八年级数学勾股定理的逆定理2

合集下载

《17.2勾股定理的逆定理》教学设计(第2课时)

《17.2勾股定理的逆定理》教学设计(第2课时)

《17.2勾股定理的逆定理》教学设计(第2课时)一、内容和内容解析1.内容应用勾股定理及勾股定理的逆定理解决实际问题.2.内容解析运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材.综合运用勾股定理及其逆定理能帮助我们解决实际问题.基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题.二、目标和目标解析1.目标(1)灵活应用勾股定理及逆定理解决实际问题.(2)进一步加深性质定理与判定定理之间关系的认识.2.目标解析达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明.三、教学问题诊断分析对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题.本课的教学难点是灵活运用勾股定理及逆定理解决实际问题.四、教学过程设计1.复习反思,引出课题问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容.师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形.追问:你能用勾股定理及逆定理解决哪些问题?师生活动:学生通过思考举手回答,教师板书课题.【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题.2. 点击范例,以练促思问题2 某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答.追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程,“远航”号的航向——东北方向;解决的问题是“海天”号的航向.追问2:你能根据题意画出图形吗?师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图.追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可.组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程.解:根据题意,因为,即,所以由“远航”号沿东北方向航行可知.因此,即“海天”号沿西北方向航行.课堂练习1. 课本33页练习第3题.课堂练习2. 在港有甲、乙两艘渔船,若甲船沿北偏东方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达岛,乙船到达岛,且岛与岛相距17海里,你能知道乙船沿哪个方向航行吗?【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力.3. 补充训练,巩固新知问题3 实验中学有一块四边形的空地,如图所示,学校计划在空地上种植草皮,经测量,,,,,若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?师生活动:先由学生独立思考.若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可.启发学生形成思路,最后由学生演板完成.【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.4. 反思小结,观点提炼教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:(1)知识总结:勾股定理以及逆定理的实际应用;(2)方法归纳:数学建模的思想.【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想.5.布置作业教科书34页习题17.2第3题,第4题,第5题,第6题.五、目标检测设计1.小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )A.南北B.东西C.东北D.西北【设计意图】考查运用勾股定理的逆定理解决实际生活问题.2.甲、乙两船同时从港出发,甲船沿北偏东的方向,以每小时9海里的速度向岛驶去,乙船沿另一个方向,以每小时12海里的速度向岛驶去,3小时后两船同时到达了目的地.如果两船航行的速度不变,且两岛相距45海里,那么乙船航行的方向是南偏东多少度?【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题.3.如图是一块四边形的菜地,已知,,,,,求这块菜地的面积.一般说来,“教师”概念之形成经历了十分漫长的历史。

八下数学17.2(2)勾股定理的逆定理

八下数学17.2(2)勾股定理的逆定理

试一试
[P76:2.]
八年级 数学
说出下列命题的逆命题.这些命题的逆命题成立吗?
(1) 同旁内角互补,两条直线平行.
逆命题: 两条直线平行,同旁内角互补. 成立
(2)如果两个角是直角,那么它们相等.
逆命题: 如果两个角相等,那么它们是直角. 不成立
(3)全等三角形的对应边相等.
逆命题:对应边相等的两个三角形是全等三角形. 成立
D
12
A
13
4
B 3C
自主评价:
八年级 数学
1、勾股定理的逆定理
2、什么叫做互逆命题、原命题与逆命题 3、什么称为互为逆定理。
作业:38页, 复习题17, 第4、5、6题
(4) 如果两个实数相等,那么它们的平方相等.
逆命题:如果两个实数的平方相等,那么这两个实数相等. 不成立
八年级 数学
例1 一个零件的形状如图所示,按规定这个零件中∠A 和∠DBC都应为直角。工人师傅量得这个零件各边尺 寸,这个零件符合要求吗?
此时四边形ABCD的面积是多少?
C
答案:符合 S四边形ABCD
C
S2
A
b
ca
S1
B
S3
C
S2 b
S1
a
c
A
B
S3
思维训练
八年级 数学
7、 已知a,b,c为△ABC的三边, 且满足 a2+b2+c2+338=10a+24b+26c. 试判断△ABC的形状.
八年级 数学
8.如图,一块四边形地,测得四边长如图所示,且 ∠ABC=90°,求这个四边形地的面积。(单位:米)
八年级 数学

勾股定理的逆定理的证明方法

勾股定理的逆定理的证明方法

勾股定理的逆定理的证明方法勾股定理的逆定理是指:若在一个三角形中,边长满足a^2 + b^2 = c^2,则此三角形为直角三角形,其中c为斜边,a、b为两条其他边的长度。

