2020军转干行测数量关系:一个方程组解决三者容斥
三者容斥问题公式

三者容斥问题公式三者容斥问题是一种涉及三个集合的计数问题,它的基本思想是利用包含与排除原理,也叫容斥原理,来避免重复计数或漏算。
三者容斥问题有一个基本公式:|A∪B∪C|=|A|+|B|+|C|−|A∩B|−|B∩C|−|C∩A|+|A∩B∩C|这个公式的含义是,要求出三个集合的并集的元素个数,可以先分别求出每个集合的元素个数,然后减去两两相交的部分,因为这些部分被重复计算了,最后加上三个集合都相交的部分,因为这部分被多次减去了。
三者容斥问题的推导为了理解这个公式是如何推导出来的,我们可以用维恩图来进行说明。
如下图所示,我们用三个圆形来表示三个集合A、B、C,它们之间有七个不同的区域,分别用1、2、3、4、5、6、7来标记。
如果我们要求出三个集合的并集A∪B∪C,那么就相当于求出这七个区域的总和。
我们可以用下面的方法来计算:首先,我们可以求出每个集合自身的元素个数,即|A|=1+4+5+7,|B|=2+4+6+7,|C|=3+5+6+7。
如果我们把这三个数相加,就得到了1+4+5+7+2+4+6+7+3+5+6+7=63。
但是这个数显然大于A∪B∪C的元素个数,因为有些区域被重复计算了。
其次,我们可以看到两两相交的部分被重复计算了两次,即A∩B=4+7,B∩C=6+7,C∩A=5+7。
如果我们把这三个数相减,就可以消除重复计算的部分。
即63−4−7−6−7−5−7=27。
但是这个数又小于A∪B∪C的元素个数,因为有一个区域被多次减去了。
最后,我们可以看到三个集合都相交的部分被多次减去了,即A∩B∩C=7。
如果我们把这个数再加回来,就可以得到正确的结果。
即27+7=34。
综上所述,我们就得到了三者容斥问题的公式:|A∪B∪C|=|A|+|B|+|C|−|A∩B|−|B∩C|−|C∩A|+|A∩B∩C|三者容斥问题的应用三者容斥问题在实际生活中有很多应用场景,例如:统计某高校做有关碎片化学习的问卷调查结果²。
2020云南省考行测数量关系之容斥问题

2020云南省考行测数量关系之容斥问题2020云南公务员考试公告什么时候会发布?云南省考什么时候考试?2020年已过半,想必2020年云南公务员考试离我们不会太远。
今天给大家带来2020云南省考行测数量关系之容斥问题,希望对大家有帮助。
随着时间的推移,2020省考的备考也逐渐进入了关键期。
而在行测的备考中,大家最头疼的当属数量关系了,很多同学一提到数量关系心里就发怵。
但是,在这里还是要向大家强调一下,再难的部分也有一些相对而言难度较低的题目,是我们在考场上短时间内能做出来的,比如我们今天要提到的容斥问题,它通常考到的知识点有两者容斥,三者容斥和容斥极值这三个知识点,除了直接利用公式求解的题目,还有一部分不能直接用公式的,今天中公教育就通过几道例题来和大家一起学习。
例1.某公司招聘客户经理和产品经理两类人员,两类岗位共有32位男性,18位女性报名,应招客户经理岗位的男性人数和女性人数比为5:3,应招产品经理岗位的男性人数和女性人数比为2:1,则应招客户经理的女性有多少人?A.20B.15C.6D.12【答案】D。
中公解析:通过读题我们发现,对于这里所有的报考者进行了两种分类,一种按男性、女性去分类,一种按客户经理、产品经理去分类,所以这里我们首先采用列表的方法,将两种分类下的人数分别表示出来,如图:通过表格我们可以很直观的看出,5x+2y=32,3x+y=18,联立两个方程即可得x=4,y=6,相应的我们要求解的是客户经理的女性,即3x=3×4=12人,故选D选项。
例2.某单位技术支持和售后服务两个部门的男职工人数之和与女职工人数之和相同。
技术支持部门男性职工人数是女性的1.5倍,售后服务部门的女性职工比男性职工多10人,求技术支持部门有多少人?A.25B.30C.35D.50【答案】D。
中公解析:对于这道题目我们也不难发现,题目研究的职工按部门和性别进行了分类,由题意可知,男女人数比为1:1,技术支持部门男女人数比为3:2,我们将男男女人数均设为x,技术支持部门男女人数设为3y,2y,故我们列出表格:由表格可知,(x-2y)-(x-3y)=10,故y=10,所求为技术支持部门总人数,即为3y+2y=5y,故共有50人。
