θ= 4 2 5 .② 7 2 由①②得 sin θ= 10 .
新课标高考总复习· 数学(RJA版)
cos 2α
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
三角函数式化简要遵循的“三看”原则 (1)一看“角”.这是最重要的一点,通过角之间的关系,
把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看“函数名称”.看函数名称之间的差异,从而确定 使用的公式. (3)三看“结构特征”.分析结构特征,可以帮助我们找到 变形的方向,常见的有“遇到分式要通分”等.
2
3 π π 所以 sin α= 2 ,故 α=3,所以 tan α=tan 3= 3,故选 D.
答案:D
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
3.已知 3 A.5
π π 1 α∈2,π,tanα+4=7,则
cos α 等于(
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
(1)
α α sin α=2sin 2· 2 cos
→
α 2tan 2 sin α= 2α 1+tan 2
→ 求出sin α的值 (2) 已知cosβ-α,sin α → sinβ-α,cos α → 利用β=β-α+α可求得sin β → 求得β
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
【活学活用】 cos 10° 1.化简:(tan 10° 3) sin 50° - .
sin 10° - 解:原式=cos 10° cos 10° sin 3 = sin 50°
10° 3cos 10° - sin 50°
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
α 1 (1)∵tan 2=2, ∴sin
α α=sin2·=2sin 2
α α 2cos 2………………………2 分
α α α 2sin 2cos 2 2tan 2 = α α= α……………………………3 分 sin22+cos22 1+tan22 1 2×2 4 = 1 =5.…………………………………………4 分 1+22
4 α=-5.
新课标高考总复习· 数学(RJA版)
答案:D
基础知识回扣
热点考向聚焦
活 页 作 业
4.已知
π 3 sinθ+4=5,θ
为钝角,则 sin θ=________.
π 解析:方法一:sinθ+4=
2 3 2 (sin θ+cos θ)=5
3 2 ∴sin θ+cos θ= 5 .① 18 两边平方得 1+2sin θcos θ=25. 7 ∴2sin θcos θ=-25.
提示:asin x+bcos x= a +b
2
2
a 2 2sin x+ a +b
b cos x= a2+b2(sin xcos φ+cos xsin φ) a2+b2 = a +b
2 2
sin(x+φ).其中tan
b φ=a.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
基础知识回扣
热点考向聚焦
活 页 作 业
π 3π 5π 方法二:因为 θ 为钝角,所以 θ+4∈ 4 , 4 , 又
π 3 sinθ+4=5, π 4 cos θ+4 = - 5 ,所 以
所以
sin
π π θ= sin θ+4-4 =
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
常用变形为:
tan α+tan β= tan α-tan β= tan αtan β= tan(α+β)(1-tan αtan β) ; tan(α-β)(1+tan αtan β) ;
tan α+tan β 1- tanα+β
新课标高考总复习· 数学(RJA版)
B.2sin 4 D.-2sin 4
基础知识回扣
热点考向聚焦
活 页 作 业
题号 (1) (2)
分析 利用倍角公式化简即可,注意符号问题. 利用诱导公式、两角和(差)公式化简.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
(1)解析:原式= 2×2cos24+2 sin 4-cos 42 =-2cos 4+2(cos 4-sin 4)=-2sin 4.
π π π 3 π sinθ+4· 4-cosθ+4· 4=5× cos sin
2 4 2 7 2 - × 2 - 5 2 = 10 .
7 2 答案: 10
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
5.已知tan(α+β)=3,tan(α-β)=5,则tan 2α=______.
1 解析:2sin 15° 15° cos =sin 30° 2,A 不正确;cos215° = 3 -sin 15° =cos 30° 2 ,B 选项正确. =
2
答案:B
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
2.若 于( ) 2 A. 2 C. 2
π α∈0,2,且
考情分析
1.从考查内容看,利用两角和 与差的正弦、余弦、正切公式 进行三角函数式的化简、求值 是高考的重点,公式的逆用、 变形应用是高考的热点. 2.从考查题型看,三种题型都 可能出现,常将公式变形与三 角函数的性质结合在一起考 查,一般属中档题.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
答案:D
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
②原式=
cos 2α
π 2 π 2tan4-α· 4-α cos
cos 2α cos 2α = π π = π =cos 2α=1. 2sin4-αcos4-α sin2-2α
.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
பைடு நூலகம்
活 页 作 业
二、二倍角公式 sin 2α= cos 2α= 2sin αcos α . cos2α-sin2α =
2tan α 1-tan2α
2cos2= α-1
1-2sin2α ;
tan 2α=
.
常用变形为: sin2α=
1-cos2α 2
解析:∵2α=(α+β)+(α-β), ∴tan 2α=tan[(α+β)+(α-β)] tanα+β+tanα-β 3+5 8 4 = = = =-7. 1-tanα+βtanα-β 1-3×5 -14
4 答案:-7
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
基础知识回扣
热点考向聚焦
活 页 作 业
三、形如 asin x+bcos x 的式子的化简(辅助角公式)