这个定理的证明方法主要有几种,下面将分别进行介绍。

证明方法一:利用相似三角形的性质假设一个三角形ABC,其中∠C为直角,边长满足a^2 + b^2 = c^2。

我们需要证明∠A和∠B都为直角。

我们通过观察可以发现,三角形ABC和三角形ACB的三个角分别相等,即∠A = ∠ACB,∠B = ∠ABC。

由于∠C为直角,则∠A和∠B 的和必须为180°。

因此,若∠A或∠B不为直角,则另一个角必然为直角。

假设∠A不为直角,则∠B为直角。

根据正弦定理,我们可以得到以下等式:a/sinA = c/sinCb/sinB = c/sinC将等式两边进行平方,可以得到:(a/sinA)^2 = (c/sinC)^2(b/sinB)^2 = (c/sinC)^2由于a^2 + b^2 = c^2,我们可以将等式进行代入,得到:(sinB)^2 + (sinA)^2 = 1根据三角恒等式sin^2A + cos^2A = 1,我们可以得到:(sinB)^2 + (sinA)^2 = (cosA)^2 + (sinA)^2 = 1由此可见,当∠A不为直角时,∠B必然为直角。

同理,当∠B不为直角时,∠A必然为直角。

因此,根据勾股定理的逆定理,我们可以得出结论:若在一个三角形中,边长满足a^2 + b^2 = c^2,则此三角形为直角三角形。

证明方法二:利用三角函数的性质假设一个三角形ABC,其中∠C为直角,边长满足a^2 + b^2 = c^2。

我们需要证明∠A和∠B都为直角。

根据正弦定理,我们可以得到以下等式:a/sinA = c/sinCb/sinB = c/sinC将等式两边进行平方,可以得到:(a/sinA)^2 = (c/sinC)^2(b/sinB)^2 = (c/sinC)^2由于a^2 + b^2 = c^2,我们可以将等式进行代入,得到:(sinB)^2 + (sinA)^2 = 1根据三角恒等式sin^2A + cos^2A = 1,我们可以得到:(sinB)^2 + (sinA)^2 = (cosA)^2 + (sinA)^2 = 1由此可见,当∠A不为直角时,∠B必然为直角。

