Three-flavor MSW solutions of the solar neutrino problem
微波辅助萃取法萃取洋葱油树脂化学成分

Reevd 2 e tm&r2 0 ;rvsd 2 e t br2 0 ;a cp e 5 S p e e 0 6 cie 2 S pe 0 6 e ie 5 S pe e 0 6 ce td 2 e tmbr 2 0 m Ab ta t Th no l r i S x rce yM AE s se whc spo u e yCEM ERI A.Th h mi l o si e t sr c : eo in oe e nW& ta tdb os e y tm ihwa rd c db AM C ec e c n t u ns ac t a d sr cueo no loei r n lzdb a so n tu tr fo inoersnweea aye ymen f GC MS meh . erslsso h ti d io o1 s0 mp s ino t o Th eut h w ta na dt nt s o aio f d i e t v lt e o o n s no loei il o tisak ls lh ls b— s lh rai tr ak lslh ls lh retr t ufr oai mp u d ,o in oe r n many c nan ly up u u lc s up u c e e, ly up u up u se ,wo s l ds u
Ch mia o siu n so in Olo ei o u e v e clC n t e t fOno e rsn Prd c db t
M e n fM ir wa e—As itd Ex r c in a so co v s e ta t s o
浪漫时光 摇摇欲坠——时令果蔬鸡尾酒

食材 : 新鲜青 柠檬
调 酒 师推 荐理 由 青柠檬 搭配 小金 橘昧的 伏 特 加 , 加 青涩 的果 香 味 , 增 口感会 更加 丰富, 不仅仅 是单 纯的酸甜 昧道 。
爱好 者点 评 : 口感 很甜 , 台女 士 . 适 是橘子
带着新加坡的热情与缤纷。
34 / ̄r A :6n e
园 的 环 境 里 享 受 自助 美 味 时 光 , 致 滋 味 , 香 诱 人 , 精 鲜 佐
以顶级葡萄酒 。 将是 一个精彩美 焕的美食体验 。当然 . 如果是太阳正艳 的午后, 顶楼 的全开放式回转酒廊同样
是最 佳选择 , 过偌 大的 落地玻璃 窗看 车水马龙 的城 透
市。 远处 的山峦透着些 许慵懒的姿 态 , 一如这 个城市一 贯的步调 。千万不 要错过 由君 乐酒店屡获殊荣 的甜品 师倾心打造的美味点心德 国芝士蛋糕 、 榛子蛋糕等。君 乐酒店最 赞的地方 , 是既保 留了昆明的 闲适 情怀 , 就 也
浪漫 时光 摇摇欲坠
— —
调酒 师推 荐理 由 : 色是 被覆盆 子利 口酒 颜 加上去 的 , 颜色 鲜艳 , 口感 以清淡 的酸度 为
主 。通 台
时令 果 蔬鸡尾 酒
爱好者 点评 : 起来清 爽 , 闻 很浓的粉 红气 泡
葡萄酒 昧道 , 酸度 不错 。
新鲜蔬 果鸡尾酒的 出现 , 也许来 自调酒师和 嗜酒客的灵 机一想 。民国文人林文 月曾在《 饮膳 札记》 中提到 自创“ 白兰 地西瓜 ” “ , 将大西瓜横 切 。 使如 一大深碗 , 用汤 匙先掏出中心 瓜肉约一饭碗量 , 于其 内注入上 品白兰地酒大半碗 , 再撒人 白 糖三汤越许 。酒渗透入 瓜肉后 , 再将 原先掏 出之 瓜肉覆盖其
参之味浓缩汁

Q/DCS 大连财神岛集团有限公司企业标准Q/DCS 0010S-2011参之味浓缩汁2011-03-22发布2011-04-28实施大连财神岛集团有限公司发布Q/DCS 0010S-2011前言本标准按照GB/T1.1-2009给出的规则起草。
本标准由大连财神岛集团有限公司提出并起草。
本标准主要起草人:李滨。
本标准属首次发布。
Q/DCS 0010S-2011参之味浓缩汁1 范围本标准规定了参之味浓缩汁的要求、试验方法、检验规则、标志、标签、食用说明书、包装、运输和贮存。
本标准适用于以海参、鲍鱼、畜、禽制品、香辛料、调味料等为主要原料,经过煮制、提取、浓缩、调配、包装、灭菌等工序制成的粘稠适中、口味纯美的调味品----参伴侣鲍汁参汤。
2 规范性引用文件下列文件中对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件,凡是不注日期引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 191 包装储运图示标志GB 2707 鲜(冻)畜肉GB 2717 酱油卫生标准GB 2733 鲜、冻动物性水产品卫生标准GB 2760 食品添加剂使用卫生标准GB 4789.2 食品安全国家标准食品微生物学检验菌落总数测定GB 4789.3 食品安全国家标准食品微生物学检验大肠菌群测定GB 4789.4 食品安全国家标准食品微生物学检验沙门氏菌检验GB/T 4789.5 食品卫生微生物学检验志贺氏菌检验GB/T 4789.7 食品卫生微生物学检验副溶血性弧菌检验GB 4789.10 食品安全国家标准食品微生物学检验金黄色葡萄球菌检验GB/T 5009.11 食品中总砷及无机砷的测定GB/T 5009.17 食品中总汞及有机汞的测定GB/T 5009.39 食品中氨基酸态氮的测定GB/T 5009.123 食品中铝的测定GB/T 5009.190 食品中指示性多氯联含量的测定GB 5461 食用盐GB 5749 生活饮用水卫生标准GB 7718 预包装食品标签通则GB/T 8967 谷氨酸钠(味精)GB/T 12457 食品中氯化钠的测定GB/T 15691 香辛料调味品通用技术条件GB 16869 鲜冻禽产品GB/T 27304 食品安全管理体系水产品加工企业要求JJF 1070 定量包装商品净含量计检验规则国家质量监督检验检疫监总局令[2005]第75号《定量包装商品计量监督管理办法》国家质量监督检验检疫监总局令[2009]第123号《食品标识管理规定》3 要求Q/DCS 0010S-20113.1 原辅料要求3.1.1 海参:新鲜、外形完整、质量应符合GB 2733的规定。
大连灵点调酒学校—性感沙滩配方大全

大连灵点调酒学校——十款性感沙滩鸡尾酒1、性感沙滩材料:伏特加1.5oz、蜜桃甜酒1oz、蔓越莓汁2oz、(或蔓越莓糖浆o.5oz、柠檬汁0.5oz)橙汁2oz做法:摇和法载杯:子弹杯2、性感沙滩材料:伏特加30ml、桃味利口酒15ml、樱桃白兰地15ml(或樱桃汁)蔓越梅汁30ml、橙汁30ml、做法:摇和法载杯:飓风杯3、性感沙滩材料:伏特加1/4oz、蜜桃甜酒1/5 oz、樱桃白兰地1/6oz、蔓越梅汁10n做法:摇和法载杯:鸡尾酒杯4、性感沙滩材料:伏特加1.5oz、蜜多利蜜瓜甜0.5oz、香博叔莓利娇0.5oz、菠萝汁2oz、蔓越梅汁2oz、柠檬汁0.5oz、糖水0.5oz做法:摇和法载杯:球形直身杯5、性感沙滩材料:伏特加1oz、蜜桃甜0.5oz、蜜瓜甜0.5oz、菠萝汁1oz、红梅汁2oz,做法:摇和法载杯:沙滩杯6、性感沙滩材料:伏特加1oz、蜜桃甜1oz、橙汁2oz、菠萝汁2oz、蔓越梅汁2oz。
做法:搅拌法(所有材料加冰搅拌机搅拌)载杯:沙滩杯7、性感沙滩材料:伊甘洛夫伏特加30ml、桃味杜松子酒30ml、橙汁85ml、蔓越梅汁85ml 做法:摇和法载杯:喇叭杯、柯林杯8、性感沙滩材料:伏特加(vodka)45ml、桃味利口酒(peach)15ml、萨酷乐斯草莓(sarklass strawberry)15ml、橙汁(orange juice )80%做法:摇和法(除橙汁以外所有才料摇和)兑和法,最后到入橙汁载杯:果汁杯9、性感沙滩材料:金酒1/2oz、伏特加1/2、白朗姆1/2oz、蜜桃甜1/2、橙汁2oz、菠萝汁2oz、红糖水1/3oz、做法:摇和法(除红糖水以外的材料摇和,最后滴上红糖水)载杯:八角杯10、性感沙滩材料:伏特加vodka1oz、黑梅甜酒cassis1/2oz、蜜桃甜peach1/2oz、凤梨汁pineapple juice1oz做法:摇和法载杯:鸡尾酒杯。
大口黑鲈的营养需要研究进展____

动物科学现代农业科技2011年第21期大口黑鲈(Micropterus salmoides ),俗称加州鲈,原产于美国加利福尼亚州,隶属鲈形目(Perciformes ),太阳鱼科(Ceutrarchidae )。
20世纪80年代初引入我国,由于其生长快、病害少、耐低温、肉多刺少、味道鲜美及营养丰富等优点,已成为我国养殖的主要淡水鱼品种之一。
大口黑鲈属典型淡水肉食性鱼,迄今尚未成功开发出营养平衡的全价专用饲料,尤其全程使用饲料一直是业界的一大难题,表现在中后期经常出现生长慢、厌食、肝脏疾病等问题[1]。
虽然大口黑鲈的养殖在国内外均有一定的规模,而且饲料成本占养殖成本的比例较高,但有关大口黑鲈营养需要的研究仍十分缺乏[2]。
在国外,大部分大口黑鲈的养殖,均采用比较容易获得的其他肉食性鱼类如鲑鱼和鳟鱼的饲料,而非采用针对大口黑鲈自身营养需要配制的专用饲料[3]。
在国内,养殖户投喂的饲料多以冰鲜下杂鱼和其他动物性饲料为主,这对海洋资源无疑是一种浪费,同时对养殖环境的污染也十分明显,容易引起各种疾病的暴发[4]。
按大口黑鲈2010年的产量测算,我国潜在的鲈鱼专用饲料需求可达20万t/年[1]。
对配合饲料的需要日益增加,亟待进一步全面开展其营养需要的研究。
因此,该文综述了国外内大口黑鲈营养需要的研究进展,并参考其他鱼类的营养需要,比较全面地总结了大口黑鲈对饲料中各营养素的需要量,以期为大口黑鲈专用饲料的研发和配制提供参考。
1大黑鲈对各种营养成分的需要量1.1蛋白质和氨基酸由于没有专门为大口黑鲈开发的商用饲料,目前在国外均采用其他肉性鱼类的饲料(蛋白质含量>40%,鱼粉含量50%~70%)[5-8]。
最早关于大口黑鲈饲料蛋白质营养需要的研究见于1981年[5]。
研究发现,0~1龄的大口黑鲈对饲料中蛋白质的需要量为39.9%~40.8%(基于饲料干物质)。
以饲料中水分含量为10%来计算的话,蛋白质含量为36%~37%(饲料湿重)即可满足1龄及之前的大口黑鲈鱼的生长。
《预调鸡尾酒团体标准》

《预调鸡尾酒团体标准》《预调鸡尾酒团体标准》是针对预调鸡尾酒的品质、制作和销售的标准规范,其目的是保证预调鸡尾酒的品质和口感,维护消费者的权益。
