初中数学题库整式3星题3(含解析)

合集下载

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(3)

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(3)

一、选择题1.已知4,6m n x x ==,则2-m n x 的值为( )A .9B .34C .83D .432.下列运算正确的是( ) A .2222a a -= B .()32628b b -=-C .222()a b a b -=-D .()a b a b --=--3.若计算关于x 的代数式()2(1)2x x mx -++得2x 的系数为3,则m =( ) A .4- B .2- C .2 D .44.下列计算正确的是( )A .326a a a ⋅=B .()()2122a a a +-=- C .()333ab a b =D .623a a a ÷=5.23ab a ⋅的计算结果是( ) A .3abB .6abC .32a bD .33a b6.下列运算正确的是( ) A .325a a a =B .()325x x =C .824x x x ÷=D .()326a ba b =7.下列运算中正确的是( ) A .235x y xy +=B .()3253x yx y =C .826x x x ÷=D .32622x x x ⋅=8.已知a+2b-2=0,则2a ×4b ( ) A .4B .8C .24D .329.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( ) A .41a + B .43a + C .63a + D .2+1a 10.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( )A .6163m n -B .6323m n -C .383m n -D .6169m n -11.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .()()22-a b a b a b +-=B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()2222a b a ab b -=--二、填空题13.在代数式求值时,可以利用交换律,将各项交换位置后,把一个多项式化成“()222a ab b±++其他项”的形式,然后利用完全平方公式得到“()2a b ±+其他项”,最后整体代入求值.例如对于问题“已知2a b +=,1c =,求2222a c b ab +++的值”,可按以下方式求解:2222a c b ab +++2222a ab b c =+++22()a b c =++=22215+=.请仿照以上过程,解决问题:若3m n t +=-,7n k t -=-,则22244241m n k mn mk nk +++--+=______.14.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=________.15.如果2(1)(2)x x mx m --+的乘积中不含2x 项,则m 的值为____. 16.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________.17.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 18.已知a +b =5,且ab =3,则a 3+b 3=_____.19.如图为杨辉三角表,它可以帮助我们按规律写出()n a b +(其中n 为正整数)展开式的系数,请仔细观察表中规律可得:1()a b a b +=+;222()2a b a ab b +=++; ……;如果55432345()10105y a b a xa b a b a b ab b +=+++++…….那么x y + =________.20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.计算题 (1)32(2)(5)x xy -(2)()(2)x y x y -+22.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 23.计算:(1)2031(2021)|13|(2)4; (2)2222()()ab a abb ab a abb .24.先化简,再求值()()()()()21231132x x x x x ----+-+,其中23x =-.25.已知a +b =7,ab =11,求代数式211()22a ab b --的值. 26.计算 (1)(65x 2y -4xy 2)•13xy (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:∵4,6m n x x ==,2-m n x =2m n x x ÷=2()m n x x ÷,∴原式=246=83; 故选:C . 【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握公式,灵活逆向使用公式是解题的关键.2.B解析:B 【分析】A.根据合并同类项解题;B.根据积的乘方解题;C.根据完全平方公式;D.根据去括号法则,判断即可. 【详解】解:A. 2222a a a -=,原选项计算错误,不符合题意; B. ()32628b b -=-,原选项计算正确,符合题意;C. 222()2a b a ab b -=-+,原选项计算错误,不符合题意;D. ()a b a b --=-+,原选项计算错误,不符合题意; 故选:B . 【点睛】本题考查合并同类项、积的乘方、完全平方公式、去括号法则等.熟记法则能分别计算是解题关键.3.B解析:B 【分析】利用多项式乘以多项式法则将原式化简,根据2x 的系数为3即可求出m 的值; 【详解】原式=()()2322322=122x mx x mx x m x m x x ++----+-+- ,∵ 2x 的系数为3, ∴ 1-m=3, 解得m=-2, 故选:B . 【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.4.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;5.D解析:D 【分析】直接利用单项式乘单项式计算得出答案. 【详解】 解:3ab•a 2=3a 3b . 故选:D . 【点睛】本题主要考查了单项式乘单项式,正确掌握相关运算法则是解题的关键.6.A解析:A 【分析】根据幂的运算性质判断即可; 【详解】325a a a =,故A 正确;()326x x =,故B 错误;826x x x ÷=,故C 错误;()3263a b a b =,故D 错误;故答案选A . 【点睛】本题主要考查了幂的运算性质,准确分析判断是解题的关键.7.C解析:C 【分析】按照合并同类项,幂的运算法则计算判断即可. 【详解】∵2x 与3y 不是同类项, ∴无法计算, ∴选项A 错误; ∵()3263x yx y =,∴选项B 错误; ∵88262x x x x -==÷, ∴选项C 正确;∵32325222x x x x +⋅==, ∴选项D 错误; 故选C. 【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键.8.A解析:A 【分析】把a+2b-2=0变形为a+2b=2,再将2a ×4b 变形为22a b +,然后整体代入求值即可. 【详解】 解:∵a+2b-2=0, ∴a+2b=2, ∴2a ×4b =222=2=4a b + 故选:A . 【点睛】此题主要考查了同底数幂的逆运算,熟练掌握运算法则是解答此题的关键.9.C解析:C 【分析】根据题意列出关系式,化简即可得到结果; 【详解】 根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C . 【点睛】本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.10.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.11.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】 ∵1x =,1y =,∴x+y=∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.12.C解析:C 【分析】根据阴影部分的面积的不同表示方法,即可求出答案. 【详解】解:如图所示,根据图中的阴影部分面积可以表示为:(a-b )2 图中的阴影部分面积也可以表示为:a 2-2ab+b 2 可得:(a-b )2=a 2-2ab+b 2故选:C【点睛】本题考查了完全平方公式的几何背景,解决问题的关键是能用算式表示出阴影部分的面积二、填空题13.17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4再两边平方展开最后整体代入即可【详解】解:∵m+n=3-tn-k=t-7∴(m+n)+(n-k)=3-t+t-7即m+2n-k=-4解析:17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4,再两边平方展开,最后整体代入即可.【详解】解:∵m+n=3-t,n-k=t-7,∴(m+n)+(n-k)=3-t+t-7,即m+2n-k=-4,∴(m+2n-k)2=(-4)2,∴m2+4n2+k2+4mn-2mk-4nk=16,∴m2+4n2+k2+4mn-2mk-4nk+1=16+1=17,故答案为:17.【点睛】本题考查代数式求值,将原代数式进行适当的变形是得出正确答案的关键.14.【分析】由新规定的运算可得3a=53b=6m=32a-b再将32a-b转化为后再代入求值即可【详解】解:由于(35)=a(36)=b(3m)=2a-b根据新规定的运算可得3a=53b=6m=32a-解析:25 6【分析】由新规定的运算可得3a=5,3b=6,m=32a-b,再将32a-b,转化为2(3)3ab后,再代入求值即可.【详解】解:由于(3,5)=a,(3,6)=b,(3,m)=2a-b,根据新规定的运算可得,3a =5,3b =6,m=32a-b , ∴222(3)5253366a a bb m -====, 故答案为:256. 【点睛】本题考查了幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键.15.【分析】按照多项式乘以多项式的法则展开化简合并同类项令项的系数为零即可【详解】解:∵==又∵的乘积中不含项∴-(2m+1)=0解得m=故答案为:【点睛】本题考查了整式的乘法熟练掌握多项式乘以多项式的解析:12-. 【分析】按照多项式乘以多项式的法则,展开化简,合并同类项,令2x 项的系数为零即可. 【详解】解:∵2(1)(2)x x mx m --+=32222x mx mx x mx m -+-+- =32(21)3x m x mx m -++-,又∵2(1)(2)x x mx m --+的乘积中不含2x 项,∴-(2m+1)=0, 解得 m=12-. 故答案为:12-. 【点睛】本题考查了整式的乘法,熟练掌握多项式乘以多项式的基本法则,并准确理解不含某项的意义是解题的关键.16.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键 解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案. 【详解】 ∵222(2)444x x x x bx ±±=+=++,∴b=4±, 故答案为:4±. 【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.17.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算. 【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭,∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222xy⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.18.80【分析】先求出再将a +b =5代入a3+b3公式中计算即可【详解】∵a +b =5且ab =3∴∴∴故答案为:80【点睛】此题考查完全平方公式的变形计算立方和公式正确掌握立方和的计算公式是解题的关键解析:80 【分析】先求出2216a b ab +-=,再将a +b =5,2216a b ab +-=代入a 3+b 3公式中计算即可. 【详解】∵a +b =5,且ab =3,∴2222()253219a b a b ab +=+-=-⨯=, ∴2222()353316a b ab a b ab +-=+-=-⨯=, ∴3322()()51680a b a b a ab b +=+-+=⨯= 故答案为:80. 【点睛】此题考查完全平方公式的变形计算,立方和公式,正确掌握立方和的计算公式是解题的关键.19.7【分析】根据题意写出杨辉三角表的第六行的数从而可以得到x 和y 的值即可求出结果【详解】解:根据杨辉三角表第六行的数依次是15101051∴∴即∴故答案是:7【点睛】本题考查找规律解题的关键是理解杨辉解析:7【分析】根据题意写出杨辉三角表的第六行的数,从而可以得到x 和y 的值,即可求出结果.【详解】解:根据杨辉三角表,第六行的数依次是1、5、10、10、5、1,∴5x =,∴35y +=,即2y =,∴527x y +=+=.故答案是:7.【点睛】本题考查找规律,解题的关键是理解杨辉三角表,按照规律写出第六行的数. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.(1)4240x y ;(2)222x xy y --【分析】(1)首先进行积的乘方运算,然后再进行单项式乘以单项式运算即可得到答案; (2)根据整式多项式乘以多项式运算法则计算可得.【详解】解:(1)32(2)(5)x xy -328(5)x xy =--4240x y =;(2)()(2)x y x y -+222+2x xy xy y =--22=2x xy y --【点睛】本题主要考查整式的乘法运算,解题的关键是熟练掌握整式的乘法运算顺序和法则. 22.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=,0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.23.(1)7;(2)32a .【分析】(1)根据绝对值、零指数幂、负整数指数幂、立方的运算分别进行计算,然后根据实数的运算法则求得计算结果;(2)先根据多项式乘以多项式的法则进行计算,再合并同类项即可.【详解】解:(1)2031(2021)|13|(2)416128=+--7=(2)2222()()a b a ab b a b a ab b322223a a b ab a b ab b =-++-++322223a a b ab a b ab b ++---3333a b a b =++-32a =.【点睛】考查了整式的混合运算以及负整数指数幂、零指数幂、立方、绝对值运算等知识,熟练运用这些法则是解题关键.24.13718【分析】先根据多形式的乘法法则、平方差公式、完全平方公式计算,再去括号合并同类项即可.【详解】解:()()()()()21231132x x x x x ----+-+ =()()22213261692x x x x x x --+---++ =222193261322x x x x x x --+-+--- =215822x x --+, 当23x =-时, 原式=2122582332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭ =2165932-++ =13718. 【点睛】 本题主要考查了整式的化简求值,涉及到的知识有:平方差公式,完全平方公式,多项式乘以多项式,合并同类项等知识.在求代数式的值时,一般先化简,再把各字母的取值代入求值.25.8【分析】由完全平方公式的变形,先把代数式进行化简,然后把a +b =7,ab =11,代入计算,即可得到答案.【详解】 解:211()22a a b b -- =22111222a ab b -+=221)1(22ab b a -+ =223(2221)ab b a ab ++- =23)1(22ab b a -+, ∵a +b =7,ab =11, ∴原式=214933711822223⨯-⨯=-=. 【点睛】 本题考查了整式的加减,完全平方公式的变形求值,解题的关键是熟练掌握运算法则,正确的进行化简.26.(1)25x 3y 2-43x 2y 3;(2)5y -x 【分析】(1)按照多项式乘单项式的计算法则进行计算求解;(2)整式的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)(65x 2y -4xy 2)•13xy =25x 3y 2-43x 2y 3 (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )=[x 2-9y 2-(x 2-2xy +y 2)]÷(-2y )=(x 2-9y 2-x 2+2xy-y 2)÷(-2y )=(-10y 2+2xy )÷(-2y )=5y -x【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。

