高考数学(文)二轮复习对点练:第一部分方法、思想解读专题对点练1含答案
近年高考数学二轮复习第一部分方法、思想解读专题对点练4从审题中寻找解题思路文(2021年整理)

2019版高考数学二轮复习第一部分方法、思想解读专题对点练4 从审题中寻找解题思路文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学二轮复习第一部分方法、思想解读专题对点练4 从审题中寻找解题思路文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学二轮复习第一部分方法、思想解读专题对点练4 从审题中寻找解题思路文的全部内容。
专题对点练4 从审题中寻找解题思路一、选择题1.已知方程=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A 。
(—1,3)B 。
(-1,) C.(0,3) D.(0,)2.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x 〈2时,f (x )=x 3-x ,则函数y=f (x )的图象在区间[0,6]上与x 轴的交点的个数为( ) A 。
6 B .7 C .8 D 。
9 3.已知F 1,F 2是双曲线C :=1(a 〉0,b>0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小的内角为30°,则双曲线C 的渐近线方程是( )A 。
x±y=0B .x±y=0C 。
x±2y=0D .2x±y=0 4.已知双曲线C :x 2—=1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 的条数共有( ) A 。
3 B 。
2 C .1 D 。
45。
已知二次函数f (x )=ax 2+bx+c ,其中b>a ,且对任意x ∈R 都有f (x )≥0,则M=的最小值为( )A .B .C 。
[推荐学习]2019版高考数学二轮复习第一部分方法思想解读专题对点练3分类讨论思想转化与化归思想文
![[推荐学习]2019版高考数学二轮复习第一部分方法思想解读专题对点练3分类讨论思想转化与化归思想文](https://img.taocdn.com/s3/m/35e92c20844769eae009ed63.png)
专题对点练3 分类讨论思想、转化与化归思想一、选择题1.设函数f(x)=-若f(a)>1,则实数a的取值范围是()A.(0,2)B.(0,+∞)C.(2,+∞)D.(-∞,0)∪(2,+∞)2.函数y=5--的最大值为()A.9B.12C.D.33.在等比数列{a n}中,a3=7,前3项的和S3=21,则公比q的值是()A.1B.-C.1或-D.-1或4.若m是2和8的等比中项,则圆锥曲线x2+=1的离心率是()A.B.C.或D.或5.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y=±x,则该双曲线的离心率为()A. B.C.或D.或6.若a>0,且a≠1,p=log a(a3+1),q=log a(a2+1),则p,q的大小关系是()A.p=qB.p<qC.p>qD.当a>1时,p>q;当0<a<1时,p<q7.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A.-B.(-∞,3)C.D.[3,+∞)8.(2018安徽黄山一模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是()A.(0,1)B.(1,+∞)C.(-1,0)D.(-∞,-1)二、填空题9.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= .10.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意x∈[a,a+2],f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是.11.函数y=--的最小值为.12.在三棱锥P-ABC中,PA,PB,PC两两互相垂直,且AB=4,AC=5,则BC的取值范围是.三、解答题13.已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}=(1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围;(2)①求F(x)的最小值m(a);②求F(x)在区间[0,6]上的最大值M(a).专题对点练3答案1.B解析若2a-3>1,解得a>2,与a<0矛盾,若>1,解得a>0,故a的范围是(0,+∞).2.D解析设a=(5,1),b=(--),∵a·b≤|a|·|b|,∴y=5----=3.当且仅当5--,即x=时等号成立.3.C解析当公比q=1时,则a1=a2=a3=7,S3=3a1=21,符合要求.当公比q≠1时,则a1q2=7,--=21,解得q=- (q=1舍去).综上可知,q=1或q=-.4.D解析因为m是2和8的等比中项,所以m2=2×8=16,所以m=±4.当m=4时,圆锥曲线+x2=1是椭圆,其离心率e=;当m=-4时,圆锥曲线x2-=1是双曲线,其离心率e=.综上知,选项D正确.5.C解析当焦点在x轴上时,,此时离心率e=;当焦点在y轴上时,,此时离心率e=.故选C.6.C解析当0<a<1时,可知y=a x和y=log a x在其定义域上均为减函数,则a3+1<a2+1,∴log a(a3+1)>log a(a2+1),即p>q.当a>1时,y=a x和y=log a x在其定义域上均为增函数,则a3+1>a2+1,∴log a(a3+1)>log a(a2+1),即p>q.综上可得p>q.7.C解析f'(x)=3x2-2tx+3,由于f(x)在区间[1,4]上单调递减,则有f' (x)≤0在[1,4]上恒成立,即3x2-2tx+3≤0,即t≥在[1,4]上恒成立,因为y=在[1,4]上单调递增,所以t≥,故选C.8.B解析方程f(x)=k化为方程e|x|=k-|x|.令y1=e|x|,y2=k-|x|.y2=k-|x|表示斜率为1或-1的平行折线系.当折线与曲线y=e|x|恰好有一个公共点时,k=1.由图知,关于x的方程f(x)=k有两个不同的实根时,实数k的取值范围是(1,+∞).故选B.9.- 解析当a>1时,函数f(x)= a x+b在[-1,0]上为增函数,由题意得--无解.当0<a<1时,函数f(x)=a x+b在[-1,0]上为减函数,由题意得--解得-所以a+b=-.10.(-∞,-5]解析因为当x≥0时,f(x)=x2,所以此时函数f(x)在[0,+∞)上单调递增.又因为f(x)是定义在R上的奇函数,且f(0)=0,所以f(x)在R上单调递增.若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则x+a≥3x+1恒成立,即a≥2x+1恒成立,因为x∈[a,a+2],所以(2x+1)max=2(a+2)+ 1=2a+5,即a≥2a+5,解得a≤-5.即实数a的取值范围是(-∞,-5].11.解析原函数等价于y=----,即求x轴上一点到A(1,1),B(3,2)两点距离之和的最小值.将点A(1,1)关于x轴对称,得A'(1,-1),连接A'B交x轴于点P,则线段A'B的值就是所求的最小值,即|A'B|=---.12.(3,)解析如图所示,问题等价于长方体中,棱长分别为x,y,z,且x2+y2=16,x2+z2=25,求的取值范围,转化为y2+z2=41-2x2,∵x2+y2=16,∴0<x<4,∴41-2x2∈(9,41),即BC的取值范围是(3,).13.解 (1)由于a≥3,则当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以,使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].(2)①设函数f(x)=2|x-1|,g(x)=x2-2ax+4a-2,则f(x)min=f(1)=0,g(x)min=g(a)=-a2+4a-2,所以,由F(x)的定义知m(a)=min{f(1), g(a)},即m(a)=--②当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2),当2≤x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34-8a}=max{F(2),F(6)}.-所以,M(a)=。
高考数学二轮复习第一部分微专题强化练习题:数列求和及综合应用含解析