以下是对该团体标准的详细解读。
一、标准的背景和目的随着人们生活水平的提高,消费者对饮料的需求也在逐渐变化。
预调鸡尾酒作为一种新型的饮品,以其独特的口感和丰富的营养受到广大消费者的喜爱。
然而,由于缺乏统一的标准规范,市场上预调鸡尾酒的品质和口感参差不齐,给消费者选择带来困扰。
因此,制定《预调鸡尾酒团体标准》的目的是为了规范预调鸡尾酒的生产、销售和使用,提高产品的品质和口感,保障消费者的权益。
二、标准的制定过程《预调鸡尾酒团体标准》的制定过程包括以下几个阶段:1.调研阶段:对市场上的预调鸡尾酒产品进行调查和分析,了解消费者的需求和产品的现状。
2.起草阶段:根据调研结果,制定标准的初稿。
3.征求意见阶段:将初稿向社会公开征求意见,收集各方的反馈和建议。
4.修改和完善阶段:根据反馈意见对初稿进行修改和完善。
5.审核和批准阶段:经过专家审核和批准后,最终确定标准的文本。
三、标准的主要内容《预调鸡尾酒团体标准》主要包括以下内容:1.术语和定义:对预调鸡尾酒的定义、主要原料、制作工艺等进行了明确的规定和解释。
2.产品分类:根据产品的特点、口感和营养成分等指标,将预调鸡尾酒分为不同类别,并对每个类别进行了描述和界定。
3.品质要求:对预调鸡尾酒的品质提出了具体要求,包括原料的选择、加工工艺、产品质量、标签标识等方面的规定。
4.制作规范:对预调鸡尾酒的制作过程进行了详细的规定,包括原料的配比、加工设备的选择、制作环境的卫生条件等方面的要求。
5.检测方法:规定了预调鸡尾酒的检测方法,包括理化指标、微生物指标、食品添加剂等方面的检测项目和检测方法。
6.包装和标识要求:对预调鸡尾酒的包装和标识进行了规定,要求产品包装应符合国家相关法律法规和标准的规定,标签标识应清晰、准确、完整地标注产品的信息。
【放射化学系列】铀、镎、钚的放射化学

~.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . ...~i~ .
~."
1.
11.
Iii.
.... ... .. .. ... ... .... . ... .. . ... .. .. ..". . .. .. . . .. . . . . . . ..iv
Ratiochemical Determination of Plutonium in Marine Samples by Extraction.Chrmatography:.............”.44 The Determination of Plutonim in EnVir~ntal Samples by Extraction with Tridodecylamine ................46 .
8.
Determination Ikanlum in NaturalMaters of
Afte=Aaion-Exchange Sepa.ration. ..........................26 Uranium kalyais by Liquid Scfnttl18tlon Counting .........28
VI.
~
Introduction.................................. ....” . .‘h ...........28 “’. \
Discussionoft heProcedures. ..................................38 Procedures:
鸡尾酒配方大全

鸡尾酒配方大全新加坡司令(SingaporeSling)口感清爽的金酒配上热情的樱桃白兰地,喝起来口味更加舒畅。
夏日午后,这种酒能使人疲劳顿消。
配料:金酒1/9,柠檬汁1/6,砂糖或糖浆2匙,樱桃白兰地1/18,苏打水2/3容器:平底杯饰物:红樱桃、柳橙各一调配方法:将金酒、柠檬汁、砂糖或糖浆和冰块倒入调酒壶内,搅匀后倒入杯中;加入冰块,并将苏打水注满,最后在杯中沿杯边注入樱桃白兰地,在杯边用红樱桃和柳橙进行装饰。
<B-52轰炸机>甘露咖啡甜酒百利甜酒伏特加:将原料依次倒入利乔杯中•并且点燃伏特加出品,兑和法调制杰克丹尼1/3金酒1.5 ,绿薄荷酒0.3,菠萝汁0.3这款鸡尾酒的名字意义为绕地球一周。
绿薄荷酒的清凉色彩,加上菠萝爽口的酸味,特别适合盛夏饮用。
此酒据说是美国调酒师设计的。
红粉佳人20金酒1.5,柠檬0.2,石榴汁0.3,蛋青1/2美丽的粉红色与白色的泡沫,宛如舞台剧中的女主角。
英国伦敦的舞台剧红粉佳人”上演后,大获成功,女主角海瑟.杜恩手上端的就是这款酒。
充满魅力的名称加上优雅迷人的色彩,极受女士们青睐。
蓝月亮23金酒1。
紫罗兰0.5柠檬汁0.5淡淡的紫色美丽妖娆,富有生命力,妖艳美丽的淡紫色,浪漫诗意的名称。
马天尼35金酒2,马天尼干0.3,青橄榄鸡尾酒之王,永远巍然屹立的第一号。
不同的心情、不同的调酒师、不同的酒会另这样简单的鸡尾酒给你不一样的感觉。
俄罗斯人33金酒0.7,伏特加0.7,百可可0.7柔和的甜香口味较容易迷惑人,被称为少妇杀手”的鸡尾酒。
4/10俄得克酒6/10橙汁坦布勒杯,加冰块,将上述材料倒入。
青草蜢20mL 鲜奶油20mL 白色可可甜酒20mL 绿色薄荷甜酒摇和法,滤入鸡尾酒杯中。
螺丝刀爱尔兰咖啡1吧匙糖粉40mL爱尔兰威士忌酒80mL热咖啡25mL泡沫鲜奶油在1个特制爱尔兰咖啡杯或高脚水杯中,将糖粉、爱尔兰威士忌酒和热咖啡混合并搅至糖粉溶化,再将泡沫鲜奶油漂浮在上面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:h ep-ph/9912231v13Dec1999BARI-TH/365-99Three-flavor MSW solutions of the solar neutrino problem G.L.Fogli a ,E.Lisi a ,D.Montanino b ,and A.Palazzo a a Dipartimento di Fisica and Sezione INFN di Bari,Via Amendola 173,I-70126Bari,Italy b Dipartimento di Scienza dei Materiali dell’Universit`a di Lecce,Via Arnesano,Collegio Fiorini,I-73100Lecce,Italy Abstract We perform an updated phenomenological analysis of the Mikheyev-Smirnov-Wolfenstein (MSW)solutions of the solar neutrino problem,assuming os-cillations between two and three neutrino families.The analysis includes the total rates of the Homestake,SAGE,GALLEX,Kamiokande and Super-Kamiokande experiments,as well as the day-night asymmetry and the 18-bin energy spectrum of Super-Kamiokande.Solutions are found at several values of the θ13mixing angle.Among the most interesting features,we find that solar neutrino data alone put the constraint θ13<∼55◦–59◦at 95%C.L.,and that a fraction of the MSW solutions extends at and beyond maximal (ν1,ν2)mixing (θ12≥π/4),especially if the neutrino square mass splitting is in its lower range (m 22−m 21∼10−7eV 2)and if θ13is nonzero.In particular,bi-maximal (or nearly bimaximal)mixing is possible for atmospheric and MSW solar neutrino oscillations within the stringent reactor bounds on θ13.PACS number(s):26.65.+t,13.15.+g,14.60.Pq,91.35.−xTypeset using REVT E XI.INTRODUCTIONIt is widely recognized that the combined sources of evidence for neutrinoflavor tran-sitions coming from the solar neutrino problem[1]and from the atmospheric neutrino anomaly[2]demand an approach in terms of three-flavor oscillations among massive neutri-nos(ν1,ν2,ν3)[3].The three-flavorνparameter space is then spanned by six variables:δm2=m22−m21,(1a)m2=m23−m22,(1b)ω=θ12∈[0,π/2],(1c)φ=θ13∈[0,π/2],(1d)ψ=θ23∈[0,π/2],(1e)δ=CP violation phase,(1f) where theθij rotations are conventionally ordered as for the quark mixing matrix[4].In the phenomenologically interesting limit|δm2|≪|m2|,the two eigenstates closest in mass(ν1,ν2)drive solar neutrino oscillations,while