2019年全国统一高考数学试卷(全国新课标Ⅱ理科)【学生试卷】
2019全国2卷高考理科数学试题及答案解析

绝密★启用前
2019年普通高等学校招生全国统一考试理科数学
本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项
中,只有一项是符合题目要求的.。
2019年高考理科数学全国卷Ⅱ真题理数(附参考答案和详解)

文档说明绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅱ)数学(理工农医类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019全国卷Ⅱ·理)设集合2{|560}A x x x =-+>,{|10}B x x =-<,则A B =I ( )A.(,1)-∞B.(2,1)-C.(3,1)--D.(3,)+∞【解析】A B =I 2{|560}x x x -+>I {|10}x x -<{|23}{|1}{|1}x x x x x x x =<><=<I 或.故选A. 【答案】A2.(2019全国卷Ⅱ·理)设32i z =-+,则在复平面内z 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】由32i z =-+,得32i z =--,则32i z =--,对应点(3,2)--位于第三象限.故选C. 【答案】C 3.(2019全国卷Ⅱ·理)已知(2,3)AB =u u u r ,(3,)AC t =u u u r ,||1BC =u u u r ,则AB BC ⋅=u u u r u u u r( )A.3-B.2-C.2D.3【解析】因为(3,)(2,3)(1,3)BC AC AB t t -=-==-u u u r u u u r u u u r ,||1BC =u u u r,1,解得3t =,所以(1,0)BC =u u u r,所以21302AB BC ⋅=⨯+⨯=u u u r u u u r.故选C.【答案】C4.(2019全国卷Ⅱ·理)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rR α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( )【解析】由rR α=得r R α=,代入121223()()M M M R r R r r R +=++,整理得5132243(1)+3+M M αααα=+. 又因为3453233(1)+3+ααααα≈+,所以2133M M α≈,所以α≈,所以r R α=≈.故选D. 【答案】D5.(2019全国卷Ⅱ·理)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数B.平均数C.方差D.极差【解析】中位数是将9个数据从小到大或从大到小排列后 中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极值均受影响.故选A.【答案】A6.(2019全国卷Ⅱ·理)若a b >,则( )A.ln()0a b ->B.33a b <C.330a b ->D.||||a b >【解析】不妨设1,2a b =-=-,则a b >,可验证选项A ,B ,D 错误,只有选项C 正确.故选C. 【答案】C.7.(2019全国卷Ⅱ·理)设α,β为两个平面,则αβP 的充要条件是( ) A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线D.α,β垂直于同一平面【解析】若αβP ,则α内有无数条直线与β平行,反之不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交;故A ,C ,D 均不是充要条件.根据平面与平面平行的判定定理可知,若一个平面内有两条相交直线与另一个平面平行,则两个平面平行,则两个平面平行,反之也成立.因此B 选项中条件是αβP 的充要条件.故选B. 【答案】B8.(2019全国卷Ⅱ·理)若抛物线22(0)y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p =( )A.2B.3C.4D.8【解析】抛物线22(0)y px p =>的焦点坐标为,02p ⎛⎫⎪⎝⎭,椭圆2213x y p p+=的焦点坐标为(.由题意得2p=, 所以0p =(舍去)或8p =.故选D. 【答案】D9.(2019全国卷Ⅱ·理)下列函数中,以π2为周期且在区间ππ,42⎛⎫⎪⎝⎭单调递增的是( ) A.()|cos2|f x x = B.()sin2|f x x =|C.()cos ||f x x =D.()sin ||f x x =【解析】作出函数()|cos2|f x x =的图象,如图.由图像可知()|cos2|f x x =的周期为2π,在区间ππ,42⎛⎫⎪⎝⎭单调递增. 同理可得()sin2|f x x =|的周期为为2π,在区间ππ,42⎛⎫⎪⎝⎭单调递减,()cos ||f x x =的周期为2π.()sin ||f x x =不是周期函数,排除B ,C ,D 选项.故选A.【答案】A10.(2019全国卷Ⅱ·理)已知π0,2α⎛⎫∈ ⎪⎝⎭,2sin2cos21αα=+,则sin α=( )A.15【解析】由2sin2cos21αα=+,得24sin cos 2cos ααα=g. 因为π0,2a ⎛⎫∈ ⎪⎝⎭,所以2sin cos αα=.又因为22sin cos 1αα+=, 所以21sin 5α=.又因为π0,2a ⎛⎫∈ ⎪⎝⎭,所以sin α故选B.【答案】B11.