第一部分 一 10一、选择题1.(文)(2015·新课标Ⅱ文,5)设S n 是等差数列{}a n 的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11[答案] A[解析] 考查等差数列的性质及求和公式.a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.故选A.(理)(2015·新课标Ⅰ文,7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172 B.192 C .10 D .12 [答案] B[解析] 本题主要考查等差数列的通项及求和公式.由题可知:等差数列{a n }的公差d =1,因为等差数列S n =a 1n +n (n -1)d2,且S 8=4S 4,代入计算可得a 1=12;等差数列的通项公式为a n =a 1+(n -1)d ,则a 10=12+(10-1)×1=192.故本题正确答案为B.[方法点拨] 数列求和的类型及方法技巧(1)公式法:直接应用等差、等比数列的求和公式求和. (2)错位相减法这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. (3)倒序相加法这是在推导等差数列前n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.(5)分组转化求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.2.(文)设{a n }是等比数列,函数y =x 2-x -2013的两个零点是a 2、a 3,则a 1a 4=( ) A .2013 B .1 C .-1 D .-2013[答案] D[解析] 由条件得,a 1a 4=a 2a 3=-2013.(理)已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1 [答案] C[解析] 据已知得2a n +1=a n +a n +2,即数列{a n }为等差数列,又f (x )=sin2x +2×1+cos x2=sin2x +1+cos x ,因为a 1+a 9=a 2+a 8=…=2a 5=π,故cos a 1+cos a 9=cos a 2+cos a 8=…=cos a 5=0,又2a 1+2a 9=2a 2+2a 8=…=4a 5=2π,故sin2a 1+sin2a 9=sin2a 2+sin2a 8=…=sin2a 5=0,故数列{y n }的前9项之和为9,故选C.3.(2014·辽宁协作联校三模)已知数列{a n }的通项公式a n =2014sin n π2,则a 1+a 2+…+a 2014=( )A .2012B .2013C .2014D .2015 [答案] C[解析] 数列{a n }的周期为4,且a 1+a 2+a 3+a 4=2014(sin π2+sinπ+sin 3π2+sin2π)=0,又∵2014=4×503+2,∴a 1+a 2+…+a 2014=a 1+a 2=2014sin π2+2014sinπ=2014.4.(文)已知函数f (x )满足f (x +1)=32+f (x )(x ∈R ),且f (1)=52,则数列{f (n )}(n ∈N *)前20项的和为( )A .305B .315C .325D .335[答案] D[解析] ∵f (1)=52,f (2)=32+52,f (3)=32+32+52,…,f (n )=32+f (n -1),∴{f (n )}是以52为首项,32为公差的等差数列.∴S 20=20×52+20(20-1)2×32=335.(理)设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)[答案] A[解析] 设f (x )=kx +1(k ≠0),则(4k +1)2=(k +1)×(13k +1)⇒k =2,f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+(2×6×1)+…+(2×2n +1)=2n 2+3n . [方法点拨] 解决数列与函数知识结合的题目时,要明确数列是特殊的函数,它的图象是群孤立的点,注意函数的定义域等限制条件,准确的进行条件的转化,数列与三角函数交汇时,数列通常作为条件出现,去除数列外衣后,本质是三角问题.5.(文)已知数列{a n }是等比数列,且每一项都是正数,若a 1、a 49是2x 2-7x +6=0的两个根,则a 1·a 2·a 25·a 48·a 49的值为( )A.212 B .93 C .±9 3 D .35[答案] B[解析] ∵{a n }是等比数列,且a 1,a 49是方程2x 2-7x +6=0的两根, ∴a 1·a 49=a 225=3.而a n >0,∴a 25= 3.∴a 1·a 2·a 25·a 48·a 49=a 525=(3)5=93,故选B.(理)(2015·江西质检)如果数列{a n }中,相邻两项a n 和a n +1是二次方程x 2n +2nx n +c n =0(n =1,2,3,…)的两个根,当a 1=2时,c 100的值为( )A .-9984B .9984C .9996D .-9996[答案] C[解析] 由根与系数关系,a n +a n +1=-2n ,则(a n +1+a n +2)-(a n +a n +1)=-2.即a n +2-a n =-2,∴a 1,a 3,a 5,…和a 2,a 4,a 6,…都是公差为-2的等差数列,∵a 1=2,a 1+a 2=-2,∴a 2=-4,即a 2k =-2k -2,∴a 100=-102,a 2k -1=-2k +4,∴a 101=-98.∴c 100=a 100·a 101=9996.6.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( )[答案] C[解析] ∵S n =na 1+n (n -1)2d ,∴S n =d 2n 2+(a 1-d 2)n ,又a 1>0,公差d <0,所以点(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.[点评] 可取特殊数列验证排除,如a n =3-n .7.(2015·南昌市一模)已知无穷数列{a n },如果存在常数A ,对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -A |<ε成立,就称数列{a n }的极限为A ,则四个无穷数列:①{(-1)n ×2};②{n };③⎩⎨⎧⎭⎬⎫1+12+122+123+…+12n -1;④{2n +1n },其极限为2的共有( )A .4个B .3个C .2个D .1个[答案] C[解析] 对于①,|a n -2|=|(-1)n ×2-2|=2×|(-1)n -1|,当n 是偶数时,|a n -2|=0,当n 是奇数时,|a n -2|=4,所以不符合数列{a n }的极限的定义,即2不是数列{(-1)n ×2}的极限;对于②,由|a n -2|=|n -2|<ε,得2-ε<n <2+ε,所以对于任意给定的正数ε(无论多小),不存在正整数N ,使得n >N 时,恒有|a n -2|<ε,即2不是数列{n }的极限;对于③,由|a n -2|=|1+12+122+123+…+12n -1-2|=⎪⎪⎪⎪⎪⎪1×⎝⎛⎭⎫1-12n 1-12-2=22n<ε,得n >1-log 2ε,即对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -2|<ε成立,所以2是数列⎩⎨⎧⎭⎬⎫1+12+122+123+…+12n -1的极限;对于④,由|a n -2|=⎪⎪⎪⎪2n +1n -2=1n <ε,得n >1ε,即对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -2|<ε成立,所以2是数列⎩⎨⎧⎭⎬⎫2n +1n 的极限.综上所述,极限为2的共有2个,即③④. 二、填空题8.(文)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”.已知正项数列{1b n}为“调和数列”,且b 1+b 2+…+b 9=90,则b 4·b 6的最大值是________.[答案] 100[解析] 由调和数列的定义知{b n }为等差数列,由b 1+b 2+…+b 9=9b 5=90知b 5=10, ∵b n >0,∴b 4b 6≤(b 4+b 62)2=b 25=100.(理)(2014·河南十所名校联考)对于各项均为整数的数列{a n },如果a i +i (i =1,2,3,…)为完全平方数,则称数列{a n }具有“P 性质”,不论数列{a n }是否具有“P 性质”,如果存在与{a n }不是同一数列的{b n },且{b n }同时满足下面两个条件:①b 1,b 2,b 3,…,b n 是a 1,a 2,a 3,…,a n 的一个排列;②数列{b n }具有“P 性质”,则称数列{a n }具有“变换P 性质”,下面三个数列:①数列{a n }的前n 项和为S n =n3(n 2-1);②数列1,2,3,4,5;③数列1,2,3,…,11.其中具有“P 性质”或“变换P 性质”的有________(填序号).[答案] ①②[解析] S n =n 3(n 2-1),S n -1=n -13[(n -1)2-1](n ≥2),∴a n =S n -S n -1=n3(n -1)(n +1)-n -13(n 2-2n )=n3(n -1)(n +1-n +2)=n (n -1)(n ≥2),又a 1=S 1=0,∴a 1+1=1=12,a 2+2=4=22,a 3+3=9=32,…,a n +n =n 2,∴数列{a n }具有“P 性质”;数列1,2,3,4,5排为3,2,1,5,4,则a 1+1=4=22,a 2+2=4=22,a 3+3=4=22,a 4+4=9=32,a 5+5=9=32,∴数列1,2,3,4,5具有“变换P 性质”,同理可验证数列1,2,3,…,11不具有“P 性质”和“变换P 性质”.