初二勾股定理逆定理公式

初二勾股定理逆定理公式

初二勾股定理逆定理公式1. 勾股定理勾股定理是初中数学中非常重要的定理之一,它是由古希腊数学家毕达哥拉斯(Pythagoras)提出的。

勾股定理的公式表达如下:a^2 + b^2 = c^2其中 a、b、c 分别表示直角三角形的两条直角边和斜边,满足该公式的三条边的比例关系。

2. 逆定理逆定理是勾股定理的一个重要推论,它在解决初中数学中一些几何问题时非常有用。

逆定理的公式表达如下:如果 a^2 + b^2 = c^2 成立,那么这三个数构成一个直角三角形。

逆定理的意义在于,当我们已知某个三角形的边长满足勾股定理的公式时,可以根据这个公式判断该三角形是否为直角三角形。

3. 应用示例为了更好地理解逆定理的应用,下面通过一个例子来说明。

例子:已知一个三角形的三边分别为 3、4 和 5,我们要判断这个三角形是否为直角三角形。

根据逆定理,我们可以将已知的三边长度代入勾股定理的公式中,并验证等式是否成立。

3^2 + 4^2 = 5^29 + 16 = 25计算结果符合等式,所以根据逆定理,我们可以得出结论,这个三角形是一个直角三角形。

4. 注意事项在应用逆定理时,需要注意以下几点:•应用逆定理时,必须满足勾股定理的公式,即 a^2 + b^2 = c^2,才能判断三角形是否为直角三角形。

•如果已知三边的长度满足 a^2 + b^2 = c^2,但等式的两边可能相差一个数的误差,这时我们可以使用近似值来验证等式是否成立。

•在进行计算时,应注意数值的精确性,尽量避免精度误差带来的影响。

5. 总结初二勾股定理逆定理公式是初中数学中重要的概念之一,在几何学习中有着广泛的应用。

逆定理可以帮助我们判断已知三边长度的三角形是否为直角三角形,为解决几何问题提供了便利。

在应用逆定理时,我们应注意勾股定理公式的条件和计算的精确性,以得出准确的结论。

希望通过本文的介绍,您对初二勾股定理逆定理公式有了更深入的理解和应用。

人教版八年级数学下册《勾股定理的逆定理(2)》名师教案

人教版八年级数学下册《勾股定理的逆定理(2)》名师教案

17.2 勾股定理的逆定理(第二课时)一、教学目标1.核心素养:通过运用勾股定理的逆定理,提高运算能力、逻辑推理能力和应用意识.2.学习目标(1)理解勾股数的含义.(2)能运用勾股定理的逆定理解决实际问题.3.学习重点勾股定理的逆定理的应用.4.学习难点二、教学设计(一)课前设计1.预习任务请写出几组能作为直角三角形边长的正整数.2.预习自测1.由7、24、25组成的三角形是直角三角形吗?2.我们知道以3、4、5为边长能构成直角三角形,那6、8、10呢?9、12、15呢?你发现了什么?(二)课堂设计1.知识回顾勾股定理的逆定理是什么?2.问题探究问题探究一勾股数●活动一理解定义像3、4、5这样,能够成为直角三角形三边长的三个正整数成为勾股数. 即满足的三个正整数就称为勾股数.再如:…●活动二推理论证我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)也是一组勾股数吗? 因为,,所以且3k 、4k 、5k 均为正整数,所以3k 、4k 、5k 也是一组勾股数.●活动三 推广提升一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)也是一组勾股数吗? 因为,,而,∴∴,则ak 、bk 、ck (k 是正整数)也是一组勾股数.请你再写几组勾股数.问题探究二 利用勾股定理的逆定理解决生活中的问题 重点知识★ ●活动一 初步应用 例1 如图,某港口P 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile ,“海天”号每小时航行12nmile, 它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?E NRP Q【知识点:勾股定理的逆定理;】详解:根据题意PQ=16×1.5=24,PR=12×1.5=18, QR=30,因为,即,所以QPR=90o .由“远航”号沿东北方向航行可知,“海天”号沿西北方向航行. 点拨:由已知条件易想到求出两轮船航行的路程,即为三角形的边长,从而已知C A 三角形的三边长,再利用勾股定理的逆定理判断该三角形为直角三角形而解决问题 .●活动二 拓展提升例2 如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?【知识点:勾股定理的逆定理;】详解:设MN 交AC 于E ,则∠BEC=90°.又AB 2+BC 2=52+122=169=132∴△ABC 是直角三角形,∠ABC=90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE=288,∴CE=13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.点拨:由题意可得△ABC 的三边长分别为5、12、13,根据勾股定理的逆定理判断∠ABC=90°,由题可知走私艇C 进入我领海的最近距离是CE ,再利用勾股定理建方程求出CE 的长,从而解决问题.问题探究三 勾股定理及逆定理的综合运用例3. 某中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【知识点:勾股定理,勾股定理的逆定理;】详解:连接BD. 在Rt△ADB中∠BAD=90o,BD==5,在△DBC中,则∴∠DBC=90o,∴S四边ADBC=S△ADB+ S△DBC=5×12=36∴36×200=7200(元).答:学校需投入7200元买草皮.点拨:根据条件易想到链接BD,将四边形的面积转化为两个三角形的面积之和,由AB=3,AD==4,易求BD=5,而△CBD中已知三边的长,可根据勾股定理的逆定理判断该三角形为直角三角形,再根据面积计算公式求出答案.3.课堂总结【知识梳理】1. 一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数.2.利用勾股定理的逆定理解决生活中的问题.【重难点突破】1.三个数是勾股数,则必须满足两个条件:(1)较小的两个数的平方和等于较大数的平方.(2)三个数必须是正整数.2.已知一个三角形的三边长时,首先应想到利用勾股定理的逆定理来判断这个三角形是否为直角三角形.3.在勾股定理及其逆定理的综合运用时需注意正确区分:勾股定理是在直角三角形中运用,而其逆定理是判断一个三角形是否为直角三角形.4.随堂检测1. 在△ABC中,三边长a、b、c满足 = 0,则此三角形为()A . 钝角三角形 B. 等腰三角形C. 等腰直角三角形D. 直角三角形【知识点:勾股定理的逆定理】【答案】D2. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出两组基本勾股数:, .【知识点:勾股数】【答案】5,12,13;9,40,41.3.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船出发后的航向是南偏东多少度?东【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】∵AC=16×3=48,AB=12×3=36,∴222222+=-==,BC AC AB604836∴△ABC为直角三角形且∠CAB=90°,∴乙船出发后的航向是南偏东40o.4. 一个零件的形状如图,按规定这个零件中∠A与∠DBC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=13 , BC=12,这个零件符合要求吗?【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】这个零件符合要求.在△ADB中,,则,∴∠DAB=90o,同理,在△DBC中,则∴∠DBC=90o,∴这个零件符合要求.。