the“lone”eigenstateν3drives atmo-spheric neutrino oscillations.In such a limit(see[3,4]and refs.therein):i)the phaseδbecomes unobservable;ii)the atmospheric parameter space is spanned by(m2,ψ,φ);and iii)the solar neutrino parameter space is spanned by(δm2,ω,φ).1Building on a previous work[5],we perform a thorough analysis of the available solar neu-trino data in the(δm2,ω,φ)variables,in the context of the Mikheyev-Smirnov-Wolfenstein (MSW)oscillation mechanism[6].There are several motivations to revisit,update and im-prove the analysis in[5],the most important being the need to include the high-statistics Super-Kamiokande(SK)observations of neutrino events(total rate,[2],energy spectrum [2,7],and day-night difference[2,8]).Indeed,the few post-SK papers on three-flavor MSW oscillations we are aware of[9–11]include neither the spectrum information nor day-night variations.This contrasts with the more familiar two-family MSW analyses,which have been regularly updated with state-of-the-art globalfits at different detector lifetime days; see,e.g.,the SK officialfits([2,12,13]and refs.therein),as well as various analyses by independent research groups:[14](100days),[15](300days),[16](500days),and[17,18] (800days).After the work[5],there have been also other relevant experimental and theoretical improvements(implemented in the present analysis):updated measurements of the exper-imental(total)rates in the chlorine(Cl)[19]and Kamiokande(K)[20]experiments and in the gallium(Ga)detectors SAGE[21]and GALLEX[22];new standard solar model(SSM) estimates for the neutrinofluxes and their uncertainties,and for the neutrino production regions in the Sun[23];updated calculations of the8B neutrino spectrum[24],of theνe,µscattering cross section on electrons[25],and of theνe neutrino absorption cross sectionin chlorine[24]and in gallium[26];analytical methods to compute the(time-averaged)νe survival probability in the Earth[27].In addition,some relatively old topics,such as the role played by a possibly large hep neutrinoflux[28,29],or by solar neutrino mixing at and beyond“maximal”values(ω≥π/4) [5],are currently being revisited(see[30–32]and[33–35],respectively)and demand an updated discussion.In particular,the case of maximal solar neutrino mixing(ω=π/4) appears now more“natural”and interesting in light of the Super-Kamiokande results on atmospheric neutrinos,which favor maximalνµ↔ντmixing(ψ=π/4).2Therefore,it is important to go beyond the usual analyses in terms of the solarνmixing parameter sin22ω(equivalent to takeω≤π/4),which miss a potentially interesting region of the MSW solutions atω>π/4,as we shall see later(see also[5]for earlier discussions).Concerning the parameterφ,we do not include a priori the constraints coming from the CHOOZ reactor experiment[39],which,together with the atmospheric neutrino data [2],imply that sin2φ<∼few%[40,35](the exact upper limit depending on the value of m2, on the confidence level chosen,and on the number of degrees of freedom in the oscillation model).In fact,we think that it is instructive to study the constraints onφcoming from solar neutrino data alone,as it has been done similarly for atmospheric neutrino data[40].In any case,observable effects on the MSW solutions can be generated even by small (few%)values of sin2φ,which induce a fractional suppression in the solar neutrino survival probability P ee approximately equal to2×sin2φ.In fact,if N e is the electron density profile, the3νand2νexpressions for P ee are related by the expressionP3νee(δm2,ω,φ)=sin4φ+cos4φ·P2νee(δm2,ω) N e→cos2φN e,(2) which,for small values ofφ,gives roughlyP3νee−P2νee2SolarνMSW oscillations at sin22ω=1are nontrivial when Earth matter effects are included [5,33–35].This fact was not considered in Refs.[36–38],where only matter effects in the Sun were studied.II.STANDARD PREDICTIONS AND EXPERIMENTAL DATA In the present analysis,we use the so-called BP98standard solar model[23]for the electron density in the Sun and for the input neutrino parameters(νefluxes,spectra,and production regions),and compare the predictions to the experimental data for the following observables:total neutrino event rates,SK energy spectrum,and SK day-night asymmetry.Table I shows the latest results(and standard expectations)for the total neutrino event rates measured at Homestake[19],Kamiokande[20],SAGE[21],GALLEX[22],and Super-Kamiokande(825live days)[2,12,13].Since the SAGE and GALLEX detectors measure exactly the same