[方法点拨] 脱去新定义的外衣,将问题化为基本数学模型,用相应的知识方法解答是解决此类问题的基本方法.9.(2015·安徽文,13)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 考查1.等差数列的定义;2.等差数列的前n 项和. ∵n ≥2时,a n =a n -1+12,且a 1=1,∴{a n }是以1为首项,12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.10.已知向量a =(2,-n ),b =(S n ,n +1),n ∈N *,其中S n 是数列{a n }的前n 项和,若a ⊥b ,则数列{a na n +1a n +4}的最大项的值为________.[答案] 19[解析] ∵a ⊥b ,∴a ·b =2S n -n (n +1)=0, ∴S n =n (n +1)2,∴a n =n ,∴a n a n +1·a n +4=n(n +1)(n +4)=1n +4n+5,当n =2时,n +4n 取最小值4,此时a na n +1a n +4取到最大值19.三、解答题11.(文)(2015·云南省检测)已知等比数列{a n }的前n 项和是S n ,S 18S 9=78. (1)求证:S 3,S 9,S 6依次成等差数列;(2)a 7与a 10的等差中项是否是数列{a n }中的项?如果是,是{a n }中的第几项?如果不是,请说明理由.[解析] (1)证明:设等比数列{a n }的公比为q ,若q =1,则S 18=18a 1,S 9=9a 1, S 18S 9=21≠78.∴q ≠1.∴S 18=a 11-q (1-q 18),S 9=a 11-q (1-q 9),S 18S 9=1+q 9.∴1+q 9=78,解得q =-2-13.∴S 3=a 1(1-q 3)1-q =32×a 11-q ,S 6=a 1(1-q 6)1-q=34×a 11-q. S 9=a 11-q(1-q 9)=98×a 11-q .∵S 9-S 3=-38×a 11-q ,S 6-S 9=-38×a 11-q ,∴S 9-S 3=S 3-S 9.∴S 3,S 9,S 6依次成等差数列.(2)a 7与a 10的等差中项等于a 7+a 102=14a 1-18a 12=a 116.设a 7与a 10的等差中项是数列{a n }中的第n 项,则 a 1(-2-13)n -1=a 116,化简得(-2)-n -13=(-2)-4,则-n -13=-4,解得n =13.∴a 7与a 10的等差中项是数列{a n }中的第13项.(理)(2015·唐山一模)设数列{a n }的前n 项和为S n ,满足(1-q )S n +qa n =1,且q (q -1)≠0. (1)求{a n }的通项公式;(2)若S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列. [解析] (1)当n =1时,由(1-q )S 1+qa 1=1,∴a 1=1,当n ≥2时,由(1-q )S n +qa n =1,得(1-q )S n -1+qa n -1=1,两式相减得 (1-q )a n +q (a n -a n -1)=0,∴a n =qa n -1,∵a 1=1,q (q -1)≠0,∴a n =q n -1, 综上a n =q n -1. (2)由(1)可知a na n -1=q ,所以{a n }是以1为首项,q 为公比的等比数列. 所以S n =1-a n q 1-q ,又S 3+S 6=2S 9,得1-a 3q 1-q +1-a 6q 1-q =2(1-a 9q )1-q ,化简得a 3+a 6=2a 9,两边同除以q 得a 2+a 5=2a 8. 故a 2,a 8,a 5成等差数列.[方法点拨] 1.在处理数列求和问题时,一定要先读懂题意,分清题型,区分等差数列与等比数列,不是基本数列模型的注意运用转化思想化归为等差、等比数列,在利用分组求和时,要特别注意项数.2.在处理等差与等比数列的综合问题时,先要看所给数列是等差数列还是等比数列,再依据条件建立方程求解.12.(文)已知函数f (x )在(-1,1)上有定义,f ⎝⎛⎭⎫12=-1,且满足对任意x 、y ∈(-1,1),有f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ,数列{x n }中,x 1=12,x n +1=2x n 1+x 2n.(1)证明:f (x )在(-1,1)上为奇函数; (2)求数列{f (x n )}的通项公式; (3)求证:1f (x 1)+1f (x 2)+…+1f (x n )>-2n +5n +2. [分析] (1)要证f (x )为奇函数,只需证明f (-x )+f (x )=0,只需在条件式中令y =-x ,为了求f (0),令x =y =0即可获解.(2)利用f (x )+f (y )=f (x +y1+xy)可找出f (x n +1)与f (x n )的递推关系,从而求得通项.(3)由f (x n )的通项公式确定数列{1f (x n )}的求和方法,求和后利用放缩法可证明.[解析] (1)证明:令x =y =0,∴2f (0)=f (0), ∴f (0)=0.令y =-x ,则f (x )+f (-x )=f (0)=0, ∴f (-x )=-f (x ),∴f (x )在(-1,1)上为奇函数. (2)f (x 1)=f ⎝⎛⎭⎫12=-1,f (x n +1)=f ⎝⎛⎭⎫2x n 1+x 2n =f ⎝ ⎛⎭⎪⎫x n +x n 1+x n ·x n =2f (x n), ∴f (x n +1)f (x n )=2,即{f (x n )}是以-1为首项,2为公比的等比数列,∴f (x n )=-2n -1. (3)1f (x 1)+1f (x 2)+…+1f (x n ) =-⎝⎛⎭⎫1+12+122+…+12n -1=-1-12n1-12=-⎝⎛⎭⎫2-12n -1=-2+12n -1>-2,而-2n +5n +2=-⎝⎛⎭⎫2+1n +2=-2-1n +2<-2. ∴1f (x 1)+1f (x 2)+…+1f (x n )>-2n +5n +2. (理)在直角坐标平面上有一点列P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,对于每个正整数n ,点P n 均位于一次函数y =x +54的图象上,且P n 的横坐标构成以-32为首项,-1为公差的等差数列{x n }.(1)求点P n 的坐标;(2)设二次函数f n (x )的图象C n 以P n 为顶点,且过点D n (0,n 2+1),若过D n 且斜率为k n 的直线l n 与C n 只有一个公共点,求T n =1k 1k 2+1k 2k 3+…+1k n -1k n的表达式;(3)设S ={x |x =2x n ,n 为正整数},T ={y |y =12y n ,n 为正整数},等差数列{a n }中的任一项a n ∈(S ∩T ),且a 1是S ∩T 中最大的数,-225<a 10<-115,求数列{a n }的通项公式.[解析] (1)由题意知x n =-32-(n -1)=-n -12,y n =-n -12+54=-n +34,∴P n ⎝⎛⎭⎫-n -12,-n +34.(2)由题意可设二次函数f n (x )=a ⎝⎛⎭⎫x +n +122-n +34,因为f n (x )的图象过点D n (0,n 2+1), 所以a ⎝⎛⎭⎫n +122-n +34=n 2+1,解得a =1, 所以f n (x )=x 2+(2n +1)x +n 2+1.由题意可知,k n =f ′n (0)=2n +1,(n ∈N *).所以T n =1k 1k 2+1k 2k 3+…+1k n -1k n =13×5+15×7+…+1(2n -1)(2n +1)=1213-15+15-17+…+12n -1-12n +1=12⎝⎛⎭⎫13-12n +1=16-14n +2. (3)由题意得S ={x |x =-2n -1,n 为正整数},T ={y |y =-12n +9,n 为正整数}, 所以S ∩T 中的元素组成以-3为首项,-12为公差的等差数列, 所以a 1=-3,则数列{a n }的公差为-12k (k ∈N *), 若k =1,则a n =-12n +9,a 10=-111∉(-225,-115); 若k =2,则a n =-24n +21,a 10=-219∈(-225,-115); 若k ≥3,则a 10≤-327,即a 10∉(-225,-115).综上所述,数列{a n }的通项公式为a n =-24n +21(n 为正整数).[方法点拨] 1.数列与函数的综合性试题通常用到函数与方程、化归与转化、分类与整合等思想.注意数列是特殊的函数、等差、等比数列更是如此,因此求解数列与函数的综合性题目时,注意数列与函数的内在联系,将所给条件向a n 与n 的关系转化.2.