初中数学常考易错点:1-3《整式》(含答案解析)

初中数学常考易错点:1-3《整式》(含答案解析)
整式
易错清单 1.(a )与a·a的区别.
mn m n
【例1】(2014·湖南娄底)下列运算正确的是( A.x 2·x3=x6 C.x
2 2 4
).
B.(x 3)3=x9 D.x 6÷x3=x
2
+x=x
2 3 5
【解析】x·x=x
3 3 9
,故A错误;
(x) =x,故B正确; x2+x2=2x2,故C错误; x6 3=x ,故D错误. ÷x 3 【答案】B 【误区纠错】易把同底数幂的乘法和幂的乘方相混淆,如x·x=x和(x)=x,即(a)和a·a
).
B.(x 3)3=x6 D.x 6-x3=x3 ).
+x=x
4.(2014·广西南宁五模)下列计算正确的是( A.a+a=a B.(2a)
3 2
3
=6a
2
C.(a-1) 2=a-1 D.(-ab)
5 2 33
÷(-ab)=-ab
a 2 b 2
5.(2013·山西模拟)已知-4xy+xy A.1 C.3 B.2 D.4
(1)第5个图形有多少颗黑色棋子? (2)第几个图形有2013颗黑色棋子?请说明理由. 【解析】(1)根据图中所给的黑色棋子的颗数,找出其中的规律,即可得出答案; (2)根据(1)所找出的规律,列出式子,即可求出答案. 【答案】(1)第1个图需棋子6颗, 第2个图需棋子9颗, 第3个图需棋子12颗, 第4个图需棋子15颗, … 第n个图需棋子3(n+1)颗. 故第5个图形有18颗黑色棋子. (2)设第n个图形有2013颗黑色棋子, 根据(1),得3(n+1)=2013,解得n=670, 所以第670个图形有2013颗黑色棋子. 专项训练 一、选择题

初三数学整式试题答案及解析

初三数学整式试题答案及解析

初三数学整式试题答案及解析1.下列运算中,正确的是()A.B.C.D.【答案】D【解析】解:A、B不是同类项不能合并,故错,C、,故错误,所以选D.【考点】同底数幂的乘法;同底数幂的除法.2.计算:(x+1)(x﹣1)﹣(x﹣2)2.【答案】4x﹣5.【解析】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.试题解析:解:原式=x2﹣1﹣x2+4x﹣4=4x﹣5.【考点】整式的混合运算.3.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【答案】B【解析】根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B【考点】1、列代数式;2、整式的计算4.分解因式:= .【答案】.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x后继续应用平方差公式分解即可:.【考点】提公因式法和应用公式法因式分解.5.已知,求代数式的值.【答案】12.【解析】将化为,整体代入化简后的代数式即可.试题解析:∵,∴.∴原式=.【考点】1.代数式求值;2.整体思想的应用.6.下列图形都是由同样大小的“星星”按一定的规律组成,其中第1个图形有4个“星星”,第2个图形一共有7个“星星”,第3个图形一共有10个“星星”,……,则第7个图形中“星星”的个数为()A.19B.20C.22D.23【答案】C.【解析】∵第一个图形有3+1=4个星星,第二个图形有2×3+1=7个星星,第三个图形有3×3+1=10个星星,第四个图形有3×4+1=13个星星,∴第n个图形的星星的个数是:3n+1.第7个图形有:3×7+1=22个,故选C.【考点】规律型:图形的变化类.7.因式分解:= .【答案】4(x+)(x-).【解析】原式提取4后,利用平方差公式分解即可.试题解析:原式=4(x2-3)=4(x+)(x-).【考点】实数范围内分解因式.8.观察下列图形的构成规律,按此规律,第10个图形中棋子的个数为()第1个图第2个图第3个图A.51B.45C.42D.31【答案】D.【解析】观察图形,发现:在4的基础上,依次多3个.即第n个图中有4+3(n﹣1)=3n+1.当n=10时,即原式=30+1=31.故选D.【考点】图形的变化类.9.下列运算中,正确的是A.B.C.D.【答案】B.【解析】A、应为4a-3a=a,故本选项错误;B、a•a2=a3,故本选项正确;C、应为3a6÷a3=3a3,故本选项错误;D、应为(ab2)2=a2b4,故本选项错误.故选B.【考点】1.合并同类项;2.同底数幂的除法;3.同底数幂的乘法;4.幂的乘方与积的乘方.10.下列计算正确的是()A.B.C.D.【答案】B.【解析】根据合并同类项,幂的乘方和积的乘方,同底幂乘除法运算法则逐一计算作出判断:A .x和x2不是同类项,不可合并,选项错误;B. ,选项正确;C. ,选项错误;D. ,选项错误.故选B.【考点】1.合并同类项;2.幂的乘方和积的乘方;3.同底幂乘除法.11.某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则最后的单价是()A.a元B.0.99a元C.1.21a元D.0.81a元【答案】B.【解析】原价提高10%后商品新单价为a(1+10%)元,再按新价降低10%后单价为a(1+10%)(1-10%),即0.99a元.故选B.【考点】列代数式.12.已知x2—2x—3=0,则2x2—4x的值为()A.—6B.6C.—2或6,D.—2或30【答案】B【解析】方程两边同时乘以2,再化出2x2-4x求值.x2-2x-3=0,2×(x2-2x-3)=0,2×(x2-2x)-6=0,2x2-4x=6,故选:B.【考点】代数式求值.13.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92—4×()2=();(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【答案】(1)4,17;(2)第n个等式为:(2n+1)2-4n2=2(2n+1)-1,证明见解析.【解析】由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.试题解析:(1)32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…所以第四个等式:92-4×42=17;(2)第n个等式为:(2n+1)2-4n2=2(2n+1)-1,左边=(2n+1)2-4n2=4n2+4n+1-4n2=4n+1,右边=2(2n+1)-1=4n+2-1=4n+1.左边=右边,∴(2n+1)2-4n2=2(2n+1)-1.【考点】规律型:数字的变化类;完全平方公式.14.分解因式:ab-2ab+b=【答案】b(1-a).【解析】提出公因式b后,剩下的项合并同类项即可。

初中数学试题分类汇编:整式幂的混合运算专项训练3(填空 附答案)

初中数学试题分类汇编:整式幂的混合运算专项训练3(填空 附答案)
23.计算: ; .
24.已知2x=3,4y=5,则2x-2y-3=_________.
25.计算:(0.125)2 018× =___________.
26.计算:a8÷a4•(a2)2=____________.
27.计算(a ·a ) +(a ) +(-2a ) =________
28.计算:(1) ____(2)x6÷(-x)3=_____
14.故答案为27.
【解析】
【分析】
根据同底数幂的除法底数不变指数相减,幂的乘方,可得答案
【详解】
解:∵3m=6,9n= 2,
∴32m-4n+1= =36 =27.
故答案为27.
【点睛】
本题考察了同底数幂的除法、幂的乘方,熟记法则并根据法则计算是解题关键.
15.81
【解析】
【分析】
运用幂的乘方和积的乘方将原等式化成含有 ,然后解方程求解即可.
8.16
【解析】
【分析】
根据题意利用同底数幂的除法以及幂的乘方的运算法则进行变形与代入运算即可.
【详解】
解:∵ , ,
∴ ,
∴ .
故答案为:16.
【点睛】
本题考查幂的运算,熟练掌握同底数幂的除法以及幂的乘方的运算法则是解题的关键.
9.8
【解析】
【分析】
根据幂的乘方可得 , ,再根据同底数幂的乘法法则解答即可.
【详解】
解:设
根据题意可得:



故答案为:2.
【点睛】
此题考查的是幂的逆运算,读懂转化方法和掌握同底数幂的乘法是解决此题的关键.
30.a6
【解析】
分析:
根据整式乘除法的相关运算法则进行计算即可.

经典归一归总问题基本知识-3星题(含解析)全国通用版

经典归一归总问题基本知识-3星题(含解析)全国通用版

应用题-经典应用题-归一归总问题基本知识-3星题课程目标知识提要归一归总问题基本知识•概述归一问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。