quantity(up to a negligible difference in the detector latitude),their results are combined in a single(Ga)rate of72.5±5.6SNU.On the other hand,the Kamiokande and Super-Kamiokande data are treated separately(rather than combined in a single datum), since the two experiments,although based on the sameν-e scattering detection technique, have rather different energy thresholds and resolution functions.3The SK electron recoil energy spectrum and its statistical and systematic uncertainties (825lifetime day,E e>5.5MeV)are graphically reduced from the18-bin histograms shown by SK members in recent Summer’99conferences[2,12,13].The corresponding numerical values have been already reported in detail in Ref.[17]and are not repeated here.Our theoretical calculation of the binned spectrum properly takes into account energy threshold and resolution effects(see,e.g.,the Appendix of Ref.[41]).Standard8B[24]and hep[23] neutrino spectra andfluxes are used,unless otherwise noted.Concerning the SK day-night asymmetry of the event rates,we use the latest measurement[13]:N−D23The inclusion of the Kamiokande rate is currently not decisive in shaping the MSW solutions, the SK rate being much more accurately measured.However,its addition to the Cl,Ga,and SK rates avoids a situation of“zero degrees of freedom”in theχ2fit to the total rates for the3νMSW case[three data(Cl,Ga,SK)minus three free parameters(δm2,ω,φ)].In such a situation,the value ofχ2min would not have a well-defined likelihood.errors are dominant—as far as total rates are concerned—no substantial improvements can be expected by a reduction of the experimental errors.Conversely,decisive information is expected from the SK spectrum and day-night asymmetry,but no convincing deviation has emerged from such data yet.Therefore,it is not surprising that,in oscillationfits,the total rates mainly determine allowed regions,while the SK spectrum and day-night asymmetry determine excluded regions.III.TWO-FLA VOR MSW OSCILLATIONSFigure2shows the results of our2νMSW analysis of the data discussed in the previous section,shown as confidence level contours in the(δm2,sin22ω/cos2ω)plane.The choice of the variable sin22ω/cos2ω,rather than the usual sin22ω,allows an expanded view of the large mixing region.In each of the six panels,we determine the absolute minimum of theχ2 and then plot the iso-χ2contours atχ2−χ2min=4.61,5.99,and9.21,corresponding to90%, 95%,and99%C.L.for two degrees of freedom(the oscillation parameters).Infits including the total rates,there is a globalχ2minimum and two local mimima;such minima,and the surrounding favored regions,are usually indicated as MSW solutions at small mixing angle (SMA),large mixing angle(LMA),and lowδm2(LOW).Additional information on such solutions is reported in Tab.II.Concerning the statistical interpretation of theχ2values,a remark is in order.One can attach confidence levels toχ2values in two different ways,depending on the choice between hypotheses tests and parameter estimation[43].If one is interested in testing the goodness of the MSW hypothesis a priori,then one should compare the absoluteχ2min with a number of degrees of freedom(N DF)calculated as number of data minus number of free parameters.The corresponding probability P is given in the last column of Tab.II where, for completeness,P is reported also for the other two local minima and for the no oscillation case.If the MSW hypothesis is accepted,then the MSW parameter estimation involves only χ2differences with respect to the global minimum,and the appropriate value of N DF to use is the number of free parameters in the model(N DF=2),as anticipated for Fig.2.Thefirst panel of Fig.2refers to thefit to the total rates only.The threeχ2minima are indicated by dots.The absolute minimum is reached within the SMA solution(χ2min=1.08), which represents a very goodfit to the data.The LMA solution is also acceptable,while the LOW solution gives a marginalfit(see also the upper three rows of Tab.II).The SK data on the day-night asymmetry(second panel)and energy spectrum(third panel)exclude large regions in the mass-mixing parameter space;but are unable to(dis)prove any of the three solutions,which in fact are present also in the globalfit to all data(fifth panel;see also the middle three rows of Tab.II).The spectrum information is somewhat sensitive to the(uncertain)value of the hep neutrinoflux;for instance,an enhancement by a factor20helps tofit the high-energy part of