数列还常与不等式交汇命题,不等式常作为条件或证明、求解的一问呈现,解答时先将数列的基本问题解决,再集中解决不等式问题,注意放缩法、基本不等式、裂项、累加法的运用.13.(文)(2015·山东文,19)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n2n +1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .[解析] 考查1.等差数列的通项公式;2.“错位相减法”求和及运算求解能力. (1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13,得到a 1a 2=3.令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.解得a 1=1,d =2,所以a n =2n -1.(2)由(1)知b n =2n ·22n -1=n ·4n ,所以T n =1·41+2·42+…+n ·4n ,所以4T n =1·42+2·43+…+(n -1)·4n +n ·4n +1, 两式相减,得-3T n =41+42+…+4n -n ·4n +1 =4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43,所以T n =3n -19×4n +1+49=4+(3n -1)·4n +19.(理)(2015·河南八市质检)已知数列{a n }的前n 项和为S n ,对于任意的正整数n ,直线x +y =2n 总是把圆(x -n )2+(y -S n )2=2n 2平均分为两部分,各项均为正数的等比数列{b n }中,b 6=b 3b 4,且b 3和b 5的等差中项是2a 3.(1)求数列{a n },{b n }的通项公式; (2)若c n =a n b n ,求数列{c n }的前n 项和T n .[解析] (1)由于x +y =2n 总是把圆(x -n )2+(y -S n )2=2n 2平均分为两部分,所以直线过圆心,所以n +S n =2n ,即S n =n 2, 所以a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,经检验n =1时也成立,所以a n =2n -1.等比数列{b n }中,由于b 6=b 3b 4,所以b 1q 5=b 21q 5, 因为b 1>0,q >0,所以b 1=1,因为b 3和b 5的等差中项是2a 3,且2a 3=10,所以b 3+b 5=20, 所以q 2+q 4=20,解得q =2,所以b n =2n -1. (2)由于c n =a n b n ,所以T n =a 1b 1+a 2b 2+…+a n b n . T n =1+3×2+5×22+…+(2n -1)2n -1 ① 2T n =2+3×22+5×23+…+(2n -1)2n ② 所以-T n =1+2(2+22+…+2n -1)-(2n -1)2n =1+2×2(1-2n -1)1-2-(2n -1)2n=-3+2×2n -(2n -1)2n =-3+(3-2n )2n , T n =3+(2n -3)2n .14.(文)政府决定用“对社会的有效贡献率”对企业进行评价,用a n 表示某企业第n 年投入的治理污染的环保费用,用b n 表示该企业第n 年的产值.设a 1=a (万元),且以后治理污染的环保费用每年都比上一年增加2a 万元;又设b 1=b (万元),且企业的产值每年比上一年的平均增长率为10%.用P n =a n b n100ab表示企业第n 年“对社会的有效贡献率”.(1)求该企业第一年和第二年的“对社会的有效贡献率”; (2)试问从第几年起该企业“对社会的有效贡献率”不低于20%?[解析] (1)∵a 1=a ,b 1=b ,P n =a n b n 100ab, ∴P 1=a 1b 1100ab=1%, P 2=a 2b 2100ab =3a ×1.1b 100ab=3.3%. 故该企业第一年和第二年的“对社会的有效贡献率”分别为1%和3.3%.(2)由题意,得数列{a n }是以a 为首项,以2a 为公差的等差数列,数列b n 是以b 为首项,以1.1为公比的等比数列,∴a n =a 1+(n -1)d =a +(n -1)·2a =(2n -1)a ,b n =b 1(1+10%)n -1=1.1n -1b .又∵P n =a n b n 100ab, ∴P n =(2n -1)a ×1.1n -1b 100ab=(2n -1)×1.1n -1100. ∵P n +1P n =2n +12n -1×1.1=⎝⎛⎭⎫1+22n -1×1.1>1, ∴P n +1>P n ,即P n =(2n -1)×1.1n -1100单调递增. 又∵P 6=11×1.15100≈17.72%<20%, P 7=13×1.16100≈23.03%>20%. 故从第七年起该企业“对社会的有效贡献率”不低于20%.(理)甲、乙两大超市同时开业,第一年的全年销售额都为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年的销售额多(23)n -1a 万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年.[解析] (1)设甲、乙两超市第n 年销售额分别为a n 、b n ,又设甲超市前n 年总销售额为S n ,则S n =a 2(n 2-n +2)(n ≥2),因n =1时,a 1=a , 则n ≥2时,a n =S n -S n -1=a 2(n 2-n +2)-a 2[(n -1)2-(n -1)+2]=a (n -1),故a n =⎩⎪⎨⎪⎧a ,n =1,(n -1)a ,n ≥2, 又因b 1=a ,n ≥2时,b n -b n -1=(23)n -1a , 故b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=a +23a +(23)2a +…+(23)n -1a =[1+23+(23)2+…+(23)n -1]a =1-(23)n 1-23a =[3-2·(23)n -1]a , 显然n =1也适合,故b n =[3-2·(23)n -1]a (n ∈N *) (2)当n =2时,a 2=a ,b 2=53a ,有a 2>12b 2; n =3时,a 3=2a ,b 3=199a ,有a 3>12b 3; 当n ≥4时,a n ≥3a ,而b n <3a ,故乙超市有可能被收购.当n ≥4时,令12a n >b n , 则12(n -1)a >[3-2·(23)n -1]a ⇒n -1>6-4·(23)n -1, 即n >7-4·(23)n -1. 又当n ≥7时,0<4·(23)n -1<1, 故当n ∈N *且n ≥7时,必有n >7-4·(23)n -1. 即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.[方法点拨] 1.用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是一个解方程问题,还是解不等式问题,还是一个最值问题,然后进行合理推算,得出实际问题的结果.2.数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.3.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n 项和.15.(文)定义:若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方递推数列”.已知数列{a n }中,a 1=2,点(a n ,a n +1)在函数f (x )=2x 2+2x 的图象上,其中n 为正整数.(1)证明:数列{2a n +1}是“平方递推数列”,且数列{lg(2a n +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项之积为T n ,即T n =(2a 1+1)(2a 2+1)…(2a n +1),求T n 关于n 的表达式;(3)记b n =log2a n +1T n ,求数列{b n }的前n 项之和S n ,并求使S n >2012成立的n 的最小值.[解析] (1)证明:由题意得a n +1=2a 2n +2a n ,∴2a n +1+1=4a 2n +4a n +1=(2a n+1)2. 所以数列{2a n +1}是“平方递推数列”.令c n =2a n +1,所以lg c n +1=2lg c n .因为lg(2a 1+1)=lg5≠0,所以lg (2a n +1+1)lg (2a n +1)=2. 所以数列{lg(2a n +1)}为等比数列.(2)由(1)知lg(2a n +1)=(lg5)×2n -1,∴2a n +1=10(lg5)×2n -1=52n -1,∴T n =520×521×522×…×52n -1=520+21+…+2n -1=52n -1.(3)∵b n =log2a n +1T n =2n -12n -1=2-(12)n -1, ∴S n =b 1+b 2+…+b n =2n -1×(1-12n )1-12=2n -2+12n -1, 由2n -2=2012得n =1007,∴S 1006=2×1006-2+121005∈(2010,2011),S 1007=2×1007-2+121006∈(2012,2013). 