归总问题是找出总量,再根据其它条件求出结果。

与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.•分类归一问题可以分为两种:一种是求总量的,先求出一个单位量,然后利用乘法求出结果,这类问题叫做正归一问题(也称正归一);另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一).•归一问题的基本关系式总工作量=每份的工作量(单一量)×份数份数=总工作量÷每份的工作量(单一量)每份的工作量(单一量)=总工作量÷份数精选例题归一归总问题基本知识1. 筑路队修一段路,6个人45天完成,如果增加9人,天完成.【答案】18【分析】修这段路的工作总量是45×6=270(总工量),增加9人,共有15个人,需要270÷(6+9)=18(天)完成.2. 一筐水果中,恰好有一半数量是苹果,如果吃掉苹果数量的一半,筐中只剩下60个水果,那么,这时筐中还有个苹果.【答案】20【分析】最初苹果和其他水果各占一半,苹果被吃掉一半后,苹果占1份,其他水果占2份,一共3份共60个水果,所有一份是20个.3. 500张白纸的厚度为50毫米,那么张白纸的厚度是750毫米.【答案】7500【分析】因为500张白纸的厚度为50毫米,那么10张纸的厚度为1毫米,所以750毫米应为750×10=7500(张)白纸的厚度.4. 某工程队,16个工人9天能挖水沟1872米,27个工人14天能挖米.【答案】4914【分析】每个工人每天挖水沟1872÷16÷9=13(米),27个工人14天能挖27×14×13=4914(米).5. 购买3斤苹果,2斤桔子需8元;购8斤苹果,9斤桔子需25元,那么苹果、桔子各买1斤需元.【答案】3【分析】买3+8斤苹果和2+9斤桔子.需8+25=33(元),所以各买1斤需33÷11= 3(元).6. 购买3斤苹果,2斤橘子需6.90元;购8斤苹果,9斤橘子需22.80元,那么苹果、橘子各买1斤需元.【答案】 2.7【分析】买3+8斤苹果和2+9斤橘子需6.9+22.8=29.7(元).所以各买1斤需要29.7÷11=2.7(元).7. 一个果园摘桃子,4个人3小时共摘了600千克,照这样计算,8个人6小时可以摘千克桃子.【答案】2400【分析】8个人是4个人的两倍,6小时是3小时的两倍,所以8个人6小时所摘桃子的重量恰好是4个人3小时摘桃子重量的4倍,因此8个人6小时可以摘桃子600×4=2400(千克).8. A牌电池的广告语是“一节更比六节强”,意义是A牌电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍.有两种耗电速度一样的时钟,现在同时在甲钟里装了4节A电池,乙钟里装了3节B电池.结果乙时钟正常工作了2个月就耗尽了,那么甲时钟还能正常工作月.【答案】14【分析】乙钟2个月耗3节B电池,甲钟相当于有24节,24÷3×2−2=149. 9个人6天完成了12件作品,按照这样的速度,3个人3天可以完成多少件作品?21人12天可以完成多少件作品?【答案】(1)2件;(2)56件.【分析】中间量是第一问中的3人3天完成几件,因为此题无法缩小至1人1天几件,所以只能缩至多份量,是此题的难点.可以根据倍数关系,直接进行倍比.(1)12÷2÷3=2件;(2)2×7×4=56件.10. 16只兔子一共重60千克,那么36只兔子一共重多少千克?多少只兔子一共重75千克?【答案】135千克;20只.【分析】4只兔子共重60÷4=15千克,36只兔子共重15×9=135千克,75÷15=5,4×5=20只兔子共重75千克.11. 某运输公司用6辆汽车运水泥,每天可运96吨.根据运输情况,现在增加4辆同样的汽车,每天一共运水泥多少吨?【答案】160【分析】“增加4辆同样的汽车“,每天一共运水泥多少吨,应是增加的汽车运输量与增加前的运输量的和,即10辆汽车的运输量.96÷6×(6+4)=16×10=160(吨).12. 一个工人在森林中锯木头,他用10分钟把一根树干锯成了3段,如果保持工作速度不变,要把每段木头再锯成两段,还需要多少分钟?【答案】15分钟【分析】3段需要锯2刀,那么锯一刀需10÷(3−1)=5(分钟),每段都锯成两段,还需要3刀,需要时间5×3=15(分钟).13. 3的位老师4小时可以解决120道题.按这样的速度,4位老师解决400道题需要多少小时?【答案】10小时.【分析】每人每小时做120÷3÷4=10道.4人做400道需400÷4÷10=10小时.14. 小高、墨莫和卡莉娅三人比谁的积分多,数了数之后发现:小高和墨莫的积分之比为5:8,墨莫和卡莉娅的积分比为12:13,三人的积分总和为400多分.那么卡莉娅比小高多多少分?【答案】77分.【分析】小高、墨莫和卡莉娅的积分比是15:24:26,总分应为15+24+26=65的倍数,又知道三人的积分总和为400多分,故为65×7=455分,卡莉娅比小高多(26−15)×7= 77分.15. 学校买了12张办公桌和若干把椅子,共用去2440元,其中买办公桌用去1440元.又知每张办公桌比每把椅子贵70元.问一共买了多少把椅子?【答案】20【分析】每张办公桌是1440÷12=120(元),则每把椅子120−70=50(元),所以买了椅子(2440−1440)÷50=20(把).16. 某化工厂使用新技术前,每天用原料26吨,使用新技术后原来7天的原料现在可以用13天,该厂现在比过去每天节约多少吨原料?【答案】12【分析】过去7天共用原料26×7=182(吨),现在每天用料182÷13=14(吨),所以现在比过去每天节省原料26−14=12(吨).17. 植物园里菊花与月季花的盆数之比是3:4,月季花与兰花的盆数之比是5:6,如果菊花比兰花少五十多盆,那么月季花比菊花多多少盆?.【答案】30盆.【分析】菊花、月季花和兰花的盆数之比是15:20:24,因此菊花比兰花少的盆数应为9的倍数,所以为54盆,1份为54÷(24−15)=6盆月季花比菊花多6×(20−15)=30盆.18. 有4台相同的吊车,7小时卸煤280吨.那么:(1)1台吊车7小时卸煤多少吨?(2)4台吊车1小时卸煤多少吨?(3)平均1台吊车1小时卸煤多少吨?【答案】(1)70;(2)40;(3)10【分析】(1)1台吊车7小时卸煤:280÷4=70(吨);(2)4台吊车1小时卸煤:280÷7=40(吨);(3)1台吊车1小时卸煤:70÷7=10(吨)或40÷4=10(吨)或280÷7÷4=10(吨).19. 某油库里有一定量的汽油,可以供20辆出租车用35天,但在这些车用了10天后又从别的地方调来了5辆出租车共同使用这些汽油,那么剩下的油还能用几天?【答案】20天.【分析】设一辆出租车一天用1份汽油,那么共有700份汽油,(700−20×10)÷(20+5)=20天.20. 5个工人要加工735个零件,前2天已经加工了135个.已知这2天中有1人因事假请假了1天.若每个工人每天加工的零件数相等,且以后几天无人请假,还要多少天才能完成任务?【答案】8【分析】5个工人2天加工了135个零件,其中1人请假1天,相当于5×2−1=9(个)工人1天加工了135个零件,所以每个工人每天加工的零件为135÷(5×2−1)=15(个),剩下的零件还需要(735−135)÷5÷15=8(天)加工完成.21. 老李从批发市场以6元钱3千克的价格买进一些柚子,然后以5元2千克的价格卖出去,那么要想获利180元,需要买进多少千克柚子?【答案】360千克.【分析】每6千克进价为12元,售价为15元,可以赚3元,所以要买进180÷3×6=360千克.22. 如果3台数控机床4小时可以加工960个同样的零件,那么1台数控机床加工400个相同的零件需要多长时间?【答案】5【分析】1台数控机床1小时加工960÷3÷4=80(个).同样的零件:1台数控机床加工400个零件需要400÷80=5(时).23. 孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢?【答案】4【分析】要求增加多少只小猴子,必须先求出需要多少只小猴子去完成孙悟空布置的任务.根据要求,3小时摘桃子1200个,可以先求出1小时共摘桃子的个数,即1200÷3=400(个).再根据每只小猴每小时摘桃子的个数,即640÷16÷2=20(个).就可以求出所需要的小猴数量,即400÷20=20(只),最后求出增加的小猴只数:20−16=4(只).24. 一个装订小组要装订2640本书,3小时装订240本.照这样下去,剩下的书还需要多少小时才能装订完?【答案】30【分析】3小时装订240本,每小时装订240÷3=80(本),还剩下书2640−240=2400(本),需要2400÷80=30(时).25. 买5支铅笔要1元钱,买同样的铅笔25支,需要多少钱?【答案】5元【分析】5支铅笔看成1组需1元钱,买25支铅笔共有25÷5=5(组),一共需要5×1= 5(元).26. 3台机床5小时能完成14个零件,那么照这样的速度,9台机床10小时能完成多少个零件?【答案】84个.【分析】9台机床是3台机床的3倍,10小时是5小时的2倍,所以完成的零件数应该是2×3=6倍.所以可以完成14×6=84个零件.27. 4辆大卡车运沙土,7趟共运走沙土140吨.现在有沙土400吨,要求5趟运完.问:需要增加同样的卡车多少辆?【答案】12【分析】每辆大卡车一趟运走沙土140÷4÷7=5(吨),要求5趟运完,一辆大卡车5趟运走5×5=25(吨),运400吨沙土需要大卡车400÷25=16(辆),需要增加大卡车16−4=12(辆).28. 3只老鼠5天偷吃了30根玉米.按照这样的速度,4只老鼠7天能偷吃多少根玉米?【答案】56【分析】3只老鼠1天吃的玉米:30÷5=6(根);1只老鼠1天吃的玉米:6÷3=2(根);4只老鼠1天吃的玉米:2×4=8(根);4只老鼠7天吃的玉米:8×7=56(根).29. 购买10种货物:A1,A2,A3,⋯A10.如果在这10种中购买的件数依次是1,3,4,5,6,7,8,9,10,11件,共需人民币1992元;如果购买的件数依次是1,5,7,9,11,13,15,17,19,21件,共需人民币3000元.那么在这10种货物中各买一件时,共需人民币多少元?【答案】984【分析】2×(1,3,4,5,6,7,8,9,10,11)−(1,5,7,9,11,13,15,17,19,21)=(2,6,8,10,12,14,16,18,20,22)−(1,5,7,9,11,13,15,17,19,21)=(1,1,1,1,1,1,1,1,1,1).也就是说2倍的第一种情况下的各种货物的件数与第二种情况下各种货物的件数对应作差正好是10种货物每种1件,所以此时所需的费用为1992×2−3000=984(元).所以,在这10种货物中各买一件时,共需人民币984元.和30. 春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的35 30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【答案】杨树:825;柳树:360;槐树:315【分析】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份−15棵,则一份为(1500−30+15)÷(2+2+5)=165(棵),杨树5×165=825(棵);柳树165×2+30=360(棵);槐树165×2−15=315(棵).31. 一个修路队要修一条长2700米的公路,前5天一共修了750米.照这样下去,余下的要多少天完成?【答案】13【分析】5天修了750米,每天修路750÷5=150(米),还剩下2700−750=1950(米),需要3天修完,每天修1950÷150=13(天).32. 一艘远洋轮船上共有30名海员,船上的淡水可供全体船员用40天.轮船离港10天后在公海上救起15名遇难的外国海员.假如每人每天使用的淡水同样多,剩下的淡水可供船上的人再用多少天?【答案】20天.【分析】设1人1天喝1份水,则共有30×40×1=1200份水,现在轮船离开港口10天,会剩下1200−10×30×1=900份水,这时船上有30+15=45人,则还可再用900÷45=20天.33. 平整一块土地,原计划8人平整,每人每天工作9时,15天可以完成任务.由于急需播种,要求12天完成,并且增加2人.问:每天要工作几小时?【答案】9小时【分析】总的工作量为8×9×15=1080(单位工作量),现在比原先增加2人,共有10人,则现在每天工作1080÷12÷(8+2)=9(小时).34. 3名工人5小时加工零件90个,要在10小时内完成540个零件的加工,至少需要工人少名?【答案】9【分析】方法一:3名工人5小时加工零件90个,就是说每人每小时加工(90÷3)÷5=6(个),那么一名工人10小时可以加工6×10=60(个),540个零件在10小时做完至少需要工人540÷60=9(人).方法二:3名工人5小时加工零件90个,假设在时间相同的情况下,3名工人10小时加工零件180个,要完成540个零件用倍比的思想,540个零件是180的3倍,时间相同,完成零件的数量是3倍,那么工人也是3倍的关系,3×3=9(人).35. 汽车厂每名工人每天生产汽车零件6个.按照这样的速度,10名工人3天能生产多少个零件?如果要用5天的时间生产出300个零件,那么需要多少名工人?【答案】(1)180个;(2)10名.【分析】(1)10×6×3=180个.(2)300÷5÷6=10名.36. 3只猴子3天吃3个桃子,按照这样的速度,6只猴子6天能吃几个桃子?9只猴子要吃9个桃子,需要多少天?【答案】(1)12个;(2)3天.【分析】利用倍比法解题:(1)3×2×2=12个(2)9÷3=3天.37. 某车间用4台车床5小时生产零件600个,照这样计算,增加3台同样的车床后,8小时可以生产多少个零件?【答案】1680【分析】 因条件中有小时和台数两个变量,需用“两次归一”,即先求出 4 台车床 1 小时生产多少个零件,再求 1 台车床 1 小时生产多少个零件.600÷5÷4×(4+3)×8=30×7×8=1680(个).38. 一个工人在森林中锯木头,他用 8 分钟把一根树干锯成了 3 段,那么把树干锯成 8 段需要多长时间?【答案】 28 分钟【分析】 3 段需要锯 2 两刀,那么锯一刀需 8÷(3−1)=4(分钟),锯 8 段需要锯 7 刀,时间为 4×(8−1)=28(分钟).39. 3 台同样的磨面机 1 小时可磨面粉 2400 千克.问:(1)这 3 台磨面机磨 5 小时可磨出多少千克面粉?(2)1 台磨面机磨 1 小时可磨出多少千克面粉?(3)1 台磨面机磨 5 小时可磨出多少千克面粉?【答案】 (1)12000;(2)800;(3)4000【分析】 (1)这 3 台磨面机磨5小时可磨出:2400×5=12000(千克);(2)1 台磨面机磨 1 小时可磨出:2400÷3=800(千克);(3)1 台磨面机磨 5 小时可磨出:800×5=4000(千克).40. 小华和爷爷的年龄比是 1:6,已知小华比爷爷小 50 岁,小华和爷爷的年龄和是多少?【答案】 70 岁【分析】 小华比爷爷小 50 岁,小华比爷爷少 5 份,求出 1 份是多少岁,再乘以总份数,就可求出小华和爷爷一共的岁数。

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试题(答案解析)(3)

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试题(答案解析)(3)