the SK spectrum[30],and thus it produces a reduction of the excluded regions in the mass-mixing plane(fourth panel in Fig.2),and a corresponding slight enlargement of theglobally allowed regions(sixth panel;see also the lower three rows of Tab.II).4 From the results of Fig.2and of Tab.II,it appears that the inclusion of the day-night and spectral information can significantly change the C.L.’s associated to each of three solutions SMA,LMA,and LOW.In order to understand better the role of difference pieces of data, we show in Fig.3the comparison between data and predictions for theχ2min point of the total ratefit(SMA solution at bestfit,first row of Tab.II),in the same coordinates as in Fig.1.Analogously,Figs.4and5show the analogous comparison for the LMA and LOW solutions(second and third row of Tab.II).Figure6shows the spectral information for the three local minima in the globalfit to all data with standard hepflux(upper panel)and with enhanced(20×)hepflux(lower panel).From Figs.3–5it appears(as far as total rates are concerned)that the SMA solution represents a very goodfit to the SK,Ga,and Cl data,that the LMA solution underestimates slightly the Ga and SK data,and that the LOW solution underestimates the Ga rate and overestimates the Cl rate.This explains the ordering in the likelihood of such solutions in Tab.II:P(SMA)>P(LMA)>P(LOW).On the other hand,Figure6shows that the bulk of the SK observed spectrum is basically consistent with aflat shape(except for the two highest-energy,low-statistics bins),and therefore tends to favor the LMA and LOW solutions,rather than the steadily increasing spectrum predicted by the SMA solution. This tendency is slightly enhanced in the case of large hep neutrinoflux(lower panel of Fig.6)since in this case the LMA and LOW solutions canfit somewhat better the spectrum endpoint.In other words,the inclusion of the spectrum in the global analysis tends to compensate the different likelihoods of the LMA and LOW solutions with respect to the SMA solution.Moreover,the slight excess of observed nighttime events[Eq.(4)]adds extra likelihood to the LMA solution,so that in the globalfit one has P(SMA)∼P(LMA)> P(LOW)(see Tab.II),with the LMA solution even more likely than the SMA solution in the case of large hepflux.From the previous discussion,the following situation emerges for the three MSW solu-tions SMA,LMA,and LOW.None of them can be excluded at99%C.L.by the present experimental data.Different pieces of data give indications that are not as consistent as it would be desirable:the total rate information favors the SMA solution,the spectral data favor the LMA and LOW solutions,and the day-night data favor the LMA solution.In a globalfits,the three solutions have comparable likelihoods.Although such solutions are sub-ject to change shape and likelihood as more accurate experimental data become available, no dramatic improvement can be really expected in their selection,unless:1)the theoretical uncertainties on the total rates are reduced to the size of the corresponding experimental uncertainties;2)the total errors associated to the SK spectrum and day-night measurement are significantly reduced(by,say,a factor∼2);or3)decisive results are found in new solar neutrino experiments such as the Sudbury Neutrino Observatory(SNO)[18,44,45],the Gal-lium Neutrino Observatory[46,47],BOREXINO[48,47],and KamLand[49].Any of these conditions require a time scale of a few years at least;the same time scale should then be expected in order to(patiently)single out one of the three MSW solutions(SMA,LMA,or LOW).Another aspect of the LMA and LOW solutions emerging from Fig.2is their extension to large values of the mixing angle(sin22ω→1),which are often assumed to be realized only through the vacuum oscillation solutions.Since the possibility of nearly maximal(ν1,ν2) mixing for solar neutrinos has gained momentum after the SK evidence for maximal(νµ,ντ) mixing(sin22ψ∼1),it is interesting to study it in detail by dropping the usual“2ω”variable and by exploring the full rangeω∈[0,π/2],as it was done earlier in[5].The subcaseω=π/4will receive special attention in the next section.IV.THREE-FLA VOR MSW OSCILLATIONSAs stated in Sec.I,for large values of m2(≫10−4eV2)the parameter space relevant for 3νsolar neutrino oscillations is spanned by the variables(δm2,ω,φ).As far asωis taken in its full range[0,π/2],one can assumeδm2>0,since the MSW physics is invariant under the substitution(δm2,ω)→(−δm2,π/2−ω)at