故使S n >2012成立的n 的最小值为1007.(理)已知曲线C :xy =1,过C 上一点A n (x n ,y n )作一斜率为k n =-1x n +2的直线交曲线C 于另一点A n +1(x n +1,y n +1),点列{A n }的横坐标构成数列{x n },其中x 1=117. (1)求x n 与x n +1的关系式;(2)令b n =1x n -2+13,求证:数列{b n }是等比数列; (3)若c n =3n -λb n (λ为非零整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有c n +1>c n 成立.[分析] (1)由直线方程点斜式建立x n 与y n 关系,而(x n ,y n )在曲线xy =1上,有x n y n =1,消去y n 得x n 与x n +1的关系;(2)由定义证b n +1b n为常数;(3)转化为恒成立的问题解决. [解析] (1)过点A n (x n ,y n )的直线方程为y -y n =-1x n +2(x -x n ), 联立方程⎩⎪⎨⎪⎧ y -y n =-1x n +2(x -x n )xy =1,消去y 得 1x n +2x 2-⎝⎛⎭⎫y n +x n x n +2x +1=0. 解得x =x n 或x =x n +2x n. 由题设条件知x n +1=x n +2x n. (2)证明:b n +1b n =1x n +1-2+131x n -2+13=1x n +2x n -2+131x n -2+13=x n 2-x n +131x n -2+13=3x n +2-x n 3(2-x n )3+x n -23(x n -2)=-2. ∵b 1=1x 1-2+13=-2≠0,∴数列{b n }是等比数列. (3)由(2)知,b n =(-2)n ,要使c n +1>c n 恒成立,由c n +1-c n =[3n +1-λ(-2)n +1]-[3n -λ(-2)n ]=2·3n +3λ(-2)n >0恒成立,即(-1)n λ>-⎝⎛⎭⎫32n -1恒成立.①当n 为奇数时,即λ<⎝⎛⎭⎫32n -1恒成立.又⎝⎛⎭⎫32n -1的最小值为1,∴λ<1.②当n 为偶数时,即λ>-⎝⎛⎭⎫32n -1恒成立,又-⎝⎛⎭⎫32n -1的最大值为-32,∴λ>-32, 即-32<λ<1.又λ为非零整数, ∴λ=-1,使得对任意n ∈N *,都有c n +1>c n .。
2019年高考数学(文)二轮复习对点练:第一部分方法、思想解读专题对点练3Word版含答案

专题对点练3分类讨论思想、转化与化归思想一、选择题1.设函数f(x)=若f(a)>1,则实数a的取值范围是()A.(0,2)B.(0,+∞)C.(2,+∞)D.(-∞,0)∪(2,+∞)2.函数y=5的最大值为()A.9B.12C.D.33.在等比数列{a n}中,a3=7,前3项的和S3=21,则公比q的值是()A.1B.-C.1或-D.-1或4.若m是2和8的等比中项,则圆锥曲线x2+=1的离心率是()A.B.C.D.5.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y=±x,则该双曲线的离心率为()A. B.C. D.6.若a>0,且a≠1,p=log a(a3+1),q=log a(a2+1),则p,q的大小关系是()A.p=qB.p<qC.p>qD.当a>1时,p>q;当0<a<1时,p<q7.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A.B.(-∞,3)C.D.[3,+∞)8.(2018安徽黄山一模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是()A.(0,1)B.(1,+∞)C.(-1,0)D.(-∞,-1)二、填空题9.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=.10.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意x∈[a,a+2],f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是.11.函数y=的最小值为.12.在三棱锥P-ABC中,PA,PB,PC两两互相垂直,且AB=4,AC=5,则BC的取值范围是.三、解答题13.已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}=(1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围;(2)①求F(x)的最小值m(a);②求F(x)在区间[0,6]上的最大值M(a).专题对点练3答案1.B解析若2a-3>1,解得a>2,与a<0矛盾,若>1,解得a>0,故a的范围是(0,+∞).2.D解析设a=(5,1),b=(),∵a·b≤|a|·|b|,∴y=5=3.当且仅当5,即x=时等号成立.3.C解析当公比q=1时,则a1=a2=a3=7,S3=3a1=21,符合要求.当公比q≠1时,则a1q2=7,=21,解得q=- (q=1舍去).综上可知,q=1或q=-.4.D解析因为m是2和8的等比中项,所以m2=2×8=16,所以m=±4.当m=4时,圆锥曲线+x2=1是椭圆,其离心率e=;当m=-4时,圆锥曲线x2-=1是双曲线,其离心率e=.综上知,选项D正确.5.C解析当焦点在x轴上时,,此时离心率e=;当焦点在y轴上时,,此时离心率e=.故选C.6.C解析当0<a<1时,可知y=a x和y=log a x在其定义域上均为减函数,则a3+1<a2+1,∴log a(a3+1)>log a(a2+1),即p>q.当a>1时,y=a x和y=log a x在其定义域上均为增函数,则a3+1>a2+1,∴log a(a3+1)>log a(a2+1),即p>q.综上可得p>q.7.C解析f'(x)=3x2-2tx+3,由于f(x)在区间[1,4]上单调递减,则有f' (x)≤0在[1,4]上恒成立,即3x2-2tx+3≤0,即t≥在[1,4]上恒成立,因为y=在[1,4]上单调递增,所以t≥,故选C.8.B解析方程f(x)=k化为方程e|x|=k-|x|.令y1=e|x|,y2=k-|x|.y2=k-|x|表示斜率为1或-1的平行折线系.当折线与曲线y=e|x|恰好有一个公共点时,k=1.由图知,关于x的方程f(x)=k有两个不同的实根时,实数k的取值范围是(1,+∞).故选B.9.-解析当a>1时,函数f(x)= a x+b在[-1,0]上为增函数,由题意得无解.当0<a<1时,函数f(x)=a x+b在[-1,0]上为减函数,由题意得解得所以a+b=-.10.(-∞,-5]解析因为当x≥0时,f(x)=x2,所以此时函数f(x)在[0,+∞)上单调递增.又因为f(x)是定义在R上的奇函数,且f(0)=0,所以f(x)在R上单调递增.若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则x+a≥3x+1恒成立,即a≥2x+1恒成立,因为x∈[a,a+2],所以(2x+1)max=2(a+2)+ 1=2a+5,即a≥2a+5,解得a≤-5.即实数a的取值范围是(-∞,-5].11.解析原函数等价于y=,即求x轴上一点到A(1,1),B(3,2)两点距离之和的最小值.将点A(1,1)关于x轴对称,得A'(1,-1),连接A'B交x轴于点P,则线段A'B的值就是所求的最小值,即|A'B|=.12.(3,)解析如图所示,问题等价于长方体中,棱长分别为x,y,z,且x2+y2=16,x2+z2=25,求的取值范围,转化为y2+z2=41-2x2,∵x2+y2=16,∴0<x<4,∴41-2x2∈(9,41),即BC的取值范围是(3,).13.解(1)由于a≥3,则当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以,使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].(2)①设函数f(x)=2|x-1|,g(x)=x2-2ax+4a-2,则f(x)min=f(1)=0,g(x)min=g(a)=-a2+4a-2,所以,由F(x)的定义知m(a)=min{f(1), g(a)},即m(a)=②当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2),当2≤x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34-8a}=max{F(2),F(6)}.所以,M(a)=。
2023年高考数学二轮复习 第1部分 专题突破 专题1 培优点2 对数平均不等式、切线不等式

由对数平均不等式知 ln
x1-x2 x1-ln
x2>
x1x2=1,
又x2>x1>0, ∴x1-x2<0,ln x1-ln x2<0,
∴0<ln
x1-ln x1-x2
x2<1,
∴fxx11- -xf2x2=-2+alnxx11--xl2n x2<-2+a,
即证原不等式成立.