一、选择题1.下列计算正确的是( ) A .32a a a -= B .623a a a ÷= C .624a a a -= D .32a a a ÷= 2.23ab a ⋅的计算结果是( ) A .3abB .6abC .32a bD .33a b3.下列计算正确的是( ) A .(a +b )(a ﹣2b )=a 2﹣2b 2 B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 24.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -或4814x 5.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④B .①③④C .①②D .①③6.下列运算正确的是( ) A .428a a a ⋅= B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+7.下列运算正确的是( ) A .()326a a --=B .22326a a a ⋅=C .422a a ÷=D .()2211a a +=+8.若53x =,52y =,则235-=x y ( ) A .34B .1C .23D .989.若25,()49x y x y -=+=,则22x y +的值等于()A .37B .27C .25D .4410.如3a b +=-,1ab =,则22a b +=( )A .-11B .11C .-7D .711.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+ C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+-12.利用图形中面积的等量关系可以得到某些数学公式.根据如图能得到的数学公式是( )A .(a+b )(a-b )=a 2-b 2B .(a-b )2=a 2-2ab+b 2C .a (a+b )=a 2 +abD .a (a-b )=a 2-ab二、填空题13.如图所示,将一个边长为a 的正方形减去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.(1)利用图形的面积关系可以得到一个代数恒等式是________; (2)求前n 个正奇数1,3,5,7,…的和是________.14.计算:20(2)3--⋅=______. 15.已知18mx =,16n x =,则2m n x +的值为________. 16.计算:248(21)(21)(21)(21)1+++++=___________. 17.若2211392781n n ++⨯÷=,则n =____.18.一个底面是正方形的长方体,高为8cm ,底面正方形边长为7cm .如果正方形的边长增加了acm ,那么它的体积增加了_______3cm .19.若2a x =,3b x =,4c x =,则2a b c x +-=__________.20.如图,大正方形的边长为a ,小正方形的边长为b ,用代数式表示图中阴影部分的面积_____.三、解答题21.计算:(1)23262x y x y -÷ (2)()233221688x y z x y z xy +÷ (3)运用乘法公式计算:2123124122-⨯22.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______; (2)运用(1)中的结论,完成下列各题: ①已知:3a b -=,2224a b -=,求+a b 的值; ②计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⋅⋅⋅⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 23.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②,请用两种不同的方式表示阴影部分的面积,写出三个代数式()2m n +、()2m n -、mn 之间的等量关系是______________;(2)有许多等式可以用图形的面积来表示.如图③,它表示了_________;(3)请你用图③提供的若干个长方形和正方形硬纸片图形,用拼长方形的方法,把下列二次三项式进行因式分解:2243m mn n ++.要求:在图④的框中画出图形并在下方写出分解的因式.24.已知(a+b )2=25,(a ﹣b )2=9.求a 2﹣6ab+b 2. 25.先化简,再求值:2(21)(21)(23)+---a a a ,其中112a =-. 26.(1)填空:①32(2)(5)x xy ⋅-=____________; ②3252()(2)a b a b -÷-=_________.(2) 先化简,再求值:2(1)(1)(1)(31)(21)x x x x x x --+----,其中2x =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据合并同类项法则和同底数幂的除法分别计算,再判断即可. 【详解】解:A.等式左边不是同类项不能合并,故计算错误,不符合题意; B. 624a a a ÷=,故原选项计算错误,不符合题意; C. 等式左边不是同类项不能合并,故计算错误,不符合题意; D. 32a a a ÷=,故计算正确,符合题意. 故选:D .本题考查合并同类项和同底数幂的除法.熟记运算公式是解题关键.2.D解析:D 【分析】直接利用单项式乘单项式计算得出答案. 【详解】 解:3ab•a 2=3a 3b . 故选:D . 【点睛】本题主要考查了单项式乘单项式,正确掌握相关运算法则是解题的关键.3.D解析:D 【分析】根据整式的乘法逐项判断即可求解. 【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意; B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意; D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意. 故选:D 【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.4.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有5种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2,添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭, 故选:D .此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.5.D解析:D 【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可. 【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-, ∴a*b=b*a 成立; ②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+,∵()()()422a b a b a b -≠-+∴(a*b )2=a 2*b 2不成立;③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦, ∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立; 故选:D . 【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键.6.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B . 【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.7.A解析:A 【分析】根据整式的幂的乘方计算法则、乘法计算法则、除法计算法则、完全平方公式依次计算判断即可. 【详解】 A 、()326a a --=,故此选项正确;B 、23326a a a ⋅=,故此选项不正确;C 、422a a a ÷=,故此选项不正确;D 、()22211a a a ++=+,故此选项不正确; 故选:A. 【点睛】此题考查整式的计算能力,正确掌握整式的幂的乘方计算法则、乘法计算法则、除法计算法则、完全平方公式计算法则是解题的关键.8.D解析:D 【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算. 【详解】 解:()()23232323955555328x yx y x y -=÷=÷=÷=. 故选:D . 【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算.9.A解析:A 【分析】利用完全平方公式进行运算即可得. 【详解】5x y -=,2()25x y -∴=,即22225x xy y -+=①,又2()49x y +=,22249x xy y ∴++=②,由①+②得:222274x y +=,即2237x y +=, 故选:A . 【点睛】本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.10.D解析:D 【分析】根据222()2a b a b ab +=+-直接代入求值即可. 【详解】解:当3a b +=-,1ab =,时,222()2a b a b ab +=+-=9-2=7. 故选:D . 【点睛】本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键11.A解析:A 【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论. 【详解】甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即22a b -,乙图中阴影部分长方形的长为()a b +,宽为()-a b ,阴影部分的面积为()()a b a b +-,根据两个图形中阴影部分的面积相等可得22()()a b a b a b -=+-. 故选:A. 【点睛】本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键.12.B解析:B 【分析】根据图形得出阴影部分的面积是(a-b )2和b 2,剩余的矩形面积是(a-b )b 和(a-b )b ,即大阴影部分的面积是(a-b )2,即可得出选项. 【详解】解:从图中可知:阴影部分的面积是(a-b )2和b 2,剩余的矩形面积是(a-b )b 和(a-b )b ,即大阴影部分的面积是(a-b )2, ∴(a-b )2=a 2-2ab+b 2, 故选:B . 【点睛】本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积两式联立即可得到关于ab 的恒等式(2)由12-02=122-12=332-22=542-32=7…n2-(n-1)2=2n-1相加即可得结果【解析:22()()a b a b a b -=+- 2n 【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式(2)由12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1相加即可得结果. 【详解】解:正方形中,S 阴影=a 2-b 2; 梯形中,S 阴影=12(2a+2b )(a-b )=(a+b )(a-b ); 故所得恒等式为:a 2-b 2=(a+b )(a-b ), 故答案为:a 2-b 2=(a+b )(a-b ).(2)∵12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1 ∴1+3+4+5+7+9+…+(2n-1)=12-02+22-12+32-22+42-32+…+n 2-(n-1)2=n 2 故答案为:n 2. 【点睛】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.14.【分析】根据0指数和负指数的意义计算即可【详解】解:故答案为:【点睛】本题考查了0指数和负指数的运算解题关键是熟悉0指数和负指数的意义解析:14【分析】根据0指数和负指数的意义计算即可. 【详解】解:22011(2)31(2)4--⋅=⨯=-, 故答案为:14. 【点睛】本题考查了0指数和负指数的运算,解题关键是熟悉0指数和负指数的意义.15.【分析】根据同底数幂的乘法可得再根据幂的乘方可得然后再代入求值即可【详解】解:故答案为【点睛】此题主要考查了同底数幂的乘法和幂的乘方关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加;幂的乘解析:14【分析】根据同底数幂的乘法可得22m n m n x x x +=⋅,再根据幂的乘方可得()22m mx x =,然后再代入18mx =,16n x =求值即可. 【详解】解:()2222111684m nmnm nxxx xx +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭,故答案为14. 【点睛】此题主要考查了同底数幂的乘法和幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.16.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216 【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解. 【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++ =448(21)(21)(21)1-+++ =88(21)(21)1-++ =16(21)1-+ =216. 故答案是:216. 【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.17.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3 【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 18.8a2+112a 【分析】长方体变化后的高为8cm 底面边长为(3+a )cm 然后根据长方体的体积公式列式求解即可【详解】解:(7+a )2×8-7×7×8=8(7+a )2-72=8(7+a-7)(7+a+解析:8a 2+112a【分析】长方体变化后的高为8cm ,底面边长为(3+a )cm ,然后根据长方体的体积公式列式求解即可.【详解】解:(7+a )2×8-7×7×8=8[(7+a )2-72]=8(7+a-7)(7+a+7)=8a (14+a )=8a 2+112a故答案为8a 2+112a .【点睛】本题主要考查了平方差公式的应用,掌握长方体的体积求法和平方差公式是解答本题的关键.19.【分析】利用同底数幂的乘法逆运算同底数幂的除法逆运算幂的乘方逆运算即可求解【详解】解:故答案为:3【点睛】此题主要考查求代数式的值熟练掌握同底数幂的乘法逆运算同底数幂的除法逆运算幂的乘方逆运算是解题 解析:3【分析】利用同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算即可求解.【详解】解:22a b c a b c x x x x +-=•÷a 2xbc x x =÷()2234=⨯÷3=故答案为:3.【点睛】此题主要考查求代数式的值,熟练掌握同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算是解题关键.20.【分析】由图形可得阴影部分的面积是:大正方形面积的一半与小正方形的面积之和减去以(a+b )为底边高为b 的三角形的面积之差再加上以b 为底边高为(a-b )的三角形的面积之和从而可以解答本题【详解】∵大正 解析:22a 【分析】由图形可得,阴影部分的面积是:大正方形面积的一半与小正方形的面积之和减去以(a+b )为底边,高为b 的三角形的面积之差再加上以b 为底边,高为(a-b )的三角形的面积之和,从而可以解答本题.【详解】∵大正方形的边长为a ,小正方形的边长为b ,∴图中阴影部分的面积是:2a 2+b 2−()b a b 2++()b a b 2-=2a 2, 故答案为2a 2. 【点睛】本题考查列代数式,解题的关键是利用数形结合的思想找出所求问题需要的条件.三、解答题21.(1)23y -;(2)22xyz x z +;(3)1【分析】(1)利用单项式除以单项式法则计算;(2)运用多项式除以单项式法则计算;(3)先将124122⨯化为(1231)(1231)+⨯-,利用平方差公式计算,再计算加减法.【详解】解:(1)23262x y x y -÷=23y -;(2)()233221688x y z x y z xy +÷=22xyz x z +;(3)2123124122-⨯=222123(1231)(1231)123(1231)1-+⨯-=--=. 【点睛】此题考查整式的计算法则:单项式除以单项式、多项式除以单项式、平方差公式,熟记法则是解题的关键.22.(1)a 2-b 2=(a+b )(a-b );(2)①8;②20214040 【分析】(1)分别表示拼接前后的阴影部分的面积,可得等式a 2-b 2=(a+b )(a-b ),得出答案; (2)①利用平方差公式将a 2-b 2化为(a+b )(a-b ),再整体代入即可;②先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)图1中阴影部分的面积为a 2-b 2,图2中阴影部分的面积为(a+b )(a-b ), 因此有a 2-b 2=(a+b )(a-b ),∴能验证的等式是a 2-b 2=(a+b )(a-b )(2)①∵a 2-b 2=(a+b )(a-b )=24,a-b=3,∴a+b=8;②原式=11111111(1)(1)(1)(1)(1)(1)...(1)(1)22334420202020-+-+-+-+ 1324352019,223344202020202021=⨯⨯⨯⨯⨯⨯⨯⨯ 1202122020=⨯ 20214040= 【点睛】本题考查平方差公式的意义和应用,理解和掌握平方差公式的结构特征是正确应用的前提.23.(1)()()224m n m n mn -=+-;(2)()()22223m n m n m mn n ++=++;(3)见解析;()()22433m mn n m n m n ++=++【分析】(1)在图2中,大正方形由小正方形和4个矩形组成,则()()224m n m n mn -=+-; (2)大长方形的面积=两个边长为m 的正方形的面积+边长为n 的正方形的面积+3个边长为m 、n 的长方形的面积,列式即可;(3)由已知的等式,画出相应的图形即可分解因式.【详解】解:(1)大正方形由小正方形和4个长方形组成,大正方形的面积为(m+n )2,小正方形的面积为(m-n )2,长方形的面积为mn∴()()224m n m n mn -=+-. (2)大长方形的面积=两个边长为m 的正方形的面积+边长为n 的正方形的面积+3个边长为m 、n 的长方形的面积,∴()()22223m n m n m mn n ++=++. (3)先拼接长方形,然后利用面积之间的关系得到()()22433m mn n m n m n ++=++..【点睛】本题考查了完全平方公式的实际应用,完全平方公式的几何背景,利用面积法证明完全平方公式,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起,要学会观察.24.﹣7【分析】根据完全平方公式(a±b )2=a 2±2ab+b 2,可得a 2﹣6ab+b 2=(a ﹣b )2﹣4ab ,(a ﹣b )2﹣(a ﹣b )2=4ab =16,据此计算即可.【详解】解:因为(a+b )2=25,(a ﹣b )2=9,所以(a ﹣b )2﹣(a ﹣b )2=4ab =16,所以a 2﹣6ab+b 2=(a ﹣b )2﹣4ab =9﹣16=﹣7.【点睛】本题主要考查了完全平方公式,熟记公式是解答本题的关键.25.12a -10,-11【分析】先按乘法公式进行化简,再代入求值即可.【详解】解:原式=2241(4129)---+a a a=22414129--+-a a a=12a -10 当112a =-时, 原式=112()1012⨯-- =110--=11-.【点睛】本题考查了运用乘法公式进行化简整式并求值,解题关键是熟练运用乘法公式进行化简,注意符号的变化.26.(1)①4240-x y ;②12a -;(2)253x x -+;-14 【分析】(1)①先计算积的乘方,然后计算单项式乘单项式;②先计算积的乘方,然后计算单项式除以单项式;(2)整式的混合运算,先算乘法,然后再算加减合并同类项化简,最后代入求值.【详解】解:(1)①32(2)(5)x xy ⋅- =328(5)x xy ⋅-4240x y =-;②3252()(2)a b a b -÷-=6252(2)a b a b ÷- =12a -; (2)2(1)(1)(1)(31)(21)x x x x x x --+---- 22222(1)(651)x x x x x =-----+222221651x x x x x =--+-+-253x x =-+当2x =时,原式2523220614=-⨯+⨯=-+=-.【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。