anyφ.5For graphical representations,we prefer to use the mixing variables(tan2ω,tan2φ)intro-duced in[5],which properly chart both cases of small and large mixing.The case tan2φ=0 corresponds to the familiar two-family oscillation scenario,except that now we consider also the usually neglected caseω>π/4(tan2ω>1).For each set of observables(rates, spectrum,day-night difference,and combined data)we compute the corresponding MSW predictions and their uncertainties,identify the absolute minimum of theχ2function,and determine the surfaces atχ2−χ2min=6.25,7.82,and11.36,which define the volumes con-straining the(δm2,tan2ω,tan2φ)parameter space at90%,95%,and99%C.L.Such volumes are graphically presented in(δm2,tan2ω)slices for representative values of tan2φ.Figure7shows the results for thefit to the total rates only.The absolute minimum (χ2min=0.7)is reached within the SMA solution at nonzero tan2φ,as reported in thefirst row of Tab.III.The preference forφ=0is,however,not statistically significant,since χ2min(φ=0)−χ2min=1.08−0.70=0.38only.The qualitative behavior of the3νMSW solutions in Fig.7is unchanged with respect to the earlier analysis in[5]:for increasing tan2φ,the LOW solution moves to slightly larger values of tan2ωand then disappears, while the SMA and LMA regions tend to merge in a single,broad solution which slowly disappears at large values ofφ.In general,the MSW allowed region(s)become less structured for increasingφ,due to the the decreasing energy dependence of theνe survival probability [5].In thefirst panel of Fig.7it is interesting to note that both the LMA and the LOW solutions are compatible at99%C.L.with maximal mixing(tan2ω=1).This compatibility persists for the LOW solution at small values of tan2φ,while it is lost for the LMA solution, which migrates towards smaller mixing angles.As for the two-family case discussed in theprevious section,the addition of the spectrum information(and,to a lesser extent,of the day-night asymmetry)is expected to produce significant changes in the C.L.’s associated to the MSW solutions in Fig.7.Figure8shows the region excluded by the SK day-night asymmetry,in the same repre-sentation as in Fig.7.Such region is generally far from the allowed regions in Fig.7,and thus the day-night asymmetry contributes only marginally to shape the MSW solutions,except at low values of tan2φ,where it cuts the lower part of the LMA solution and disfavors the rightmost part of the SMA solution.The region excluded by the SK day-night asymmetry can extend beyond maximal mixing(tan2ω>1),as it was observed earlier in Ref.[5]for the corresponding Kamiokande variable.Figure9shows instead the regions excluded by the SK spectrum,which plays a relevant role in disfavoring the zone where the SMA and LMA solutions tend to merge(see the six middle panels of Fig.7).In fact,forδm2∼10−4eV2the normalized SK spectrum is predicted to have a large negative slope(see,e.g.,[27]),contrary to the experimental results.Relatively large positive values for the spectrum slope are excluded in the left diagonal band shown in the upper panels of Fig.9.Both positive and negative values for the spectrum slope can instead occur in the excluded region where the Earth regeneration effects are relevant[27].For increasingφ,the spectral information becomes less effective in disfavoring zones of the parameter space,since the energy-dependence of the electron survival probability becomes weaker.Therefore,only the strongest distortion effect(at δm2∼10−4eV2)survives at large tan2φ.Finally,as in the2νcase,the excluded regions are slightly shrinked if large hepflux values are assumed(not shown).Figure10shows the combinedfit to all data,which is one one of the main results of this work.As for the total rates,the minimumχ2(second row of Tab.III)is reached within the SMA solution and shows a very weak preference for nonzero values ofφ(tan2φ≃0.1).By comparing Fig.10with Fig.7,it can be seen that the SK spectrum excludes a significant fraction of the solutions atδm2∼10−4eV2,including the upper part of the LMA solution at smallφ,and the merging with the SMA solution at largeφ.In particular,at tan2φ=0.1 the95%C.L.upper limit onδm2drops from2×10−4eV2(rates only)to8×10−5eV2(all data).This indication tends to disfavor neutrino searches of CP violation effects,since such effects decrease withδm2/m2at nonzero values ofφ.Figure10also shows that the inclusion of the present spectrum and day-night informa-tion,rather than helping in constraining tan2φ,tends to slightly weaken its upper bound: for instance,the region allowed at95%C.L.in the last panel of Fig.10is larger than the corresponding one in Fig.7.In fact,the information coming from total rates prefers some energy dependence in the survival probability P ee,and thus disfavors large values ofφ[see Eq.