数量关系之三集合容斥问题解题技巧

数量关系之三集合容斥问题解题技巧:公式法2011-08-30 09:29 作者:罗姮来源:华图教育分享到: 1在国家公务员行测考试中,数量关系模块中的容斥问题必不可少,也是学员觉得最难突破的一大问题。
究其原因,一则是容斥问题很复杂,特别是三集合容斥问题涉及的已知量特别多,读完题容易被绕进去;二则是没有好的方法切入,做出来非常消耗时间。
其实,掌握好公式法对于解决三集合容斥问题很有帮助。
本篇就对三集合容斥问题的解题技巧之公式法进行阐释。
一、三集合标准型公式集合A、B、C,满足标准型公式:三集合标准型公式适用于题目中各类条件都明确给出的情况。
另外,可使用尾数法,判断个位数的相加减快速确定正确答案。
例1、某专业有学生50人,现开设有甲、乙、丙三门选修课。
有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?()(2009年浙江公务员考试行测试卷第55题)A、1人B、2人C、3人D、4人答案:B 各类条件明确给出,直接使用公式法。
三者都不满足的个数=总数-=50-(40+36+30-28-26-24+20),可使用尾数法,尾数为2,选B。
例2、如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。
它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。
且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。
问图中阴影部分的面积为多少()?(2009年国家公务员考试行测第116题)A、14B、15C、16D、17答案:C 直接使用三集合标准型公式,=290-(64+180+160-24-70-36),根据尾数法得,尾数为6,选C。
二、三集合整体重复型公式三集合容斥问题中,有些条件未知时,就不能直接使用标准型公式,而是运用整体重复型公式同样可以解答。
行测数量关系容斥问题

行测数量关系容斥问题引言:在行测考试中,数量关系容斥问题是一个常见的考点。
掌握了该问题的解题方法,能够帮助考生更好地应对这一类题型。
本文将从概念、解题思路以及实例分析等方面进行详细讲解,以帮助考生更好地理解和掌握数量关系容斥问题。
一、概念解释:数量关系容斥问题是指在求解满足多个条件的情况数量时,通过排除重复计数的方法来得到准确结果。
其基本思想是通过理清各个条件的关系,累加满足每个条件的情况数量,然后再减去同时满足不止一个条件的情况数量,以得到最终结果。
二、解题思路:1.理解问题要求:首先,要明确问题所要求的情况数量。
通常情况下,此类问题要求计算满足多个条件的情况数量。
2.列出条件:将题目中给出的条件进行列举,每个条件单独列成一行。
3.计算满足每个条件的情况数量:对于每个条件,可以单独计算满足该条件的情况数量。
这可以通过排列组合、分类讨论等方法来计算。
4.累加满足每个条件的情况数量:将每个条件满足的情况数量累加起来,得到初步的结果。
5.减去同时满足不止一个条件的情况数量:根据容斥原理,需要减去同时满足不止一个条件的情况数量,以避免重复计数。
通过分类讨论或使用其他方法计算同时满足不止一个条件的情况数量。
6.得到最终结果:将初步结果减去同时满足不止一个条件的情况数量,即可得到最终的结果。
三、实例分析:下面通过一个实例来进一步说明解题思路。
例题:某校有甲、乙、丙三位老师,每位老师选择在星期一至星期五中任意一天进行家访。
如果每位老师至少选择一天进行家访,那么共有多少种家访方式?条件:1.甲、乙、丙三位老师任选一天进行家访;2.甲、乙、丙三位老师至少选择一天进行家访。
解题思路:1.理解问题要求:题目要求计算满足两个条件的家访方式数量。
2.列出条件:条件1:甲、乙、丙三位老师任选一天进行家访;条件2:甲、乙、丙三位老师至少选择一天进行家访。