勾股定理及其逆定理

勾股定理及其逆定理

勾股定理及其逆定理一、勾股定理勾股定理是数学中的基础定理之一,它描述了直角三角形中的关系。

根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。

用公式表示就是:c² = a² + b²,其中c表示斜边的长度,a和b分别表示两条直角边的长度。

勾股定理的历史可以追溯到公元前6世纪的中国和印度,但最早被发现并应用的是中国的古代数学家勾股。

因此,这个定理被称为勾股定理。

勾股定理的应用非常广泛,特别是在测量和计算方面。

例如,我们可以利用勾股定理来计算三角形的边长、角度以及面积等。

在实际应用中,我们经常会遇到需要使用勾股定理解决问题的情况。

二、勾股定理的逆定理勾股定理的逆定理是指,如果一个三角形的三条边满足c² = a² + b²,那么这个三角形一定是直角三角形。

这个逆定理也被称为勾股定理的逆命题。

为了证明逆定理的正确性,我们可以通过数学推导来证明。

假设一个三角形的三条边为a、b、c,且满足c² = a² + b²。

首先,我们可以假设这个三角形不是直角三角形,即不存在直角。

根据三角形的角度性质可知,三角形的三个角度之和为180度。

如果这个三角形不是直角三角形,那么它的三个角度之和一定小于180度。

假设三个角度分别为A、B、C,且A + B + C < 180度。

然后,我们可以使用余弦定理来推导c²的表达式。

根据余弦定理,c² = a² + b² - 2ab·cosC。

将这个表达式代入c² = a² + b²中,得到a² + b² - 2ab·cosC = a² + b²。

经过简化后可得- 2ab·cosC = 0,即cosC = 0。

根据余弦函数的性质可知,当cosC = 0时,角C等于90度。

八年级-人教版-数学-下册-第3课时-勾股定理及其逆定理的综合应用

八年级-人教版-数学-下册-第3课时-勾股定理及其逆定理的综合应用
75÷25=3(h).
答:从 C 岛沿 CA 方向返回 A 港所需的时
D
北 N
A东
间为 3 h.
B
(2)C 岛在 A 港的什么方向?
分析:(2)由勾股定理的逆定理推知∠BAC=90°,由方向
角的定义作答即可.
解:(2)∵AB2+AC2=1002+752=15 625,
BC2=1252=15 625,
分析:(2)利用勾股定理得出 ED 以及 EF 的长,进而可得 出拖拉机噪声影响该学校持续的时间.
B
C
F
D
E
A
解:(2)如图,取 EC=130 m,FC=130 m,当拖拉机在 EF
上时学校会受噪声影响.
∵ED2=EC2-CD2=1302-1202=502,
∴ED=50(m), ∴EF=100(m).
第3课时 勾股定理及其 逆定理的综合应用
1.勾股定理:
如果直角三角形的两条直角边长分别为 a,b,斜边长为 c, 那么 a2+b2=c2.
2.勾股定理的逆定理:
如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么这个三角 形是直角三角形.
在△ABC 中,BC=a,AC=b,AB=c,设 c 为最长边,当 a2+b2=c2 时,△ABC 是直角三角形;当 a2+b2≠c2 时,利用代 数式 a2+b2 和 c2 的大小关系,探究△ABC 的形状(按角分类).
AC CD,
∴△ABC≌△CED(AAS). ∴AB=CE,BC=ED.
∵AB=6,BC=8,
D
∴CE=6,ED=8.
A
∴BE=BC+CE=8+6=14.
∴BD BE2 ED2 142 82 2 65.B