(2)].However,since no clear indication for∂P ee/∂Eν=0emerges from the bulk of the SK spectrum,its addition in thefit makes large values ofφslightly more“acceptable.”In addition,at tan2φ>∼1,the lower part of the broad region allowed by total rates(last three panels of Fig.7)becomes more consistent with the(weak)indication for a nonzero night-day difference[Eq.(2)],thus giving some extra allowance for large values ofφ,as shown in the last three panels of Fig.10.Figure11is analogous to Fig.10,the only difference being theflux of hep neutrinos (increased by a factor of20with respect to BP98).Since a large hepflux allows a betterfit to the SK spectrum endpoint at any value ofφ,the globalfit is somewhat improved(thirdrow of Tab.III),and the MSW solutions are slightly more extended than in Fig.10.As for the2νcase,the best-fit point migrates from the SMA to the LMA solution.In general, the comparison of Figs.10and11shows that the(uncertain)value of the hep neutrinoflux is not crucial in shaping the current3νMSW solutions(although it might become decisive with more accurate spectral data).Figure12shows the values ofχ2−χ2min as a function of tan2φfor unconstrainedδm2 andω,coming from thefit to total rates and to all data.The values ofχ2min can be read from Tab.III.Thisfigure displays more clearly some anticipated features of the current3νMSW solutions(for standard hepflux):1)a slight preference for nonzero values of tan2φ;2)the existence of an upper bound onφ,slightly stronger in thefit to total rates(φ<∼55◦at95%C.L.)than in the globalfit(φ<∼58◦).In the case of enhanced(20×)hepflux we find that:1)the absolute minimum ofχ2is reached at tan2φ=0within the LMA solution;2)forfixedφ=0,the local minimum migrates to the SMA solution when tan2φ>∼0.05; and3)the95%C.L.upper limit on tan2φis slightly weakened to∼59◦.The95%C.L.upper bound onφcoming from solar neutrino data alone(φ<∼55◦–59◦) is consistent with the one coming from atmospheric neutrino data alone(φ<∼45◦)[40], as well as with the upper limit coming from the combination of CHOOZ and atmospheric data(φ<∼15◦)[35,40].This indication supports the possibility that solar,atmospheric,and CHOOZ data can be interpreted in a single three-flavor oscillation framework[5,40].In this case,the CHOOZ constraints onφexclude a large part of the3νMSW parameter space (basically all but thefirst two panels in Figs.7–10).However,even small values ofφcan be interesting for solarνphenomenology,as an-ticipated in the comment to Eq.(3).Figure13shows,for instance,how the partial and globalfits to neutrino event rates(Cl,Ga,and SK experiments)are modified when passing from tan2φ=0to tan2φ=0.06.Each of the three experiments,taken separately,allows ω≤π/4.In the combination,the LOW and LMA solutions“touch”theω=π/4line at tanφ=0,while for nonzeroφonly the LOW solution remains consistent withω=π/4 (and,to some extent,withω>π/4).This fraction of the LOW solution,usually ignored in analyses using the sin22ωvariable,can be relevant for model building.In particular,there is currently great interest in models predicting exact or nearly bimaximal mixing,namely, (ω,ψ,φ)≃(π/4,π/4,0)(see,e.g.,[50,51]and refs.therein).Such models imply,for the neu-trino mixing matrix Uαi,that U2e1≃U2e2and that U2e3≃0.Recent theoretical predictions for(small)nonzero values of U2e3are discussed,e.g.,in[52].Figure14shows the section of the volume allowed in the3νMSW parameter space,for ω=π/4(maximal mixing),in the mass-mixing plane(δm2,sin2φ).All data are included in thefit(with standard hepflux.It can be seen that both the LMA and LOW solutions are consistent with maximal mixing(at99%C.L.)for sin2φ≡U2e3=0.Moreever,the consistency of the LOW solution with maximal mixing improves significantly for U2e3≃0.1, while the opposite happens for the LMA solution.This gives the possibility to obtain nearly bimaximal mixing(ω=ψ=π/4withφsmall)within the LOW solution to the solar neutrino problem—an interesting possibility for models predicting large mixing angles.V.SUMMARYWe have performed a thorough analysis of the2νand3νMSW solutions of the solar neutrino problem,discussing the information