考点二
以泰勒公式为背景的切线不等式
(1)当a>0时,求函数f(x)的单调递增区间;
f(x)的定义域为(0,+∞), f′(x)=ax-(2a+1)+2x=ax-1xx-2, 当 0<1a<2,即 a>12时,在0,1a和(2,+∞)上,f′(x)>0,f(x)单调递增;
当1a=2,即 a=12时,f′(x)≥0,f(x)在(0,+∞)上单调递增; 当1a>2,即 0<a<12时,在(0,2)和1a,+∞上,f′(x)>0,f(x)单调递增. 综上所述,当 a>12时,f(x)的单调递增区间为0,1a和(2,+∞);
即eex≥x,ex≥ex,当 x=1 时等号成立,
即e-ln x≥e(-ln x),
所以1x≥e(-ln x), 即 ln x≥-e1x,当 x=1e时等号成立,
所以
exln
x+e2x≥ex-e1x+e2x=eexx >1(等号不同时成立).
方法二 由(1)知,f(x)=exln x+2eexx, 从而 f(x)>1 等价于 xln x>exx-2e. 设函数g(x)=xln x,则g′(x)=1+ln x.
构造函数 f(t)=2ln t-t+1t (t>1), 则 f′(t)=2t -1-t12=-t-t212<0,
2019版高考数学二轮复习第一部分方法、思想解读专题对点练3分类讨论思想、转化与化归思想文

专题对点练 3分类议论思想、转变与化归思想一、选择题1. 设函数 f ( x ) =若 f ( a ) >1, 则实数 a 的取值范围是 ()A . (0,2)B . (0, +∞) +∞.(2, +∞).- ∞,0) ∪ (2, )CD (2 . 函数5的最大值为 ()y=A . 9B . 12C .D . 33 . 在等比数列 { a } 中 , 7,前3 项的和21, 则公比 q 的值是 ()n33A.1B. -C.1 或-D. - 1 或4. 若 m 是 2 和 8 的等比中项 , 则圆锥曲线 x 2+ =1 的离心率是 ()A .B .CD..5. 已知中心在座标原点 , 焦点在座标轴上的双曲线的渐近线方程为 y=±x , 则该双曲线的离心率为( ) A. B.C.D.6. 若 a>0, 且 a ≠1, p=log a ( a 3+1), q=log a ( a 2+1), 则 p , q 的大小关系是 ()A. p=qB. p<qC. p >qD.当 a>1 时, p>q ; 当 0<a<1 时, p<q7 . 若函数 f ( ) 3 2 3 在区间 [1,4] 上单一递减 , 则实数 t 的取值范围是 ()x =x -tx + xAB (- ∞ ,3)..CD [3, +∞ )..8. (2018 安徽黄山一模 ) 已知函数 f ( x ) =e |x| +|x|. 若对于 x 的方程 f ( x ) =k 有两个不一样的实根 , 则实数 k 的取值范围是 ( )A.(0,1)B.(1, +∞)C.( - 1,0)D.( -∞, -1)二、填空题 9. 已知函数 f ( x ) =a x +b ( a>0, a ≠1) 的定义域和值域都是 [ - 1,0], 则 a+b= . 10. 设 f ( x ) 是定义在 R 上的奇函数 , 且当 x ≥0时 , f ( x ) =x 2, 若对随意 x ∈ [ a , a+2], f ( x+a ) ≥ f (3 x+1)恒建立 , 则实数 a 的取值范围是.11. 函数 y= 的最小值为 .12. 在三棱锥 P-ABC 中, PA , PB , PC 两两相互垂直 , 且 AB=4, AC=5, 则 BC 的取值范围是 .三、解答题13. 已知 a ≥3, 函数 F ( x ) =min{2 |x- 1| , x 2- 2ax+4 a- 2}, 此中 min{ p , q } =(1) 求使得等式 F ( x ) =x 2- 2ax+4a- 2 建立的 x 的取值范围 ;(2) ①求 F ( x ) 的最小值 m ( a );②求 F ( x ) 在区间 [0,6] 上的最大值 M ( a ) .分析若 2a- 3>1, 解得a>2, 与a<0专题对点练 3 答案1. B矛盾,若>1,解得 a>0,故 a 的范围是(0, +∞) .2. D分析设 a=(5,1),b=(),∵a·b≤| a|·|b| ,∴y=5=3.当且仅当 5,即 x=时等号建立 .时 , 则a =a =a =7, S =3a =21, 切合要求.3. C分析当公比 q=11233112=21,解得 q=- (q=1舍去) .当公比 q≠1时,则 a q =7,综上可知 , q=1 或q=-.24. D分析因为 m是2和8的等比中项, 因此m=2×8=16, 因此m=±4.当4时 , 圆锥曲线2 1 是椭圆 , 其离心率e=;m=+x =当 4 时,圆锥曲线2 1 是双曲线 , 其离心率e=.m=-x -=综上知 , 选项 D正确.5. C分析当焦点在 x 轴上时,, 此时离心率e=; 当焦点在y轴上时 ,, 此时离心率e=.应选C.x326C分析当01时,可知和log在其定义域上均为减函数 , 则11, .y=a x<a<a a + <a +∴log a( a3+1) >log a( a2+1),即 p>q.当 a>1时 , y=a x和y=log a x在其定义域上均为增函数, 则a3+1>a2+1,∴log a3a2即 p>q.( a +1)>log ( a +1),综上可得 p>q.7. C分析 f'( x) =3x2- 2tx+ 3, 因为f ( x) 在区间 [1,4]上单一递减 , 则有f'( x) ≤0在[1,4]上恒建立 ,即 3x2- 2tx+ 3≤0, 即t≥在[1,4]上恒建立 , 因为y=在 [1,4]上单一递加 , 因此t ≥,应选 C.8. B分析方程 f ( x) =k 化为方程e|x| =k-|x|.令 y1=e|x|, y2=k-|x|.y2=k-|x| 表示斜率为 1 或-1 的平行折线系.当折线与曲线 y=e|x|恰巧有一个公共点时, k=1.由图知 , 对于x的方程f ( x) =k有两个不一样的实根时, 实数k的取值范围是 (1, +∞ ) .应选 B.9 .-分析当 1 时,函数f()x在[-1,0] 上为增函数 , 由题意得无解.当 0 1a>x= a +b<a<时, 函数f ( x)=a x+b 在[ - 1,0]上为减函数,由题意得解得因此 a+b=-.10.( -∞, - 5]分析因为当 x≥0时, f ( x) =x2,因此此时函数 f ( x)在[0, +∞)上单一递加 .又因为 f ( x)是定义在R上的奇函数,且 f (0) =0,因此 f ( x)在R上单一递加 .若对随意 x∈[ a, a+2],不等式 f ( x+a)≥ f (3 x+1)恒建立,则 x+a≥3x+1恒建立,即 a≥2x+1恒建立,因为 x∈[ a, a+2],因此 (21) max 2(2)+1 2 5,x+=a+= a+即 a≥2a+5,解得 a≤- 5.即实数 a 的取值范围是( - ∞, -5] .11.分析原函数等价于y=, 即求x轴上一点到A(1,1),B(3,2)两点距离之和的最小值. 