人教版初中七年级数学上册第二单元《整式的加减》经典练习题(含答案解析)(3)

人教版初中七年级数学上册第二单元《整式的加减》经典练习题(含答案解析)(3)

一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )A .(1-15%)(1+20%)a 元B .(1-15%)20%a 元C .(1+15%)(1-20%)a元 D .(1+20%)15%a 元 2.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .123.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .114.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 5.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .666.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .327.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣18.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ 9.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣410.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 11.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者 12.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - 13.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .414.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数二、填空题16.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.17.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时18.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.19.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.20.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .21.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.22.计算7a 2b ﹣5ba 2=_____. 23.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.24.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.25.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.26.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题27.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?28.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.29.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.30.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.。

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(3)

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(3)

一、选择题1.某种产品的原料提价,因而厂家决定对产品进行提价,现有三种方案方案一:第一次提价p %,第二次提价q %方案二:第一次提价q %,第二次提价p % 方案三:第一、二次提价均为2p q +% 其中p ,q 是不相等的正数,下列说法正确的个数是(提示:因为p≠q ,(p -q )2=p 2-2pq +q2>0,所以p 2+q 2>2pq )( )(1) 方案一提价最多 (2)方案二提价最多(3)方案三提价最多 (4)方案一二提价一样多A .1B .2C .3D .42.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 3.有下列计算:①236a a a ⋅=;②33(2)6x x -=-;③0(11)-=;④122-=-;⑤426a a a -÷=.其中正确的个数为( )A .4B .3C .2D .14.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2B .3C .4D .6 5.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12± B .9C .9±D .12 6.下列运算中,正确的个数是( ) ①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个7.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 28.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b += 9.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷= 10.下列运算正确的是( ) A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9 11.如图,两个正方形边长分别为a ,b ,如果a+b =10,ab =18,则阴影部分的面积为( )A .21B .22C .23D .24 12.下列各式计算正确的是( ) A .5210a a a = B .()428=a a C .()236a b a b = D .358a a a +=二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.15.若2211392781n n ++⨯÷=,则n =____.16.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______. 17.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.18.已知4222112x x +-⋅=,则x =________19.若代数式21x mx ++是完全平方式,则m 的值为______.20.29999981002-⨯=__________.三、解答题21.计算:(x +1)(x ﹣1)﹣2(2)x +.22.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).23.数学中有很多等式可以用图形的面积来表示.(1)观察图,直接写出代数式22(),()a b a b +-,ab 之间的等量关系________;(2)根据(1)题中的等量关系,解决如下问题:①已知7,10a b ab -==-.求+a b 的值; ②已知13x x +=,求1x x-的值. 24.计算 (1)222331()27(6)3ab a b a b -⋅÷-;(2)(2)(32)()a b a b b a b -+-+. 25.先化简,再求值:(2x+y )2﹣(y ﹣2x )2,其中11,34x y ==-. 26.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据各方案中的百分率,分比表示 出提价后的单价,方案一:(1+p%)(1+q%)=1+p%+q%+p%•q%,方案二:(1+q%)(1+p%)=1+p%+q%+p%•q%,方案一与方案二一样多;方案三: (1+2p q + %)2>1+ p%+q%++p%•q%,方案三提价最多即可判断. 【详解】解:设某种产品的原料价格为1,方案一:第一次提价p %,第二次提价q %,某种产品的原料提价后价格为(1+p%)(1+q%)=1+p%+q%+p%•q%,方案二:第一次提价q %,第二次提价p %, 某种产品的原料提价后价格为(1+q%)(1+p%)==1+p%+q%+p%•q%,方案一与方案二一样多, 方案三:第一、二次提价均为2p q +%,某种产品的原料提价后价格为(1+2p q + %)2=1+ p%+q%+2%2p q +⎛⎫ ⎪⎝⎭=1+ p%+q%+()222+2%4p q pq +, p 2+q 2>2pq ,22+22244p q pq pq pq pq ++>=, (1+2p q + %)2=1+ p%+q%+2%2p q +⎛⎫ ⎪⎝⎭=1+ p%+q%+()222+2%4p q pq +>1+ p%+q%++p%•q%,方案三提价最多,说法正确的个数是正确的个数有2个.故选择:B .【点睛】本题考查百分率应用问题,列代数式,多项式乘以多项式运算,比较代数式值的大小,利用公式p 2+q 2>2pq 进行放缩比较大小是解题关键. 2.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x 与3y 不是同类项,∴无法计算,∴选项A 错误;∵()3263x y x y =,∴选项B 错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 3.C解析:C【分析】按照幂的运算法则,仔细计算判断即可.【详解】∵23235a a a a +⋅==,∴①错误;∵3333(2)(2)8x x x -=-=-,∴②错误;∵0(11)-=,∴③正确, ∵1122-=, ∴④错误, ∵424(26)a a a a ---÷==,∴⑤正确.故选C.【点睛】本题考查了幂的计算,熟练掌握幂的运算法则,灵活进行相应的计算是解题的关键. 4.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 5.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 6.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.7.D解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.8.D解析:D【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可.【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意.故选:D .【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.9.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误;故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.10.B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.11.C解析:C【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a ,三角形②的一条直角边为a -b ,另一条直角边为b ,因此S 大正方形=a 2,S △②=12(a ﹣b )b =12ab ﹣12b 2,S △①=12a 2, ∴S 阴影部分=S 大正方形﹣S △①﹣S △②, =12a 2﹣12ab+12b 2, =12 [(a+b )2﹣3ab], =12(100﹣54) =23,故选:C .【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.12.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A、a5•a2=a7,此选项计算错误,故不符合题意;B、(a2)4=a8,此选项计算正确,符合题意;C、(a3b)2=a6b2,此选项计算错误,故不符合题意;D、a3与a5不能合并,此选项计算错误,故不符合题意.故选:B.【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a5+5a4b+10a3b2+10a2b3+5ab4+b5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.15.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 16.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 17.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 18.3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键. 19.【分析】利用完全平方式的结构特征判断即可确定出m 的值【详解】解:∵代数式x2+mx+1是一个完全平方式∴m=±2故答案为:±2【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:2±【分析】利用完全平方式的结构特征判断即可确定出m 的值.【详解】解:∵代数式x 2+mx+1是一个完全平方式,∴m=±2,故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.20.【分析】将化为进行计算【详解】解:原式====【点睛】本题考查了平方差公式和完全平方公式能灵活运用公式进行计算是解此题的关键解析:1995-【分析】将29999981002-⨯化为2(10001)(10002)(10002)---+进行计算.