coming from the total rates,as well as from the SK energy spectrum and day-night asymmetry.The globalfit to the data puts an upper bound to theθ13mixing angle,consistent with atmospheric and reactor oscillation searches.A fraction of the MSW solutions extends at and beyond maximal(ν1,ν2)mixing (θ12≥π/4),especially for the so-called LOW solution.Therefore,a novel realization of (nearly)bimaximal mixing models appears possible.ACKNOWLEDGMENTSG.L.F.and E.L.thank the organizers of the TAUP’99Workshop on Topics in Astropar-ticle and Underground Physics(Paris,College de France),where preliminary results of this work were presented. E.L.thanks E.Kh.Akhmedov and P.I.Krastev for useful corre-spondence.This work is co-financed by the Italian Ministero dell’Universit`a e della Ricerca Scientifica e Tecnologica(MURST)within the“Astroparticle Physics”project.APPENDIX:STATISTICAL ANALYSISIn this appendix we present an updated version of theχ2statistical analysis of neutrino event rates discussed in Ref.[42],which has been widely used in many other analyses of the solar neutrino problem,including the one performed by the Super-Kamiokande Collabora-tion in[8].In particular,we take into account the most recent estimates for the relevant BP98standard solar model ingredients and for their uncertainties[23].Unless otherwise noted,the notation is the same as in Ref.[42],to which the reader is referred for further details.Table IV reports the solar neutrinofluxesφi,as calculated in the BP98Standard Solar Model[23].The corresponding energy-averaged interaction cross sections C ij for the j-th detector are given in Tab.V,taking into account updated energy spectra[23,24]and cross sections[24,26,25].The associated1σrelative uncertainties∆ln C ij are reported in Tab.VI.Such tables allow the calculation of the theoretical uncertainties related to the detection process.The uncertainties of the SSMνfluxes are mainly related on eleven basic ingredients X k:five astrophysical S-factors,the Sun luminosity,the metallicity Z/X,the Sun age,the opacity,the element diffusion,and the7Be electron capture rate C Be.The last two sources of uncertainties represent new entries with respect to the list given in[42].The“diffusion error”is estimated by taking differences between quantities calculated with and without diffusion[23].The uncertainty in the7Be(e−,νe)7Li capture rate[53]affects(inversely)the 8Bflux by changing the7Be density for the(much slower)competing reaction7Be(p,γ)8B. The fractional1σuncertainties of the eleven input ingredients(∆ln X k)are reported in Tab.VII.Table VIII reports the matrixαik of logarithmic derivatives∂lnφi/∂ln X k,which pa-rameterize the SSM“response”to small variations in the input ingredients,and which arecrucial to estimate correctly the correlations among the neutrinoflux or event rate uncer-tainties[42].As remarked in[42]for the opacity uncertainty,we have split the knownflux errors∆lnφi=αik∆ln X k due to opacity,diffusion,and7Be electron capture,into two arbitrary factors,αik and∆ln X k(k=9,10,11),so as to treat homogeneously all sources of uncertainties in theχ2statistics.Given the previous ingredients,the standard event rates R j are calculated as:R j= i R ij= iφi C ij,(A1) and the associated theoretical error matrixσ2j1j2reads:σ2j1j2=δj1j2 i R2ij1(∆C ij1)2+i1,i2R i1j1R i2j2 kαi1kαi2k(∆ln X k)2.(A2)The off-diagonal entries ofσ2j1j2induce strong correlations among the theoretical uncertain-ties for different experiments,as evident in Fig.1.In the presence of oscillations(Figs.3–5), the standard values of the partial rates R ij are simply replaced by the corresponding oscil-lated values.We remind that the entries of theαik matrix are not independent,being constrained by the luminosity sum rule[42].At equilibrium,the standard neutrinofluxes must obey the energy conservation relation[1]:i(Q/2−E i)φi=K,(A3)where E i is the average neutrino energy for the i-th neutrinoflux,K=0.853×1012 MeV cm−2s−1is the solar luminosity,and Q=26.73MeV is the overall Q-value for the fusion reaction4p→α+2νe+2e+(independent from the intermediate reaction chain).Non-equilibrium corrections,which are especially relevant for CNOfluxes,modify this relation into[54,55]iξiφi=K,(A4)where theξi values are given in Tab.IX.By taking partial derivatives of the above relation with respect to the input ingredients X k,one gets the sum rule[42]:iξiφiαikT0βi,(A6) the temperature exponentsβi become constrained by the sum rule[42,54]。