3.计算满足每个条件的情况数量:条件1满足的情况数量为3(每个老师有5种选择,共有3个老师);条件2满足的情况数量为5^3-1(每个老师有5种选择,减去同时不选择任意一天的情况数量)。
行测答题技巧:容斥原理之三者容斥问题

中公教育考试研究院宋丽娜:容斥原理是行测数学运算中常考知识点。
容斥原理是指在计数时,必须注意无一重复,且无遗漏。
这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
例1:一个班级的学生数学和语文每人至少喜欢其中一种,其中喜欢数学课的有49人,喜欢语文课的有52人,二者都喜欢的有21人,则这个班级有多少人?中公点拨:本题就是一个容斥问题,解决此问题的方法就是先算:49+52=101(把含于某内容中的所有对象的数目先计算出来),然后再把计数时重复计算的数目排斥出去即:101-21=80人,则整个班级的人数就有80人。
三者容斥问题是行测数学运算中常考也相对较复杂的容斥问题。
所谓三者容斥是指在题干中有三种集合(集合就是具有共同属性所以元素的的整体,例如上题中喜欢数学的人构成一个集合)。
三者容斥问题有一个基本公式:A,B,C代表三个集合,则有A∪BUC=A+B+C-A∩B-A∩C-B∩C+ A∩B∩C这个公式表达的含义是,A+B+C再减去两两相交之后,中间E(即A∩B∩C)这部分被减没了。
而容斥原理的基本思想是计数时不重复不漏掉,故要再加回来,所以又加了一个A∩B∩C。
例2. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。
结果显示:他们都至少喜欢三种大球中的一种,其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人。
篮球和排球都喜欢的多少人?中公教育解析:由题意可画图如下:则有上述公式可知:58+68+62-45-33-篮球和排球都喜欢+12=100人故喜欢篮球和排球的人有22人。
例3. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。
事业单位考试数量关系:容斥问题

容斥问题是考试中比较偏向技巧性和公式性的问题, 大部分同学对容斥问题是比较熟悉的。
但是其中容斥中的极值问题, 确实考试中一个难点和出题的方向。
何为容斥极值问题, 简而言之就是将容斥问题和极值问题结合起来进行考察的题目。
主要包含以下两种:一、公式法求解容斥极值问题, 如果我们求解的是几个集合公共部分的最小值问题, 下面给出了相应的公式, 我们只需要讲数据代入即可。
其中, 公式中的A.B.C.D分别集合,I代表的是全集。
例1、某班30人, 数学22人优秀, 语文25人优秀, 英语20人优秀, 这三科全部优秀的学生至少有多少人?A.7B.6C.5D.4【答案】A。
解析: 根据题意可得全集为30;将数学、语文以及英语分别看成是A.B.C三个集合, 每个集合的数据也已知;最后题目求三科全部优秀的学生至少有多少人, 即求三个集合相交的最小值, 直接用三集合相交的最小值。
三集合相交的最小值=A+B+C-2*I=22+25+20-2*30=7二、极限思想在容斥极值问题中, 若并非求得是几个集合公共部分的最小值问题, 那就不能直接使用上面的公式解决, 要结合具体题目运用极限思想分析, 下面通过一道例题进行说明:例2参加某部门招聘考试的共有120人, 考试内容共有6道题。
1至6道题分别有86人, 88人, 92人, 76人, 72人和70人答对, 如果答对3道题或3道以上的人员能通过考试, 那么至少有多少人能通过考试?A .72B .61 C.58 D .44【答案】D。
解析: 要使通过的人最少, 那么就是对1道, 2道的人最多, 并且应该是对2道的人最多(这样消耗的总题目数最多), 假设都只对了2道, 那120人总共对了240道, 而现在对了86+88+92+76+72+70=484, 比240多了244道, 每个人还可以多4道(这样总人数最少),244/4=61。