将点 A(1,1)对于 x 轴对称,得 A' (1,- 1),连结 A'B 交 x 轴于点 P,则线段 A'B 的值就是所求的最小值, 即|A'B|=.12. (3,)分析如下图 , 问题等价于长方体中, 棱长分别为x, y, z,且 x2+y2 =16, x2+z2=25,求的取值范围 , 转变为y2+z2=41- 2x2, ∵x2+y2=16, ∴0<x<4,∴ 41- 2x2∈ (9,41), 即BC的取值范围是(3,) .13.解 (1)因为 a≥3,则当 x≤1时,( x2- 2ax+4a- 2) - 2|x- 1|=x 2 +2( a- 1)(2 -x ) >0,当 x>1时,( x2 -2ax+4a- 2)- 2|x- 1|= ( x- 2)( x- 2a) . 因此,使得等式 F( x) =x2- 2ax+4a- 2建立的 x 的取值范围为[2,2 a] .(2)①设函数 f ( x) =2|x- 1| , g( x) =x2- 2ax+4a- 2,则 f ( x)min=f (1) =0, g( x)min=g( a) =-a2+4a- 2,因此 , 由F( x) 的定义知m( a) =min{ f (1), g ( a)}, 即m( a) =②当 0≤x≤2时 , F( x) ≤f ( x) ≤max{ f (0), f (2)} =2=F(2),当 2≤x≤6时 , F( x) ≤g( x) ≤max{ g(2), g(6)}=max{2,34 - 8a} =max{F(2), F(6)} .因此 , M( a) =。
2019版高考数学二轮复习第一部分方法思想解读专题对点练2函数与方程思想数形结合思想文

专题对点练2 函数与方程思想、数形结合思想一、选择题1.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值的集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}2.若椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一交点为P,则|PF2|=()A. B. C. D.43.(2018甘肃兰州一模)若关于x的方程2sin=m在上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]4.函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f'(x),且满足xf'(x)+2f(x)>0,则不等式的解集为()A.{x|x>-2 011}B.{x|x<-2 011}C.{x|-2 016<x<-2 011}D.{x|-2 011<x<0}5.对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于零,则x的取值范围是()A.{x|1<x<3}B.{x|x<1或x>3}C.{x|1<x<2}D.{x|x<1或x>2}6.抛物线y2=2px(p>0)的焦点为圆x2+y2-6x=0的圆心,过圆心且斜率为2的直线l与抛物线相交于M,N两点,则|MN|=()A.30B.25C.20D.157.若0<x1<x2<1,则()A.>ln x2-ln x1B.<ln x2-ln x1C.x2>x1D.x2<x18.已知在正四棱锥S-ABCD中,SA=2,则当该棱锥的体积最大时,它的高为()A.1B.C.2D.39.已知函数f(x)=x+x ln x,若k∈Z,且k(x-1)<f(x)对任意的x>1恒成立,则k的最大值为()A.2B.3C.4D.5二、填空题10.使log2(-x)<x+1成立的x的取值范围是.11.若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.12.已知奇函数f(x)的定义域是{x|x≠0,x∈R},且在(0,+∞)内单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是.13.已知圆M与y轴相切,圆心在直线y=x上,并且在x轴上截得的弦长为2,则圆M的标准方程为.14.已知P是直线l:3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,则四边形PACB面积的最小值为.15.我们把函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,函数y1与函数y2的图象合起来组成函数y3的图象,若直线y=kx+2与函数y3的图象刚好有两个交点,则满足条件的k的值为.三、解答题16.如图,在直三棱柱ABC-A'B'C'中,AC=BC=5,AA'=AB=6,D,E分别为AB和BB'上的点,且=λ.(1)求证:当λ=1时,A'B⊥CE;(2)当λ为何值时,三棱锥A'-CDE的体积最小,并求出最小体积.专题对点练2答案1.B解析依题意得y=,当x∈[a,2a]时,y=.由题意可知⊆[a,a2],即有a2≥a,又a>1,所以a≥2.故选B.2.C解析如图,令|F1P|=r1,|F2P|=r2,则即故r2=.3.C解析方程2sin=m可化为sin,当x∈时,2x+,画出函数y=f(x)=sin在x∈上的图象如图所示:由题意,得<1,则m的取值范围是[1,2),故选C.4.C解析由xf'(x)+2f(x)>0,则当x∈(0,+∞)时,x2f'(x)+2xf(x)>0,即[x2f(x)] '=x2f'(x)+2xf(x),所以函数x2f(x)为单调递增函数,由,即(x+2 016)2f(x+2 016)<52f(5),所以0<x+2 016<5,所以不等式的解集为{x|-2 016<x<-2 011},故选C.5.B解析由f(x)=x2+(a-4)x+4-2a>0,得a(x-2)+x2-4x+4>0.令g(a)=a(x-2)+x2-4x+4,由a∈[-1,1]时,不等式f(x)>0恒成立,即g(a)>0在[-1,1]上恒成立.则即解得x<1或x>3.6.D解析圆x2+y2-6x=0的圆心(3,0),焦点F(3,0),抛物线y2=12x,设M(x1,y1),N(x2,y2).直线l的方程为y=2x-6,联立即x2-9x+9=0,∴x1+x2=9,。
【2019最新】高考数学二轮复习第一部分方法思想解读专题对点练2函数与方程思想数形结合思想文

∵CE⊂平面CDE,∴A'B⊥CE.
(2)解设BE=x,则AD=x,DB=6-x,B'E=6-x.
由已知可得C到平面A'DE的距离即为△ABC的边AB所对应的高h==4,
∴VA'-CDE=VC-A'DE= (S四边形ABB'A'-S△AA'D-S△DBE-S△A'B'E)h
=h
= (x2-6x+36)= [(x-3)2+27](0<x<6),
A.30B.25C.20D.15
7.若0<x1<x2<1,则()
A.>ln x2-ln x1
B.<ln x2-ln x1
C.x2>x1
D.x2<x1
8.已知在正四棱锥S-ABCD中,SA=2,则当该棱锥的体积最大时,它的高为()
A.1B.