新人教版初中数学八年级下册17.2.1 勾股定理的逆定理

新人教版初中数学八年级下册17.2.1  勾股定理的逆定理

8.(2018·南通)下列长度的三条线段能组成直角三角形的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,11,12
9.(2019·益阳)已知 M,N 是线段 AB 上的两点,AM=MN=2, NB=1,以点 A 为圆心,AN 长为半径画弧;再以点 B 为圆 心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
答案显示
1.如果两个命题的题设和结论刚好相反,那么这样的两个命题 叫做__互__逆___命__题___,如果把其中一个命题叫做原命题,那么 另一个叫做它的__逆__命__题____.
2.一般地,如果一个定理的逆命题经过证明是正确的,那么它 也是一个定理,称这两个定理互为_逆__定___理__.
3.下列命题的逆命题正确的是( A ) A.两条直线平行,内错角相等 B.若两个实数相等,则它们的绝对值相等 C.全等三角形的对应角相等 D.若两个实数相等,则它们的平方也相等
17.(2019·河北)已知:整式 A=(n2-1)2+(2n)2,整式 B>0. 尝试 化简整式 A. 解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1 =(n2+1)2.
发现 A=B2,求整式 B. 解:∵A=B2,B>0,∴B=n2+1.
联想 由上可知,B2=(n2-1)2+(2n)2,当 n>1 时,n2-1,2n,
(30°,60°,45°)的和的形式; (2)用旋转法将△CPB 绕点 C 顺时针旋转 90°到△CP′A 的位置.
解:如图,将△CPB 绕点 C 顺时针旋转 90°得△CP′A,则 P′C =PC=2,P′A=PB=1,∠BPC=∠AP′C,连接 PP′. 因为∠PCP′=90°,所以 PP′2=22+22=8. 又因为 P′A=1,PA=3, 所以 PP′2+P′A2=8+1=9,PA2=9. 所以 PP′2+P′A2=PA2. 所以∠AP′P=90°. 易知∠CP′P=45°, 所以∠BPC=∠AP′C=∠AP′P+∠CP′P=90°+45°=135°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
http%E8%89%87%E4%BF%A1%E8%AA%89%E5%85%AC%E4%BC%97%E5%8F%B7%E5%B9%B3%E5%8F%B0%09%E3%80%903118900%E3%80%91%E5%B9%BB%E7%83%ABBRLh
儿童体查注意事项,下列哪项是错误的A.态度要和蔼B.查顺序灵活掌握C.查者宜勤洗手D.病情危重患儿,宜边抢救,边检查E.口腔、咽部等容易引起患儿反感部位应放在前面检查 业务是我行依靠现有的资金实力和丰富的融资经验,对客户的项目融资提供可行性分析、风险分析、融资结构设计、担保方式设计、融资方式等服务。A、投融资顾问业务B、常年财务顾问业务C、企业上市顾问业务D、重组并购顾问业务 多系统萎缩通常包括的3个疾病是A.纹状体-黑质变性、散发性橄榄脑桥小脑萎缩、Shy-Drager综合征B.Alzheimer病、帕金森病、Shy-Drager综合征C.Alzheimer病、散发性橄榄脑桥小脑萎缩、Shy-Drager综合征D.Alzheimer病、帕金森病、纹状体-黑质变性E.纹状体-黑质变性、Alzheimer病、Shy-Drager综合征 病毒性肝炎的地区分布,下述不正确的是A.西方国家的HAV流行率较低B.HBsAg阳性率在西欧与北美较低C.丙肝主要见于发展中国家D.丁型肝炎在世界上分布极不平衡E.戊肝的地方性流行区主要在亚非拉 寄生虫感染患者血清中增高的主要为A.IgMB.IgGC.分泌型IgAD.IgEE.M蛋白 某酒厂为增值税一般纳税人,2014年5月账面销售额(含增值税价)及包装物押金情况如下:10吨粮食白酒、5吨黄酒含税销售额分别为280.8万元、128.7万元,当期发出包装物收取押金分别为24.57万元、11.7万元,当期到期未收回包装物押金分别为4.68万元、5.85万元,则该企业当月应纳消费税税额为万元。A.59.5B.63.5C.53.32D.69.5 安全用电包括安全、安全及安全三个方面,它们是密切相关的。 5/72DCJ自动复原的条件是。