3.一次考试共有五道试题, 做对第1.2、3、4、5题的分别占考试人数的81%、91%、85%、79%、74%, 如果做对三道或三道以上为及格, 那么这次考试的及格率至少是多少?(参考第二题的思想, 一个类型)100-81,91,85,79,74=19+9+15+21+26=90 90/3=30, 100-30=70。
行测技巧:两种方法巧解数量关系“容斥问题”

⾏测技巧:两种⽅法巧解数量关系“容斥问题” ⾏测数量的运算⼀直是⾏测考试的重点题型,下⾯由店铺⼩编为你精⼼准备了“⾏测技巧:两种⽅法巧解数量关系“容斥问题””,持续关注本站将可以持续获取更多的考试资讯!⾏测技巧:两种⽅法巧解数量关系“容斥问题” 容斥问题其实是⼀种在考试中⽐较常见且简单的题型,它考察的是集合之间彼此的交集问题,⼀般来说解决容斥问题最常⽤的两种⽅法就是⽂⽒图法和公式法。
下⾯⼩编为⼤家讲解。
让我们先从⼀个⽣活上的⼩例⼦来理解什么是容斥:AB是两个同居室友,有⼀天A下班回家时在路上买了⾹蕉、苹果、菠萝三种⽔果,B回家路上买了菠萝、葡萄、西⽠三种⽔果,那么家⾥现在⼀共有多少种⽔果?答案很简单,因为尽管两个⼈各买了三种⽔果,但其中菠萝是重复的,所以我们在3+3之后还需要把多算了⼀遍的菠萝减下去,⽽这就是容斥问题的本质:减去多算的,补上空⽩的。
在⾏测的容斥问题⾥,较常考的是三者容斥,也就是三个集合之间的关系,我们把三个集合分别称作A、B、C,三个集合的总集称作U,就可以得到三者容斥的公式: U=A+B+C-A∩B-B∩C-A∩C+A∩B∩C+三者都没有的 在做题的时候只需要找到题⼲中给定的各个条件,选择直接套⽤,然后就可以求出公式中缺少的项,从⽽快速得到答案。
以⼀道题⽬为例:18名游泳运动员中,有8名参加仰泳,有10名参加蛙泳,有12名参加⾃由泳,有4名既参加仰泳⼜参加蛙泳,有6名既参加蛙泳⼜参加⾃由泳,有5名既参加仰泳⼜参加⾃由泳,有两名这三个项⽬都参加。
三个项⽬都没有参加的有多少名? 在题⽬中,ABC即对应仰泳、蛙泳、⾃由泳,那么A、B、C、A∩B,B∩C,A∩B∩C都是已知的,求都没有参加,即求剩下的项,⾸先,我们先把题⽬中已经给的数据填⼊公式: 18=8+10+12-4-6-2+2+x 在这个⽅程中,我们解得x=1,也就是三个项⽬都没有参加的有⼀个⼈。
⽽公式法虽然简单,但有的时候可能会觉得有些眼花缭乱,这种时候⽂⽒图法就显得更为直观,我们⼀起来感受⼀下⽂⽒图法在题⽬中的应⽤: 按照从内向外依次填充的⽅式,在⽂⽒图中填写不同区域对应的数据,这样题⽬⽆论是求哪个部分,⼜或是其中⼀些部分的和、差关系(⽐如只会游⼀种泳的、只会游两种泳的、只会⾃由泳的⼈⽐只会蛙泳的多多少),我们就都不怕了。
行测容斥问题公式

行测容斥问题公式行测中的容斥问题可是个有趣的“家伙”,在考试中时不时就会冒出来,给咱们考生带来点小挑战。
咱们先来说说啥是容斥问题。
简单来讲,容斥问题就是研究集合之间重叠部分的情况。
比如说,一个班级里喜欢数学的有一部分同学,喜欢语文的有一部分同学,那么既喜欢数学又喜欢语文的同学有多少呢?这就是一个典型的容斥问题。
容斥问题有几个常用的公式。
两集合容斥公式:A∪B = A + B -A∩B。
这就好比有两个盒子,一个装苹果,一个装香蕉。
把两个盒子里的水果都放到一个大筐里,总数就是两个盒子里水果数的和,减去两个盒子里都有的那种水果(比如既是苹果又是香蕉的水果)。
再说说三集合容斥公式,标准型:A∪B∪C = A + B + C - A∩B -B∩C - C∩A + A∩B∩C 。
这个公式看起来有点复杂,其实就是把三个集合的数量加起来,然后减去两两重叠的部分,再把三个都重叠的部分加回来。
打个比方,咱就说班级里的兴趣小组,有数学小组、语文小组和英语小组。
数学小组有多少人,语文小组有多少人,英语小组有多少人,这都好算。
但是有些同学既参加了数学又参加了语文,有些既参加了语文又参加了英语,有些既参加了数学又参加了英语,还有些同学三个小组都参加了。
要算出班级里一共参加兴趣小组的人数,就得用这个公式。
还有个非标准型的三集合容斥公式:A∪B∪C = A + B + C - 只属于两个集合的 - 2×属于三个集合的。
这个公式呢,理解起来也不难。
还是拿兴趣小组举例,咱们先把三个小组的人数加起来,然后把重复算的只属于两个小组的人数减掉,但是属于三个小组的人数被多减了一次,所以要再加上两倍的属于三个小组的人数。