(2019全国卷Ⅱ·理)设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,以OF为直径的圆与圆222x y a +=交于P ,Q 两点.若||||PQ OF =,则C 的离心率为( )C.2【解析】令双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 的坐标为(,0)c ,则c =.如图所示,由圆的对称性及条件||||PQ OF =可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF . 设垂足为M ,连接OP ,则||OP a =,||||2c OM MP ==, 由222||||||OM MP OP +=, 得22222c c a ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以ce a==.故选A. 【答案】A12.(2019全国卷Ⅱ·理)设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A.9,4⎛⎤-∞ ⎥⎝⎦B.7,3⎛⎤-∞ ⎥⎝⎦C.5,2⎛⎤-∞ ⎥⎝⎦D.8,3⎛⎤-∞ ⎥⎝⎦【解析】因为当(0,1]x ∈时,()(1)f x x x =-, 所以当(0,1]x ∈时,1(),04f x ⎡⎤∈-⎢⎥⎣⎦.因为(1)2()f x f x +=,所以当(1,0]x ∈-时,1(0,1]x +∈,11()(1)(1)22f x f x x x =+=+,1(),016f x ⎡⎤∈-⎢⎥⎣⎦; …当(1,2]x ∈时,1(0,1]x -∈,()2(1)2(1)(2)f x f x x x =-=--, 1(),02f x ⎡⎤∈-⎢⎥⎣⎦;当(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)4(2)(3)f x f x f x x x =-=-=--, ()[1,0]f x ∈-;…()f x 的图象如图所示.若对于任意(,]x m ∈-∞,都有8()9f x ≥-,则有23m <≤.设8()9f m =-,则84(2)(3)9m m --=-,解得7833m m ==或.结合图像可知,当73m ≤时,符合题意.故选B. 【答案】B第Ⅱ卷二、填空题:本题共4小题,每小题5分。
2019年高考全国Ⅱ卷理科数学及答案

绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .-3B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差 6.若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B 5C 3D 511.设F 为双曲线C :22221(0,0)x y a b a b -=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A B C .2 D 12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9(,]4-∞B .7(,]3-∞C .5(,]2-∞D .8(,]3-∞二、填空题:本题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试理科数学试卷全国卷Ⅱ

绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =A .(–∞,1)B .(–2,1)C .(–3,–1)D .(3,+∞) 2.设z =–3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅= A .–3 B .–2 C .2 D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差 6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8 9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos2x │B .f (x )=│sin2x │C .f (x )=cos│x │D .f (x )=sin │x │ 10.已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B5C3D511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2 D12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦ B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
2019年高考全国卷2理科数学及答案(word精校版可以编辑)