【详解】解:原式=2(10001)(10002)(10002)---+ =22(100020001)(10004)-+--=2210002000110004-+-+=1995-.【点睛】本题考查了平方差公式和完全平方公式,能灵活运用公式进行计算是解此题的关键.三、解答题21.﹣4x ﹣5.【分析】利用平方差公式和完全平方公式计算即可.【详解】(x+1)(x ﹣1)﹣2(2)x +=2x ﹣1﹣2x ﹣4x ﹣4=﹣4x ﹣5.【点睛】本题考查了平方差公式和完全平方公式,熟记并灵活运用两个公式是解题的关键.22.()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.23.(1)(a+b )2=4ab+(a-b )2;(2)①±3;②【分析】(1)根据图形可知:大正方形是由四个小长方形和中间阴影的小正方形组成,且小正方形的边长为a-b ,列式即可得出结论;(2)①根据(1)的结论直接计算即可;②根据(1)的结论直接计算即可.【详解】解:(1)由S 大正方形=4S 小长方形+S 阴影得:(a+b )2=4ab+(a-b )2.故答案为:(a+b )2=4ab+(a-b )2.(2)①∵a-b=7,ab=-10,∴(a+b )2=(a-b )2+4ab=72+4×(-10)=9,∴a+b=±3;②∵13x x +=,22114x x x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭, ∴22134x x ⎛⎫=+- ⎪⎝⎭, ∴2145x x ⎛⎫+-= ⎪⎝⎭,∴1x x-= 【点睛】 本题考查了对完全平方公式几何意义的理解及完全平方公式在代数式求值中的运用,熟练掌握完全平方公式是解题的关键.24.(1)212ab -;(2)2263a b - 【分析】(1)由单项式的乘法和除法、积的乘方的运算法则进行计算,即可得到答案; (2)由整式的加减乘除混合运算,先去括号,然后合并同类项,即可得到答案.【详解】解:(1)222331()27(6)3ab a b a b -⋅÷- =2423311279()6a b a b a b⨯-• =534331()6a b a b ⨯- =212ab -;(2)(2)(32)()a b a b b a b -+-+=2226432a ab ab b ab b +----=2263a b -.【点睛】本题考查了整式的混合运算,单项式的乘法和除法、积的乘方的运算法则,解题的关键是熟练掌握运算法则,正确的进行解题.25.8xy ,23-【分析】直接利用完全平方公式化简进而合并同类项,再把已知数据代入计算即可.【详解】解:(2x+y )2﹣(y ﹣2x )2,=4x 2+4xy+y 2﹣(y 2+4x 2﹣4xy ),=4x 2+4xy+y 2﹣y 2﹣4x 2+4xy ,=8xy , 当11,34x y ==-时, 原式=8×13×(14-), =﹣23. 【点睛】本题主要考查了用完全平方公式化简求值,熟记公式的几个变形公式是解题关键. 26.36【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b +,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积.【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE , =22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, =()2224a b a b ++- , =()()22+24a b a b ab +--,=64﹣12﹣644,=64﹣12﹣16,=36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.若,则a,b的值分别为()A.﹣, B.,C.﹣,﹣ D.,【答案】A【解析】试题分析:将原式配成两个完全平方式,从而根据完全平方的非负性即可得出答案.解:原式可化为:(a+b)2+(b﹣)2=0,故可得:a=﹣b,b=.故选A.考点:完全平方式;非负数的性质:偶次方.5点评:本题考查完全平方式的知识,比较简单,关键是将式子配方后运用非负性解答.2.已知20102011﹣20102009=2010x×2009×2011,那么x的值是()A.2008 B.2009 C.2010 D.2011【答案】B【解析】试题分析:解答本题要考虑先因式分解,使运算简便,所以应先提取公因式,再套用公式,而20102011﹣20102009=20102009(20102﹣1),再套用公式a2﹣b2=(a+b)(a﹣b)进一步计算即可.解:20102011﹣20102009=20102009(20102﹣1)=20102009(2010﹣1)(2010+1)=20102009×2009×2011,已知20102011﹣20102009=2010x×2009×2011,则有20102009×2009×2011=2010x×2009×2011,则有x=2009.故选B.考点:提公因式法与公式法的综合运用.点评:本题结合幂的运算性质考查了因式分解,对同底数幂的乘法公式(a m•b m=a m+n)的熟练应用是解题的关键.3.下列说法正确的是()A.多项式a2﹣2ab﹣b2可以分解成(a﹣b)2B.(a﹣b)2与a2﹣b2相等C.x2+2x+1不能运用完全平方公式因式分解D.多项式8x3+24x2y+18xy2可分解为2x(2x+3y)2【答案】D【解析】试题分析:根据提公因式法分解因式、公式法分解因式对各选项分析判断后利用排除法求解.解:A、分解成(a﹣b)2的多项式是a2﹣2ab+b2,故本选项错误;B、(a﹣b)2与a2﹣2ab+b2相等,故本选项错误;C、x2+2x+1能运用完全平方公式因式分解为(x+1)2,故本选项错误;D、多项式8x3+24x2y+18xy2可分解为2x(2x+3y)2,故本选项正确.故选D.考点:提公因式法与公式法的综合运用.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.计算= .【答案】【解析】试题分析:首先分式,都含有x4+4的形式.因而对x4+4进行因式分解,转化为[(x+1)2+1][(x﹣1)2+1]形式.套用该规律,将各数代入,将原式写为,通过分子、分母约分化简,即可求得结果.解:x4+4=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)=[(x+1)2+1][(x﹣1)2+1],∴原式=.故答案为:.考点:因式分解的应用.点评:本题考查因式分解的应用.解决本题的关键是找到题目中蕴含的共性规律x4+4=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)=[(x+1)2+1][(x﹣1)2+1].5.已知4y2+my+9是完全平方式,则代数式m2+2m+1的值为_________ .【答案】169或121【解析】试题分析:在完全平方式4y2+my+9中,首末两项是2y和3这两个数的平方,那么中间一项为加上或减去2y和3积的2倍,故m=±12,所以代数式m2+2m+1的值为两种情况.解:由于(2y±3)2=4y2±12y+9=4y2+my+9,∴m=±12.当m=12时,m2+2m+1=144+24+1=169;当m=﹣12时,m2+2m+1=144﹣24+1=121.故本题答案为:169或121.考点:完全平方式点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.6.已知m,n是正整数,代数式x2+mx+(10+n)是一个完全平方式,则n的最小值是_________ ,此时m的值是_________ .【答案】±8,6【解析】试题分析:由题意可以得知10+n是完全平方数,且n是正整数,可以得出大于10的最小完全平方数是16,从而可以求出n值,进而根据完全平方式的性质可以求出m的值.解:∵代数式x2+mx+(10+n)是一个完全平方式,∴10+n是完全平方数,∵m,n是正整数,且大于10的最小完全平方数是16,∴10+n=16,∴n=6.由完全平方式的性质可以得出:±mx=8x,∴m=±8.故答案为:±8,6考点:完全平方式点评:本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.7.已知长方形的周长为36cm,它的面积为45cm2,则长方形的长比宽多_________ cm.【答案】12【解析】试题分析:可根据长和宽的和的平方以及长和宽的积得到长和宽的差的平方,开方求算术平方根即可.解:设长方形的长为xcm,宽为ycm,∴x+y=36÷2=18;xy=45,∴(x﹣y)2=(x+y)2﹣4xy,∴(x﹣y)2=144,∵x>y,∴x﹣y=12.故答案为:12.考点:完全平方式点评:考查完全平方式的应用;用两个数和的平方表示出这两个数差的平方是解决本题的关键.8.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片_____张才能用它们拼成一个新的正方形.【答案】4【解析】试题分析:根据构成的新正方形的面积一定是一个完全平方数,根据三张纸片的面积即可确定.解:甲类纸片1张,乙类纸片4张,总面积是4+4=8,大于8的完全平方数依次是9,16,25…,而丙的面积是2,因而不可能是9;当总面积是16时,取的丙纸片的总面积是8,因而是4张.因而应至少取丙类纸片4张才能用它们拼成一个新的正方形.故答案为:4.考点:完全平方公式的几何背景点评:本题主要考查了完全平方公式的几何背景,正确理解新正方形的面积是完全平方数是解题的关键.9.已知a+10=b+12=c+15,则a2+b2+c2﹣ab﹣bc﹣ac= .【答案】19【解析】试题分析:根据已知a+10=b+12=c+15,可得到a﹣b=2,a﹣c=5,b﹣c=3.运用完全平方式可得a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2],再将前面的a﹣b、a﹣c、b﹣c的值代入求出结果.解:∵a+10=b+12=c+15∴a+10=b+12⇒a﹣b=2同理得a﹣c=5,b﹣c=3a2+b2+c2﹣ab﹣bc﹣ac=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)]=[(a﹣b)2+(b ﹣c)2+(a﹣c)2]=(4+25+9)=19故答案为19考点:完全平方公式点评:本题考查完全平方式.同学们能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc ﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]这是解题的关键.10.若实数a、b、c满足a2+b2+c2=9,那么代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值为.【答案】27【解析】试题分析:对原式进行变形成3(a2+b2+c2)﹣(a+b+c)2,再由平方数的特点求值.解:(a﹣b)2+(b﹣c)2+(c﹣a)2=2(a2+b2+c2)﹣(2ab+2bc+2ac)=2(a2+b2+c2)﹣[(a+b+c)2﹣(a2+b2+c2)]=3(a2+b2+c2)﹣(a+b+c)2=27﹣(a+b+c)2要使原式的值最大,则(a+b+c)2取最小值0,即原式的最大值是27.故答案为:27.考点:完全平方公式点评:本题主要考查完全平方公式,注意:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.11.已知:,则a,b之间的关系式是.【答案】a=b2【解析】试题分析:根据非负数的性质得出x2+2+﹣a=0,x+﹣b=0,再将第一个等式运用完全平方公式,将第二个等式代入即可.解:由已知等式,得x2+2+﹣a=0,x+﹣b=0,由此可得(x+)2=a,x+=b,则b2=a,故答案为:a=b2.考点:完全平方公式;非负数的性质:绝对值;非负数的性质:偶次方点评:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.12.如果a2+b2+2c2+2ac﹣2bc=0,那么2a+b﹣1的值为.【答案】【解析】试题分析:把已知条件根据完全平方公式整理成平方和等于0的形式,然后根据非负数的性质用c表示出a、b,再代入代数式计算即可.解:a2+b2+2c2+2ac﹣2bc=a2+2ac+c2+b2﹣2bc+c2=(a﹣c)2+(b﹣c)2=0,∴a+c=0,b﹣c=0,解得a=﹣c,b=c,∴2a+b﹣1=2﹣c+c﹣1=2﹣1=.故答案为:.考点:完全平方公式;非负数的性质:偶次方点评:本题考查了完全平方公式的应用,整理成平方和的形式,再利用非负数的性质用c 表示出a、b的值是解题的关键,是道好题.13.已知=2,则= .【答案】±4【解析】试题分析:根据完全平方公式求出x+x2+=2,①x+=2时,根据公式x3+=(x+)(x2﹣x•+)求出x3+的值,根据完全平方公式求出x6+的值,根据立方和公式求出x9+=的值即可;②x+=﹣2时,同法可求出答案.解:x2+=2,∴﹣2x•=2,∴=4,∴x+=±2,①x+=2时,x3+=(x+)(x2﹣x•+)=2×(2﹣1)=2,∴两边平方得:x6+2x3•+=4,∴x6+=4﹣2=2,x9+=(x3)3+=(x3+)(x6﹣x3•+)=2×(2﹣1)=2,∴+x9++x=2+2=4;②x+=﹣2时,同法可求+x9++x=﹣2﹣2=﹣4.故答案为:±4.考点:完全平方公式点评:本题考查了完全平方公式和立方和公式的应用,关键是灵活运用公式:立方和公式x3+y3=(x+y)(x2﹣xy+y2),完全平方公式(a+b)2=a2+2ab+b2.进行计算.14.已知:m,n,p均是实数,且mn+p2+4=0,m﹣n=4,则m+n= .【答案】0【解析】试题分析:由mn+p2+4=0可得出mn=﹣p2﹣4;将m﹣n=4的左右两边同时乘方,根据完全平方公式两公式之间的联系整理出(m+n)2,然后开方即可求出m+n的值.解:∵mn+p2+4=0,m﹣n=4,∴mn=﹣p2﹣4,(m﹣n)2=16,∴(m+n)2﹣4mn=(m﹣n)2=16,∴(m+n)2=16+4mn,=16+4(﹣p2﹣4),=﹣4p2;∵m,n,p均是实数,∴(m+n)2=﹣4p2≥0,∴p=0,∴m+n=0.