我记得之前有个学生,在做容斥问题的时候,那叫一个头疼。
题目是这样的:一个班级有 50 名同学,参加数学竞赛的有 25 人,参加语文竞赛的有20 人,其中有10 人既参加了数学竞赛又参加了语文竞赛,问班级里参加竞赛的总人数是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行测数量关系:一个方程组解决三者容斥行测考试当中的数量关系部分又是大家最为头疼的一环,很多领导都是选择放弃的。
因为数量关系的题难,而且耗时很长,如果做了,难免得不偿失。
然而事实并非如此,其实大多数数量关系的题都有一定的解题技巧,掌握了它们,就能在考试当中多拿分数,取得一定的竞争优势。
今天,中公教育就以容斥问题为例,给大家说说怎样利用一个方程组快速地、准确地解决数量关系题。
什么是三者容斥
题目后发现题干描述了三个概念,这三个概念有相同的部分,也有不同的部分,我们管这类题目就叫三者容斥。
单独去理解其实比较抽象,不如通过画图将其具体化。
不妨先来看看三者容斥的构成:
观察这个图形我们会发现1,2,3代表只属于一部分的,不妨设1+2+3=a。
4,5,6代表属于两部分的,不妨设4+5+6=b。
7是属于三部分的设7=c,8是都不属于的设8=d。
则有:I=1+2+3+4+5+6+7+8=a+b+c+d,
A+B+C=1+2+3+4+5+6+4+5+6+7+7+7=a+2b+3c
A∩B+A∩C+B∩C=4+5+6+7+7+7=b+3c
真正解题的过程中注重理解题干,如果题干中告诉我们数据就待数据,如没告诉数据就用字母代替。
不是所有题目都用得到三个方程,有些用两个,甚至有些只用一个就能搞定。
下面我们通过几个例题来认识一下三者容斥:
例1:对39 种食物中是否含有甲、乙、丙三种维生素进行调查,结果如下:含甲的有
17 种,含乙的有18 种,含丙的有15 种,含甲、乙的有7 种,含甲、丙的有6 种,含乙、丙的有9 种,三种维生素都不含的有7 种,则三种维生素都含的有多少种?
A.4
B.6
C.7
D.9
答案:A。
【中公解析】由题可知:I=39,A=17,B=18,C=15,A∩B=7,A∩C=6,B ∩C=9,d=7。
而此题求c,直接带入方程组:
I=a+b+c+d,即39=a+b+c+7 整理得:32=a+b+c ①
A+B+C=a+2b+3c,即17+18+15=a+2b+3c整理得:50=a+2b+3c ②A∩B+A∩C+B∩C=b+3c,即7+6+9=b+3c 整理得:22=b+3c ③
得到一个三元一次方程组②-①得:18=b+2c,再用③减上所得求得c=4,故此题选A
例2.某乡镇对集贸市场36 种食品进行检查,发现超过保质期的7 种,防腐添加剂不
合格的9 种,产品外包装标识不规范的6 种。
其中,两项同时不合格的5 种,三项同时不合格的2 种。
问三项全部合格的食品有多少种?
A.14
B.21
C.23
D.32
答案:C。
【中公解析】由题可知:I=36,A=7,B=9,C=6,b=5,c=2。
此题告诉我们的都是不合格的怎么样,故求三项全部都合格的是求d,直接带入方程组:I=a+b+c+d,即36=a+5+2+d 整理得:29=a+d①
A+B+C=a+2b+3c,即7+9+6=a+2×5+3×2 整理得:6=a②
①-②即可求出d=23。
故此题选C。
例3.某研究室有12 人,其中7 人会英语,7 人会德语,6 人会法语,4 人既会英语又会德语,3 人既会英语又会法语,2 人既会德语又会法语,1 人英语、德语、法语三种
语言都会。
会且只会两种语言的有多少人?
A.8
B.4
C.5
D.6
答案:D。
【中公解析】由题可知:I=12,A=7,B=7,C=6,A∩B=4,A∩C=3,B∩C=2,c=1。
而此题求b,直接带入方程组:
A∩B+A∩C+B∩C=b+3c,即4+3+2=b+3×1 整理得:6=b
直接得出b=6。
故此题选D。
最后希望各位领导在下去理解一下这个方程组的由来,找几道三者容斥的题目做一做,相信大家一定可以理解这个方程组的方便之处。