C.2D.3
9.已知函数f(x)=x+xln x,若k∈Z,且k(x-1)<f(x)对任意的x>1恒成立,则k的最大值为()
A.2B.3C.4D.5
二、填空题
10.使log2(-x)<x+1成立的x的取值范围是.
11.若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.
12.已知奇函数f(x)的定义域是{x|x≠0,x∈R},且在(0,+∞)内单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是.
——教学资料参考参考范本——
【2019最新】高考数学二轮复习第一部分方法思想解读专题对点练2函数与方程思想数形结合思想文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题对点练1选择题、填空题的解法
一、选择题
1.方程ax2+2x+1=0至少有一个负根的充要条件是()
A.0<a≤1
B.a<1
C.a≤1
D.0<a≤1或a<0
2.设f(x)=ln x,0<a<b,若p=f(),q=f,r= [f(a)+f(b)],则下列关系式中正确的是()
A.q=r<p
B.q=r>p
C.p=r<q
D.p=r>q
3.在等差数列{a n}中,是一个与n无关的常数,则该常数的可能值的集合为()
A.{1}
B.
C. D.
4.在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则等于()
A. B. C. D.
5.已知定义在R上的函数f(x)满足:对任意实数x,都有f(1+x)=f(1-x),且f(x)在(-∞,1]上单调递增.若
x1<x2,且x1+x2=3,则f(x1)与f(x2)的大小关系是()
A.f(x1)<f(x2)
B.f(x1)=f(x2)
C.f(x1)>f(x2)
D.不能确定
6.已知O是锐角△ABC的外接圆圆心,A=60°,=2m·,则m的值为()
A. B.
C.1
D.
7.设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是()
A.B.[0,1]
C.D.[1,+∞)
8.(2018陕西一模)设x∈R,定义符号函数sgn x=则函数f(x)=|x|sgn x的图象大致是()
9.已知f(x)=log a(x-1)+1(a>0,且a≠1)恒过定点M,且点M在直线=1(m>0,n>0)上,则m+n的最小值为()
A.3+2
B.8
C.4
D.4
10.已知直线l与双曲线-y2=1相切于点P,l与双曲线两条渐近线交于M,N两点,则的值为()
A.3
B.4
C.5
D.0
二、填空题
11.设a>b>1,则log a b,log b a,log ab b的大小关系是.(用“<”连接)
12.不论k为何实数,直线y=kx+1与圆x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围
是.
13.函数f(x)=4cos2cos-2sin x-|ln(x+1)|的零点个数为.
14.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=.
15.已知函数f(x)是定义在R上的可导函数,其导函数记为f'(x),若对于∀x∈R,有f(x)>f'(x),且y=f(x)-1是奇函数,则不等式f(x)<e x的解集为.
16.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域为.
专题对点练1答案
1.C解析当a=0时,x=-,符合题意,排除A,D;当a=1时,x=-1,符合题意,排除B.故选C.
2.C解析f(x)=ln x是增函数,根据条件不妨取a=1,b=e,则
p=f()=ln,q=f>f()=,r=·[f(1)+f(e)]=.在这种特例情况下满足p=r<q,所以选C.
3.B解析∵是一个与n无关的常数,∴结合选项令=1,
则数列{a n}是一个常数列,满足题意;
令,设等差数列的公差为d,则a n=a2n= (a n+nd),
∴a n=nd,即a1+(n-1)d=nd,化简,得a1=d,也满足题意;
=0,则a n=0,a2n=0,不满足题意.故选B.
4.B解析(法一)由题意可取特殊值a=3,b=4,c=5,则cos A=,cos C=0,.故选B.
(法二)由题意可取特殊角A=B=C=60°,cos A=cos C=.故选B.
5.C解析由f(1+x)=f(1-x)知,函数y=f(x)的图象关于直线x=1对称.又f(x)在(-∞,1]上单调递增,所以f(x)在[1,+∞)上单调递减.设点A(x1,0),B(x2,0).因为x1<x2,且x1+x2=3,所以点A在点B的左侧,且AB的中点坐标为,所以结合图象可知(图略),f (x1)>f(x2).
6.
A解析对任意锐角三角形,题干中的等式都成立,则对等边三角形,题干中的等式也应成立.如图,当△ABC为正三角形时,则∠BAC=∠ABC=∠ACB=60°.
取BC的中点D,连接AD,
由题意可知,
则有=2m·.
∴)=2m×.
∴·2.
∴m=.故选A.
7.C解析当a=2时,f(a)=f(2)=22=4>1,f(f(a))=2f(a),∴a=2满足题意,排除A,B选项;当a=
时,f(a)=f=3×-1=1,f(f(a))=2f(a),∴a=满足题意,排除D选项,故答案为C.
8.C解析函数f(x)=|x|sgn x=
故函数f(x)=|x|sgn x的图象为y=x所在的直线,故选C.
9.A解析因为f(x)=log a(x-1)+1(a>0,且a≠1)恒过定点M(2,1),所以M(2,1)在直线=1上,可得
=1,m+n=(m+n)=3+≥3+2当且仅当,m+n的最小值为3+2,故选A.
10.A解析取点P(2,0),则M(2,1),N(2,-1),∴=4-1=3,
取点P(-2,0),则M(-2,1),N(-2,-1),
∴=4-1=3,故选A.
11.log ab b<log a b<log b a解析考虑到两个数的大小关系是确定的,不妨令a=4,b=2,则
log a b=,log b a=2,log ab b=,显然<2,∴log ab b<log a b<log b a.
12.[-1,3]解析由题知2a+4>0,则a>-2.注意到直线y=kx+1恒过定点(0,1),所以题设条件等价于点(0,1)在圆内或圆上,则有02+12-2a·0+a2-2a-4≤0,即a2-2a-3≤0,解得-1≤a≤3.综上,-1≤a≤3.
13.2解析由题意可得f(x)=4cos2·sin x-2sin x-|ln(x+1)|=2sin x·-|ln(x+1)|=sin 2x-|ln(x+1)|.令f(x)=0,得sin 2x=|ln(x+1)|.在同一平面直角坐标系中作出两个函数y=sin 2x与函数y=|ln(x+1)|的大致图象,如图所示.
观察图象可知,两函数图象有2个交点,故函数f(x)有2个零点.
14.-8解析根据函数特点取f(x)=sin x,再由图象可得(x1+x2)+(x3+x4)=(-6×2)+(2×2)=-8.
15.(0,+∞)解析由题意令g(x)=,则g'(x)=.
∵f(x)>f'(x),∴g'(x)<0,
故函数g(x)=在R上单调递减.
∵y=f(x)-1是奇函数,∴f(0)-1=0,
即f(0)=1,g(0)=1,
则不等式f(x)<e x等价为<1=g(0),
即g(x)<g(0),解得x>0.
16.∪(2,+∞)解析由x<g(x),得x<x2-2,
∴x<-1或x>2;
由x≥g(x),得x≥x2-2,
∴-1≤x≤2.
∴f(x)=
即f(x)=
当x<-1时,f(x)>2;
当x>2时,f(x)>8.
∴当x∈(-∞,-1)∪(2,+∞)时,函数的值域为(2,+∞).
当-1≤x≤2时,-≤f(x)≤0.
∴当x∈[-1,2]时,函数的值域为.综上可知,f(x)的值域为∪(2,+∞).。