2019 年普通高等学校招生全国统一考试全国卷 2 理科数学考试时间: 2019 年 6 月 7 日 15: 00—— 17:00使用省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、海南本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分, 满分 150 分,考试时间120 分钟。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用 2B 铅笔填涂;非选择题必须使用0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题,共 60 分)一、选择题:本题共12 小题,每小题 5 分,共要求的.21.设集合 A={ x|x -5x+6>0} , B={ x|x-1<0} ,则60 分.在每小题给出的四个选项中,只有一项是符合题目 A∩ B=A . (-∞, 1) C. (-3, -1)B . (-2, 1) D .(3, +∞ )2.设z=-3+2i ,则在复平面内z 对应的点位于A .第一象限C.第三象限B .第二象限D .第四象限3.已知uuurAB=(2,3),uuurAC=(3, t),uuurBCuuur uuur =1,则 AB BC =A.-3 C. 2 B.-2 D .34.2019 年1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为 M2,地月距离为R, L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:M 1M 2M 1( R r ) 2r2 (R r )3 .R设 r 的值很小,因此在近似计算中 3 3 3 4 5 3 ,则 r 的近似值为,由于 (1 ) 23RA . M2 R B.M 2 R M 12M 1C . 3 3M2 R D .3 M2 R M 1 3M 15.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从 9 个原始评分中去掉 1个 最高分、 1 个最低分,得到 7 个有效评分 .7 个有效评分与 9 个原始评分相比,不变的数字特征是 A .中位数 B .平均数C .方差D .极差6 .若 a>b ,则B . 3a<3bA . ln( a- b)>0C .a 3- b 3>0D .│a │ >│b │7.设 α, β为两个平面,则 α∥ β的充要条件是A . α内有无数条直线与 β平行B . α内有两条相交直线与 β平行C .α, β平行于同一条直线D .α,β垂直于同一平面8 2 x 2y 2.若抛物线 y =2px(p>0) 的焦点是椭圆 3 p 1 的一个焦点,则 p= pA . 2B . 3C .4 D. 8 9.下列函数中,以 为周期且在区间 ( , )单调递增的是2 4 2A . f(x)= │ cos x2│ C .f(x)=cos │x │B . f(x)= │ sin 2x │D .f(x)= sin x │10.已知 α∈(0 , ), 2sin 2α=cos 2α+1,则 sin α= 2A . 1B .5 55C . 3D .2 53 511.设 F 为双曲线 x 2y 21(a 0, b 0) 的右焦点, O 为坐标原点, 以 OF 为直径的圆与圆 x 2 y 2 a 2 C :b 2 a 2交于 P ,Q 两点 .若 PQ OF ,则 C 的离心率为A. 2 B . 3 C.2 D . 512.设函数 f ( x) 的定义域为R,满足 f(x 1) 2 f (x) ,且当x(0,1] 时, f(x)x(x 1) .若对任意x ( , m] ,都有 f ( x)8,则 m 的取值范围是99A .,5C.,第Ⅱ卷7 B .,8 D .,(非选择题,共90 分)二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97,有20个车次的正点率为 0.98,有 10 个车次的正点率为 0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 __________.14.已知 f ( x) 是奇函数,且当 x 0 时, f( x) e ax .若 f (ln 2) 8 ,则 a __________.15.△ABC 的内角 A, B,C 的对边分别为 a,b, c .若 b 6, a 2c, B π,则△ ABC 的面积为 __________. 316.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图 1).半正多面体是由两种或两种以上的正多边形围成的多面体 .半正多面体体现了数学的对称美.图2 是一个棱数为48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共有 ________个面,其棱长为_________.(本题第一空 2 分,第二空 3分.)三、解答题:共70 分。
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

M2 2M13α r绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z 对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB =(2,3),AC =(3,t),BC =1,则AB ⋅BC =A.-3 B.-2C.2 D.34.2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:M1 +M2 = (R +r)M1 .(R +r)2r2R3α=r α3α3+ 3α4+α5≈3设,由于R 的值很小,因此在近似计算中(1+α)2,则的近似值为A.M2 RM1B.RD .3M2 R 3M15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉1 个最高分、1 个最低分,得到7 个有效评分.7 个有效评分与9 个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差6.若a>b,则A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆x y2+=1 的一个焦点,则p= 3 p pA.2 B.3 C.4 D.8π 9.