故答案是:0.考点:完全平方公式点评:本题考查了完全平方公式,关键是要灵活运用完全平方公式,整理出(m+n)2的形式.15.设x为满足x2002+20022001=x2001+20022002的整数,则x= .【答案】2002【解析】试题分析:把方程进行变形以后,根据方程的解的定义,就可以直接写出方程的解.解:∵x2002+20022001=x2001+20022002,∴x2002﹣x2001=20022002﹣20022001,∴x2001(x﹣1)=20022001(2002﹣1),∴x=2002.考点:因式分解-提公因式法;方程的解.点评:本题考查了提公因式法分解因式,提取公因式并整理后根据对应项相等求解比较关键.16.分解因式:6x2y﹣21x2y2+15x4y3= .【答案】3x2y(2﹣7y+5x2y2【解析】试题分析:此题首先确定公因式,公因式为3x2y.再提取公因式3x2y进行因式分解.解:原式=3x2y(2﹣7y+5x2y2).故答案为:3x2y(2﹣7y+5x2y2).考点:因式分解-提公因式法.点评:此题考查了学生对提取公因式法分解因式的理解与掌握,关键是确定公因式3x2y.17.把多项式分解因式所得的结果是.【答案】【解析】试题分析:先提出公因式y,再用十字相乘法因式分解.解:=y(x2﹣3x+2)=.故答案为:.考点:因式分解-十字相乘法等;因式分解-提公因式法.点评:本题考查的是因式分解,先提出公因式,再用十字相乘法因式分解.18.分解因式:x(x﹣2)(x+3)(x+1)+8= .【答案】(x+2)(x﹣1)(x﹣)(x﹣)【解析】试题分析:分别把(x﹣2)和(x+3)、x和(x+1)相乘,然后变为(x2+x﹣6)(x2+x),接着把x2+x作为一个整体因式分解,然后即可求解.解:x(x﹣2)(x+3)(x+1)+8=(x﹣2)(x+3)x(x+1)+8=(x2+x﹣6)(x2+x)+8=(x2+x)2﹣6(x2+x)+8=(x2+x﹣2)(x2+x﹣4)=(x+2)(x﹣1)(x﹣)(x﹣).故答案为:(x+2)(x﹣1)(x﹣)(x﹣).考点:因式分解-十字相乘法等.点评:此题主要考查了利用分组分解法分解因式,解题的时候重新分组做乘法,同时也注意利用整体思想解决问题.19.在有理数范围内分解因式:(x+y)4+(x2﹣y2)2+(x﹣y)4= .【答案】(3x2+y2)(x2+3y2)【解析】试题分析:先补项+(x+y)2(x﹣y)2﹣(x+y)2(x﹣y)2,后根据完全平方公式进行计算,再根据平方差公式分解即可.解:原式=(x+y)4+(x+y)2(x﹣y)2+(x﹣y)4+(x+y)2(x﹣y)2﹣(x+y)2(x﹣y)2,=[(x+y)2+(x﹣y)2]2﹣[(x+y)(x﹣y)]2,=[(x+y)2+(x﹣y)2+(x+y)(x﹣y)][(x+y)2+(x﹣y)2﹣(x+y)(x﹣y)],=(3x2+y2)(x2+3y2)故答案为:(3x2+y2)(x2+3y2).考点:因式分解-十字相乘法等;因式分解-运用公式法;因式分解-分组分解法.点评:本题考查了分解因式的应用,方法是采用拆项和分组后能用公式法分解因式.20.在有理数范围内分解因式:(x+1)(x+2)(2x+3)(x+6)﹣20x4= .【答案】(3x+2)(3﹣x)(6x2+7x+6)【解析】试题分析:根据整式的乘法法则展开,设t=x2+7x+6,代入后即可分解因式,分解后把t的值代入,再进一步分解因式即可.解:(x+1)(x+2)(2x+3)(x+6)﹣20x4=(x+1)(x+6)(x+2)(2x+3)﹣20x4=(x2+7x+6)(2x2+7x+6)﹣20x4令t=x2+7x+6t(x2+t)﹣20x4=t2+tx2﹣20x4=(t﹣4x2)(t+5x2)=(x2+7x+6﹣4x2)(x2+7x+6+5x2)=(6+7x﹣3x2)(6x2+7x+6)=(3x+2)(3﹣x)(6x2+7x+6).故答案为:(3x+2)(3﹣x)(6x2+7x+6).考点:因式分解-十字相乘法等;多项式乘多项式.点评:本题考查了多项式乘多项式、分解因式等知识点的理解,能选择适当地方法分解因式和把多项式展开是解此题的关键.21.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为____ .【答案】2m+4【解析】试题分析:根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.考点:平方差公式的几何背景点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.22.一只蚂蚁从原点出发,在数轴上爬行,向右爬行12个单位长度后,向左爬行22个单位长度;再向右爬行32个单位长度后,向左爬行42个单位长度.这样一直爬下去,最后向右爬行92个单位长度后,向左爬行102个单位长度,到达A点则A点表示的数是_________ .【答案】-55【解析】试题分析:规定向右为正,向左为负,根据题意列出算式,再利用平方差公式计算.解:规定向右为正,向左为负,依题意,得12﹣22+32﹣42+…+92﹣102,=(1﹣2)(1+2)+(3﹣4)(3+4)+…+(9﹣10)(9+10),=﹣(1+2+3+4+…+9+10),=﹣55.故本题答案为﹣55.考点:平方差公式;正数和负数点评:本题考查了平方差公式的实际应用,关键是列出算式,分组使用平方差公式.23.= _ .【答案】1【解析】试题分析:在原式的分子前面乘以(2﹣1)构造能用平方差公式的结构,连续使用平方差公式即可.解:∵(2+1)(22+1)(24+1)(28+1)(216+1),=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1),=(22﹣1)(22+1)(24+1)(28+1)(216+1),=(24﹣1)(24+1)(28+1)(216+1),=(28﹣1)(28+1)(216+1),=(216﹣1)(216+1),=232﹣1.∴=1.故本题答案为1.考点:平方差公式点评:本题考查了平方差公式的运用,构造使用平方差公式的结构是解题的关键.24.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=【答案】64【解析】试题分析:先在前面添加因式(2﹣1),再连续利用平方差公式计算求出x,然后根据指数相等即可求出n值.解:(1+2)(1+22)(1+24)(1+28)…(1+2n),=(2﹣1)(1+2)(1+22)(1+24)(1+28)…(1+2n),=(22﹣1)(1+22)(1+24)(1+28)…(1+2n),=(2n﹣1)(1+2n),=22n﹣1,∴x+1=22n﹣1+1=22n,2n=128,∴n=64.故填64.考点:平方差公式点评:本题考查了平方差公式,关键是乘一个因式(2﹣1)然后就能依次利用平方差公式计算了.25.如果a2+a=0(a≠0),求a2005+a2004+12的值.【答案】12【解析】试题分析:观察a2+a=0(a≠0),求a2005+a2004+12的值.只要将a2005+a2004+12转化为因式中含有a2+a的形式,又因为a2005+a2004+12=a2003(a2+a)+12,因而将a2+a=0代入即可求出值.解:原式=a2003(a2+a)+12=a2003×0+12=12考点:因式分解的应用;代数式求值.点评:本题考查因式分解的应用、代数式的求值.解决本题的关键是a2005+a2004将提取公因式转化为a2003(a2+a),至此问题的得解.26.计算:.【答案】【解析】试题分析:先运用平方差公式,再两两约分即可求解.解:,=××××…××××,=×,=.考点:因式分解的应用.点评:本题考查了因式分解的应用,解题的关键是应用平方差公式简便计算.27.计算:.【答案】【解析】试题分析:先把原式进行因式分解,再根据同底数幂的除法法则进行计算即可.解:原式==298﹣100=.故答案为:.考点:因式分解的应用.点评:本题考查的是因式分解的应用及同底数幂的除法法则,先把原式分解为同底数幂的除法的形式是解答此题的关键.28.已知四个实数a,b,c,d,且a≠b,c≠d.若四个关系式:a2+ac=4,b2+bc=4,c2+ac=8,d2+ad=8同时成立,试求a,c的值.【答案】【解析】试题分析:此题首先由已知得出a+b+c=0,a+c+d=0,得出b=d,再由(a2+ac)+(c2+ac)=4+8=12,(a2+ac)﹣(c2+ac)=4﹣8=﹣4,得出,(a﹣c)(a+c)=﹣4,然后讨论得出a,c的值.解:由(a2+ac)﹣(b2+bc)=4﹣4=0,(c2+ac)﹣(d2+ad)=8﹣8=0,得(a﹣b)(a+b+c)=0,(c﹣d)(a+c+d)=0,∵a≠b,c≠d,∴a+b+c=0,a+c+d=0,∴b=d=﹣(a+c).又(a2+ac)+(c2+ac)=4+8=12,(a2+ac)﹣(c2+ac)=4﹣8=﹣4,得,(a﹣c)(a+c)=﹣4.当时,,解得,,当,,解得,.考点:因式分解的应用.点评:此题考查的知识点是因式分解的应用,通过等式加减及运用因式分解是关键.29.宁海中学高一段组织了围棋比赛,共有10名选手进入了决赛,决赛阶段实行单循环赛(即每两名参赛选手都要赛一局,且每局比赛都决出胜负),若一号选手胜a1局,输b1局;二号选手胜a2局,输b2局,…,十号选手胜a10局,输b10局.试比较a12+a22+…+a102与b12+b22+…+b102的大小,并叙述理由.【答案】a12+a22+…+a102=b12+b22+…b102【解析】试题分析:依题意可知,a1+b1=9,a2+b2=9,a3+b3=9…,故:b1=9﹣a1,b2=9﹣a2,b3=9﹣a3…,用作差法列式,比较大小,运用乘法公式对式子变形,得出结论.解:依题意可知,a1+b1=9,a2+b2=9,a3+b3=9…,且a1+a2+…+a10=b1+b2+…+b10=45,∴(a12+a22+…+a102)﹣(b12+b22+…b102)=(a12﹣b12)+(a22﹣b22)+…+(a102﹣b102)=(a1+b1)(a1﹣b1)+(a2+b2)(a2﹣b2)+…+(a10+b10)(a10﹣b10)=9[(a1+a2+…+a10)﹣(b1+b2+…+b10)]=0,∴a12+a22+...+a102=b12+b22+ (102)考点:因式分解的应用.点评:考查了因式分解的应用,本题根据基本等式,运用作差法、换元法,得出关于a 的式子,分类讨论.30.多项式x2+1加上一个整式后是含x的二项式的完全平方式.例题:x2+1+ _________ =(x+1)2.(1)按上例再写出两个加上一个单项式后是含x的二项式的完全平方式的式子(不能用已知的例题):①x2+1+ _________ =(x﹣1)2;②x2+1+ _________ =(x2+1)2.(2)按上例写出一个加上一个多项式后是一个含x的二项式的完全平方式x2+1+ _________ =(x2+1)2.【答案】2x;﹣2x;x4;x4+x2【解析】试题分析:把等式右边根据完全平方公式展开即可求解.完全平方公式(a±b)2=a2±2ab+b2.解:例题∵(x+1)2=x2+2x+1,∴应填入2x;(1)①∵(x﹣1)2=x2﹣2x+1,∴应填入﹣2x;②∵(x2+1)2=x4+x2+1,∴应填入x4;(2)∵(x2+1)2=x4+2x2+1=x4+x2+x2+1,∴应填入的多项式是x4+x2.故应填:2x;﹣2x;x4;x4+x2.考点:完全平方式点评:本题考查了完全平方式的运用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,熟练掌握完全平方公式并会逆用是求解的关键.31.当a=﹣3,b=1,时,分别求代数式(a﹣b)2与a2﹣2ab+b2的值,并比较计算结果;你有什么发现?利用你发现的结果计算:20122﹣2×2012×2011+20112.【答案】1【解析】试题分析:把a、b的值代入进行计算即可;根据发现的结果,整理求解即可.解:当a=﹣3,b=1时,(a﹣b)2=(﹣3﹣1)2=16,a2﹣2ab+b2=(﹣3)2﹣2×(﹣3)×1+12=9+6+1=16,∴(a﹣b)2=a2﹣2ab+b2;根据结果,20122﹣2×2012×2011+20112=(2012﹣2011)2=1.考点:完全平方式;代数式求值点评:本题主要考查了完全平方式,代数式求值,代入数据进行计算即可,是基础题,比较简单.32.试说明:(a2+3a)(a2+3a+2)+1是一个完全平方式.【答案】把a2+3a看成整体,先利用单项式和多项式的乘法法则展开,再写成完全平方公式的形式即可.【解析】试题分析:把a2+3a看成整体,先利用单项式和多项式的乘法法则展开,再写成完全平方公式的形式即可.证明:(a2+3a)(a2+3a+2)+1,=(a2+3a)2+2(a2+3a)+1,=(a2+3a+1)2,∴(a2+3a)(a2+3a+2)+1是一个完全平方式.考点:完全平方式点评:本题主要考查了完全平方公式的运用,整体思想使求解更加简便,把a2+3a看成整体是关键.33.如图1,是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为(m﹣n)2;(2)观察图2,请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系式:(m﹣n)2+4mn=(m+n)2;(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y= ±5.(4)有许多代数恒等式可以用图形的面积来表示.如图3,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.【答案】(1)(m﹣n)2 (2)(m﹣n)2+4mn=(m+n)2 (3)±5(4)答案不唯一【解析】试题分析:(1)可直接用正方形的面积公式得到.(2)数量掌握完全平方公式,并掌握和与差的区别.(3)此题可参照第二题.(4)可参照图3进行画图.解:(1)(m﹣n)2(3分)(2)(m﹣n)2+4mn=(m+n)2(3分)(3)±5(3分)(4)答案不唯一:(4分)例如:考点:完全平方公式的几何背景点评:本题考查了完全平方公式的背景知识,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变式.34.观察如图图形由左到右的变化,计算阴影部分的面积,并用面积的不同表达形式写出相应的代数恒等式.【答案】(a+b)2﹣(a﹣b)2=4ab.【解析】试题分析:利用面积分别写出两个图形的阴影部分的面积,然后根据两个图形的面积相等写出恒等式即可.