A.5/71SJ落下B.5/72SJ落下C.KZ-ZQJ-H有电D.KF-共用-Q有电 科室污物处理,病人使用过的一般被服应放入中;有明显血、尿、粪便及分泌物污染的被服放入中,扎紧袋口,外贴标签(标明被服、科室及疾病诊断)覆盖标识。 6502电气集中方向组合可供出种方向电源。 某日,王某和李某共同串通抢劫路人周某的钱财(价值1万元),二人共同实施抢劫,情节相同。但法院审理此案时,考虑到王某是县政府副县长的儿子,因此判王某抢劫罪,执行3年有期徒刑,而判李某抢劫罪,执行5年有期徒刑。该法院的做法违背了下列哪项原则?A.罪刑法定原则B.罪责刑相适应原则C.惩办与教育相结合原则D.刑法面前人人平等原则 对溶于水的乙醇、丙醇等物质的火灾、使用水灭火是有效的.A.正确B.错误 隔离法灭火时迅速将燃烧的地方转移到安全地点或投入海中。A.正确B.错误 男性,8岁。于8月19日开始发热,头痛,当时测体温38℃,在外院诊断为上感,给予布洛芬退热,头孢菌素静滴无效,8月22日出现嗜睡,体温高达40℃,8月23日因昏迷伴抽搐入院。查体:神志不清,压眶有反应,体温40.5℃,血压、呼吸正常,双瞳孔等大,皮肤黏膜无出血点,颈强阳性,克氏征及布氏征阴性。近期有结核患者接触史。该患者入院后急查实验室检查结果:血常规:WBC14. N87%。CSF:细胞数286×106/L,蛋白0.54g/L,糖3.5mmol/L,氯化物129mmol/L。下列处理正确的是。A.物理降温为主,药物降温为辅,肛温控制在38℃为宜B.抗结核治疗C.氨苄西林静脉点滴D.室温宜维持在30℃以上E.应用红霉素静滴 畜体热平衡 用玻璃离子水门汀充填的洞形不要求A.洞有一定深度B.洞缘可留无基釉C.洞缘需做小斜面D.可不要求固位形E.洞底可呈圆弧形 @只有在隔板中心经过调整或挂耳松动重新固定后,才需要对隔板挂耳的间隙进行测量和调整,隔板或隔板套接合面不严密与挂耳间隙无关A.正确B.错误 产妇每天鸡蛋的摄入以多少为佳A、2个B、10个以上C、2-3个 预分馏进料严重带水怎样处理? 对婴幼儿开始进行口腔检查和保健从什么时间开始A.出生时B.满月后C.牙萌出时D.上学前E.换牙时 心理防御机制来自于以下理论A.行为学习理论B.精神分析理论C.认识理论D.人本主义理论E.森田理论 计划生育药具供应站的职责是什么? 什么叫最低坠落着落点? 下列不是结核性脑膜炎并发症的是A.脑出血B.脑积水C.继发性癫痫D.脑性瘫痪E.脑神经障碍 7个月男患儿,反复发作性快速点头样痉挛伴双上肢外展,下肢和躯干屈曲。1~2岁发现有智力低下。EEG为高度节律失调。4岁后发作停止。最可能的诊断A.特异性综合征B.特殊综合征C.早期肌阵挛性脑病D.WestsyndromeE.Lennox-Gastautsyndrome 《素问·阴阳应象大论》中,谷气通于A.肝B.心C.脾D.肺E.肾 下列不属于口头沟通特点的是.A、费时少,迅速交换意见B、可随时提问和解答C、方便,便于准备D、具有可追索性 下列不符合右心室肥厚心电图表现的是。A.V1导联R/S&ge;1B.RV5&gt;2.5mVC.QRS电轴&ge;90&deg;D.RaVR&gt;0.5mVE.aVR导联R/S&ge;1 在电力系统中所谓短路是相与相与地之间,通过电弧或其它较小阻抗的一种联接。 [单选,A2型题]男,60岁。近一周来指关节等多处关节疼痛。门诊化验血尿酸为0.5mmol/L,诊断为痛风,服用别嘌呤醇后缓解。下列选项中,能以尿酸为代谢终产物的物质是A.嘧啶核苷酸B.嘌呤核苷酸C.葡萄糖D.脂肪酸E.丙氨酸 下列哪项不属于我行的代付款业务范围?A、工资B、代付学费C、代付股息D、代付保险赔付金 河床式厂房的特点是。A.厂房不承受水压力B.厂房承受水压力C.厂顶过水D.厂顶不过水 以下是人工气道的管理措施,但不包括A.固定插管B.气囊管理C.口腔护理D.呼吸机参数调节E.气道湿化 20×7年1月1日,甲公司自证券市场购入面值总额为2000万元的债券。购入时实际支付价款2078.98万元,另外支付交易费用10万元。该债券发行日为20×7年1月1日,系分期付息、到期还本债券,期限为5年,票面年利率为5%,年实际利率为4%,每年l2月31日支付当年利息。甲公司将该债券作为持有至到期投资核算。假定不考虑其他因素,该持有至到期投资20×7年12月31日的账面价值为()万元 题)A.2062.14B.2068.98C.2072.54D.2083.43 1964年10月联邦德国各州总理在汉堡签署,确立了德国各州文化主权的联邦制教育管理制度。A.汉堡协定B.费里法令C.巴尔福教育法D.巴特勒法案
相关文档
最新文档