下列函数中,以2ππ为周期且在区间( ,4 2)单调递增的是A.f(x)=│cos 2x│B.f(x)=│sin 2x│C.f(x)=cos│x│D.f(x)= sin│x│π10.已知α∈(0,2 A.15),2sin 2α=cos 2α+1,则sin α=B.5C.3x2 y2 D.2 5511.设F 为双曲线C:a2 -=1(a > 0, b > 0) 的右焦点,O 为坐标原点,以OF 为直径的b2圆与圆x2+y2=a2交于P,Q 两点.若PQ =OF A.,则C 的离心率为B.C.3 3M2 RM15 3232C.2 D.12.设函数f (x) 的定义域为R,满足f (x +1) = 2 f (x) ,且当x ∈ (0,1] 时,f (x) =x(x -1) .若对任意x ∈(-∞, m] ,都有f (x) ≥-8,则m 的取值范围是9A.⎛-∞,9 ⎤B.⎛-∞,7 ⎤4 ⎥ 3 ⎥ ⎝⎦C.⎛-∞,5 ⎤⎝⎦D.⎛-∞,8 ⎤2 ⎥ 3⎥ ⎝⎦⎝⎦二、填空题:本题共4 小题,每小题5 分,共20 分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97,有20 个车次的正点率为0.98,有10 个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.14.已知f (x) 是奇函数,且当x < 0 时,f (x) =-e ax.若f (ln 2) = 8 ,则a =.15.△ABC 的内角A, B, C 的对边分别为a, b, c .若b = 6, a = 2c, B =π,则△ABC 的面积3为.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2 是一个棱数为48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(.本题第一空2 分,第二空3 分.)三、解答题:共70 分。
2019全国2卷高考数学理科含答案详解(珍藏版)

绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A ={x|x 2﹣5x+6>0},B ={x|x ﹣1<0},则A ∩B =()A .(﹣∞,1)B .(﹣2,1)C .(﹣3,﹣1)D .(3,+∞)2.(5分)设z =﹣3+2i ,则在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知=(2,3),=(3,t ),||=1,则?=()A .﹣3B .﹣2C .2D .34.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:+=(R +r ).设α=.由于α的值很小,因此在近似计算中≈3α3,则r 的近似值为()A .RB .RC .R D .R5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A .中位数B .平均数C .方差D .极差6.(5分)若a >b ,则()A .ln (a ﹣b )>0B .3a<3bC .a 3﹣b 3>0D .|a|>|b|7.(5分)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(5分)若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =()A .2B .3C .4D .89.(5分)下列函数中,以为周期且在区间(,)单调递增的是()A .f (x )=|cos2x|B .f (x )=|sin2x|C .f (x )=cos|x |D .f (x )=sin|x|10.(5分)已知α∈(0,),2sin2α=cos2α+1,则sin α=()A .B .C .D .11.(5分)设F 为双曲线C :﹣=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF |,则C 的离心率为()A .B .C .2D .12.(5分)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]二、填空题:本题共4小题,每小题5分,共20分。
2019年全国乙卷统一高考数学试卷(理科)(新课标II)逐题解析

y2 b2
1(a>0,b>0)的右焦点,O 为坐标原点,以 OF 为直径的
圆与圆 x2+y2=a2 交于 P、Q 两点.若|PQ|=|OF|,则 C 的离心率为
A. 2
B. 3
C. 2
D. 5
解析如下:A
准确画图,由图形对称性得出 P 点坐标,代入圆的方程得到 c 与 a 关系,可求双曲线的离心 率.
的方法,如 p 2 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除 A,同样可排除
B,C,故选 D.
因 为 抛 物 线 y2 2 px( p 0) 的 焦 点 ( p , 0) 是 椭 圆 x2 y2 1 的 一 个 焦 点 , 所 以
2
3p p
3 p p ( p )2 ,解得 p 8 ,故选 D. 2
本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.
9.下列函数中,以 为周期且在区间( , )单调递增的是
2
42
A. f(x)=│cos 2x│
B. f(x)=│sin 2x│
C. f(x)=cos│x│
D. f(x)= sin│x│
解析如下:A 本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象, 即可做出选择.
中位数仍为 x5 ,A 正确.