解:左边图形的阴影部分面积为:(a+b)2﹣(a﹣b)2,右边图形的阴影部分面积为:a×4b=4ab,根据两图形的阴影部分面积相等可得,(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.考点:完全平方公式的几何背景点评:本题考查了完全平方公式的几何解释,根据面积相等求解是此类题目最常用的求解方法,一定要熟练掌握.35.通常,我们把长方形和正方形统称为矩形.如图1,是一个长为2a,宽为2b的矩形ABCD,若把此矩形沿图中的虚线用剪刀均分为4块小长方形,然后按照图2的形状拼成一个正方形MNPQ.(1)分别从整体和局部的角度出发,计算图2中阴影部分的面积,可以得到等式_________ .(2)仔细观察长方形ABCD与正方形MNPQ,可以发现它们的_________ 相同,_________ 不同.(选填“周长”或“面积”)(3)根据上述发现,猜想结论:用总长为36米的篱笆围成一个矩形养鸡场,可以有许多不同的围法.在你围的所有矩形中,面积最大的矩形的面积是_________ 米2.【答案】(1)(a+b)2﹣(a﹣b)2=4ab;(2)周长,面积;(3)81.【解析】试题分析:(1)整体上求出内部的小正方形的边长,然后用大正方形的面积减去小正方形的面积就是阴影部分的面积,从局部考虑,求出四个小矩形的面积就是阴影部分的面积;(2)从图2的面积比图1的面积大里面小正方形的面积考虑;(3)根据(2)的结论,周长相等的情况下,正方形的面积比矩形的面积大,所以围成的正方形的面积最大,然后根据正方形进行计算即可.解:(1)整体考虑:里面小正方形的边长为a﹣b,∴阴影部分的面积=(a+b)2﹣(a﹣b)2,局部考虑:阴影部分的面积=4ab,∴(a+b)2﹣(a﹣b)2=4ab;(2)图1周长为:2(2a+2b)=4a+4b,面积为:4ab,图2周长为:4(a+b)=4a+4b,面积为(a+b)2=4ab+(a﹣b)2≥4ab,当且仅当a=b时取等号;∴周长相同,面积不相同;(3)根据(2)的结论,围成正方形时面积最大,此时,边长为36÷4=9米,面积=92=81米2.故答案为:(1)(a+b)2﹣(a﹣b)2=4ab;(2)周长,面积;(3)81.考点:完全平方公式的几何背景点评:本题考查了完全平方公式的几何背景,结合图形的特点,根据面积找出里面的规律是解题的关键.36.小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:a2+2ab+b2=(a+b)2,验证了完全平方公式;即:多项式 a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式 a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个整式的积.问题解决:(1)请你依照小刚的方法,利用拼图写出恒等式a2+4ab+3b2.(画图说明,并写出其结果)(2)试猜想面积是2a2+5ab+3b2的矩形,其长与宽分别是多少?(画图说明,并写出其结果)【答案】(1)(2)图见解析【解析】试题分析:(1)先将a2+4ab+3b2分解,然后可得出矩形的边长,从而利用等面积法可画出图形.(2)将2a2+5ab+3b2然后可得出矩形的边长,从而利用等面积法可画出图形.解:a2+4ab+3b2=(a+b)(a+3b),图形如下:(2)2a2+5ab+3b2的=(a+b)(2a+3b),所画图形如下:考点:完全平方公式的几何背景点评:本题考查运用正方形或长方形的面积计算推导相关的一些等式;运用图形的面积计算的不同方法得到多项式的因式分解.37.已知实数a、b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.【答案】7【解析】试题分析:先由已知条件展开完全平方式求出ab的值,再将a2+b2+ab转化为完全平方式(a+b)2和ab的形式,即可求值.解:∵(a+b)2=1,(a﹣b)2=25,∴a2+b2+2ab=1,a2+b2﹣2ab=25.∴4ab=﹣24,ab=﹣6,∴a2+b2+ab=(a+b)2﹣ab=1﹣(﹣6)=7.考点:完全平方公式点评:本题考查了完全平方公式,利用完全平方公式展开后建立方程组,再整体代入求解.38.(A类)(1)已知x+y=1,求x2+xy+y2的值;(2)已知10a=2,10b=3,求10a+b的值.(B类)(1)已知x2﹣3x+1=0,求x2+的值.(2)已知10a=20,102b=5,求10a﹣2b的值.(C类)若x+y=2,x2+y2=4,求x2003+y2003的值.【答案】(A类)(1)(2)6 (B类)(1)7 (2)4 (C类)22003【解析】试题分析:A和B类:(1)题利用完全平方公式求值(2)运用幂的乘方的逆运算即可.底数不变指数相加,就是两式相乘.C类:根据已知条件先求出x、y的值,然后代入所求代数式求值即可.解:A类:(1)x2+xy+y2,=,=,=;(2)10a+b=10a•10b=3×2=6;B类:(1)解:∵x2﹣3x+1=0∴x﹣3+=0,∴x+=3,∴x2+=(x+)2﹣2=7,(2)10a﹣2b=10a÷102b=20÷5=4.C类:∵x+y=2,∴x2+2xy+y2=4,又∵x2+y2=4,∴xy=0,∴或,∴x2003+y2003=22003.考点:完全平方公式;同底数幂的乘法点评:本题主要考查了完全平方公式和幂的乘方的运算,以及解方程的能力.39.求代数式5x2﹣4xy+y2+6x+25的最小值.【答案】16【解析】试题分析:首先把已知等式变为4x2﹣4xy+y2+x2+6x+9+16,然后利用完全平方公式分解因式,变为两个非负数和一个正数的和的形式,然后利用非负数的性质即可解决问题.解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.考点:完全平方公式点评:此题主要考查了完全平方公式的应用,首先利用公式分解因式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.40.已知(2﹣a)(3﹣a)=5,试求(a﹣2)2+(3﹣a)2的值.【答案】11【解析】试题分析:把(2﹣a)和(3﹣a)看成一个整体,利用完全平方公式求解.解:(a﹣2)2+(3﹣a)2=(a﹣2)2+(3﹣a)2+2(a﹣2)(3﹣a)﹣2(a﹣2)(3﹣a),=(a﹣2+3﹣a)2﹣2(a﹣2)(3﹣a),=1+2(2﹣a)(3﹣a),=1+10,=11.考点:完全平方公式点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.41.已知m=2010×2011﹣1,n=20102﹣2010×2011+20112,请尝试用一种简便方法比较m、n 大小.【答案】m<n【解析】试题分析:将n中的式子变形后,利用完全平方公式化简,即可比较出两式的大小.解:m=2010×2011﹣1,n=20102﹣2010×2011+20112=20102﹣2×2010×2011+20112+2010×2011=(2010﹣2011)2+2010×2011=2010×2011+1,∵2010×2011﹣1<2010×2011+1,∴m<n.考点:完全平方公式点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.42.已知|x﹣y+1|与x2+8x+16互为相反数,求x2+2xy+y2的值.【答案】49【解析】试题分析:先把x2+8x+16整理成完全平方公式,利用相反数的概念可得即|x﹣y+1|+(x+4)2=0,两个非负数的和等于0的形式,那么每一个非负数都等于0,从而求出x、y的值,再把x、y的值代入所求代数式计算即可.解:∵|x﹣y+1|与x2+8x+16互为相反数,∴|x﹣y+1|与(x+4)2互为相反数,即|x﹣y+1|+(x+4)2=0,∴x﹣y+1=0,x+4=0,解得x=﹣4,y=﹣3.当x=﹣4,y=﹣3时,原式=(﹣4﹣3)2=49.考点:完全平方公式点评:本题主要考查完全平方公式、非负数的性质.完全平方公式:(a±b)2=a2±2ab+b2.注意会正确的拆项.43.设实数a,b,c满足a2+b2+c2=1.若a+b+c=0,求ab+bc+ca的值;【答案】﹣【解析】试题分析:把a+b+c=0两边平方,然后展开得到a2+b2+c2+2ab+2ac+2bc=0,再把a2+b2+c2=1代入进行计算即可;解:∵a+b+c=0,∴(a+b+c)2=0,∴a2+b2+c2+2ab+2ac+2bc=0,而a2+b2+c2=1,∴ab+bc+ca=﹣;考点:完全平方公式点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了(a﹣b)2的非负性质以及代数式的变形能力.44.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.【答案】(1)(2)5≤c<9【解析】试题分析:(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出x、y的值,然后代入代数式计算即可;(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出a、b的值,然后利用三角形的三边关系即可求解.解:(1)x2+2y2﹣2xy+4y+4,=x2﹣2xy+y2+y2+4y+4,=(x﹣y)2+(y+2)2,=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.考点:完全平方公式;非负数的性质:偶次方;三角形三边关系.510329点评:本题考查了完全平方公式以及非负数的性质,利用完全平方公式配方成平方和的形式是解题的关键.45.已知a=x+2009,b=x+2008,c=x+2010,求代数式a2+b2+c2﹣ab﹣bc﹣ca的值.【答案】3【解析】试题分析:先求出a﹣b,b﹣c,c﹣a的值,然后把a2+b2+c2﹣ab﹣bc﹣ca根据完全平方公式配方,再代入进行计算即可求解.解:∵a=x+2009,b=x+2008,c=x+2010,∴a﹣b=1,b﹣c=﹣2,c﹣a=1,a2+b2+c2﹣ab﹣bc﹣ca=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ca+c2)],=[(a﹣b)2+(b﹣c)2+(c﹣a)2],=(1+4+1),=3.故答案为:3.考点:完全平方公式点评:本题考查了完全平方公式的利用,把代数式根据完全平方公式配方是解题的关键,也是本题的难点.46.已知a=2009,b=2008,求的值.【答案】【解析】试题分析:先提出,根据完全平方公式分解因式得出(a﹣b)2,代入求出即可.解:=(a2﹣2ab+b2)=(a﹣b)2当a=2009,b=2008时,原式=×(2009﹣2008)2=.考点:完全平方公式点评:本题考查了完全平方公式的应用,注意:a2±2ab+b2=(a±b)2.47.若x+=2,则x2+= _________ ,x3+= _________ ,x4+= _________ .任意正整数n,猜想:= _________ .【答案】2【解析】试题分析:先根据x+=2求出(x+)2=4,进而可得出x2+的值,同理求出x3+及x4+的值,找出规律即可进行解答.解:∵x+=2,∴(x+)2=4,∴x2+=2;∵x3+=(x+)(x2+﹣1),=2×(2﹣1),=2;x4+=(x2+)2﹣2,=4﹣2,=2,…故x n+=2.故答案为:2.考点:完全平方公式点评:本题考查的是完全平方公式及立方和公式,能根据题意得出x2+=2是解答此题的关键.48.用简便方法计算:(1)1.372+2×1.37×8.63+8.632(2)×42012.【答案】(1)100 (2)-4【解析】试题分析:(1)根据完全平方公式的逆运用得出(1.37+8.63)2,求出即可;(2)根据积的乘方的逆运用得出[(﹣)×4]2011×4,先求出括号内的,再求出即可.解:(1)原式=(1.37+8.63)2=102=100;(2)原式=(﹣)2011×42011×4=[(﹣)×4]2011×4=(﹣1)2011×4=﹣1×4=﹣4.考点:完全平方公式;幂的乘方与积的乘方.点评:本题考查了完全平方公式和积的乘方和幂的乘方,注意:a m•b m=(ab)m,a2+2ab+b2=(a+b)2.49.已知x2﹣7x+1=0,求x2+x﹣2的值.【答案】47【解析】试题分析:利用完全平方公式巧妙转化x2+x﹣2成已知条件.然后代入求值.解:因为x2﹣7x+1=0,所以x≠0,则等式两边都除以x,得x﹣7+x﹣1=0,即x+x﹣1=7,所以(x+x﹣1)2=x2+2x.x﹣1+(x﹣1)2=49,x2+2+x﹣2=49,所以x2+x﹣2=47.考点:负整数指数幂完全平方公式点评:本题主要考查负整数指数幂和完全平方式的知识点,本题利用了完全平方公式:(a±b)2=a2±2ab+b2求解.50.如图是杨辉三角系数表,它的作用是指导读者按规律写出行如(a+b)n展开式的系数,请你仔细观察下表中的规律,填出展开式中所缺的系数.(1)(a+b)=a+b(2)(a+b)2=a2+2ab+b2(3)(a+b)3=a3+3a2b+3ab2+b3(4)(a+b)4=a4+ a3b+6a2b2+4ab3+b4(5)(a+b)5=a5+ a4b+ a3b2+ a2b3+ ab4+b5.【答案】4;5、10、10、5【解析】试题分析:本题考查学生的观察分析逻辑推理能力,由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1.解:可以发现:(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,∴(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;故本题答案为:(4)4;(5)5、10、10、5.考点:完全平方公式点评:本题考查了完全平方公式,读懂题意并根据所给的式子寻找规律,是快速解题的关键.51.已知(x+1)5=ax5+bx4+cx3+dx2+ex+f,求下列各式的值:(1)a+b+c+d+e+f;(2)b+c+d+e;(3)a+c+e.【答案】(1)32 (2)30 (3)16【解析】试题分析:应用公式(a+b)2=a2+2ab+b2求出(x+1)2的值,再利用多项式的乘法法则展开,利用恒等式,系数相等求出a b c d e f 的值,再代入求出代数式的值.。

相关文档
最新文档