②原始平均数
x
1 9
( x1
x2
x3
x4
x8
x9 )
,后来平均数
x 17(x2 x3 x4 x8)
平均数受极端值影响较大, x 与 x 不一定相同,B 不正确
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国统一高考数学试卷 (全国新课标Ⅱ理科)
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.〖2019全国Ⅱ理〗设集合2{|560}A x x x =-+>,
{|10}B x x =-<,则=A
B ( )
A .(,1)-∞
B .(2,1)-
C .(3,1)--
D .(3,)+∞
2.〖2019全国Ⅱ理〗设32z i =-+,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
3.〖2019全国Ⅱ理〗已知(2,3)AB =,(3,)AC t =,
||1BC =,则=AB BC ( )
A .3-
B .2-
C .2
D .3
4.〖2019全国Ⅱ理〗2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为
1M ,月球质量为2M ,地月距离为R ,2L 点到月球
的距离为r ,根据牛顿运动定律和万有引力定律,
r 满足方程:121
223
()
()M M M R r R r r R +=++. 设r
R
α=
.由于α的值很小,因此在近似计算中345
32
333(1)
ααααα++≈+,则r 的近似值为( ) A
B
C
D
5.〖2019全国Ⅱ理〗演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差 D .极差
6.〖2019全国Ⅱ理〗若a b >,则( )
A .()0ln a b ->
B .33a b <
C .330a b ->
D .||||a b >
7.〖2019全国Ⅱ理〗设α,β为两个平面,则//αβ的充要条件是( )
A .α内有无数条直线与β平行
B .α内有两条相交直线与β平行
C .α,β平行于同一条直线
D .α,β垂直于同一平面
8.〖2019全国Ⅱ理〗若抛物线22(0)y px p =>的焦点
是椭圆2213x y p p
+=的一个焦点,则=p ( )
A .2
B .3
C .4
D .8
9.〖2019全国Ⅱ理〗下列函数中,以
2
π
为周期且在区间(4π,)2
π
单调递增的是( ) A .()|cos2|f x x = B .()|sin 2|f x x = C .()cos ||f x x = D .()sin ||f x x =
10.〖2019全国Ⅱ理〗已知(0,)2
π
α∈,
2sin2cos21αα=+,则sin α=( )
A .15 B
C
D
.
11.〖2019全国Ⅱ理〗设F 为双曲线
22
22:1(0,0)x y C a b a b
-=>>的右焦点,O 为坐标原点,
以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若||||PQ OF =,则C 的离心率为( ) A
B
C .2 D
12.〖2019全国Ⅱ理〗设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0x ∈,1]时,
()(1)f x x x =-.若对任意(x ∈-∞,]m ,都有8
()9
f x -
…,则m 的取值范围是( ) A .(-∞,9]4 B .(-∞,7]3 C .(-∞,5]2
D .(-∞,8]3
二、填空题:本题共4小题,每小题5分,共20分. 13.〖2019全国Ⅱ理〗我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为____.
14.〖2019全国Ⅱ理〗已知()f x 是奇函数,且当0x <时,()ax f x e =-.若(2)8f ln =,则a =____.
15.〖2019全国Ⅱ理〗ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若6b =,2a c =,3
B π
=
,则
ABC ∆的面积为____.
16.〖2019全国Ⅱ理〗中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有____个面,其棱长为____.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.〖2019全国Ⅱ理〗(12分)如图,长方体
1111ABCD A B C D -的底面ABCD 是正方形,
点E 在棱1AA 上,1BE EC ⊥.
(1)证明:BE ⊥平面11EB C ;
(2)若1AE A E =,求二面角1B EC C --的正弦值.
18.〖2019全国Ⅱ理〗(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求(2)P X =;
(2)求事件“4X =且甲获胜”的概率.
19.〖2019全国Ⅱ理〗(12分)已知数列{}n a 和{}n b 满
足11a =,10b =,1434n n n a a b +=-+,
1434n n n b b a +=--.
(1)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (2)求{}n a 和{}n b 的通项公式.
20.〖2019全国Ⅱ理〗(12分)已知函数
1
()1
x f x lnx x +=-
-. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;
(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点
0(A x ,0)lnx 处的切线也是曲线x y e =的切线.
21.〖2019全国Ⅱ理〗(12分)已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为
1
2
-.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;
(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C
于点G .
()i 证明:PQG ∆是直角三角形;
()ii 求PQG ∆面积的最大值.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)
22.〖2019全国Ⅱ理〗(10分)在极坐标系中,O 为极点,点0(M ρ,00)(0)θρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当03
π
θ=时,求0ρ及l 的极坐标方程;
(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.
23.〖2019全国Ⅱ理〗已知函数()|||2|()f x x a x x x a =-+--.
(1)当1a =时,求不等式()0f x <的解集; (2)当(,1)x ∈-∞时,()0f x <,求a 的取值范围.。