数字信号处理复习资料
数字信号处理总复习

数字信号处理总复习第1章时域离散信号与系统1.1信号:传载信息的函数。
(1)模拟信号:在规定的连续时间内,信号的幅值可以取连续范围内的任意值,如正弦、指数信号等,即时间连续、幅值连续的信号。
(2)时域连续信号:在连续时间范围内定义的信号,信号的幅值可以是连续的任意值,也可以是离散(量化)的。
模拟信号是连续信号的特例,一般可以通用。
(3)时域离散信号:在离散的时间上定义的信号,独立(自)变量仅取离散值。
其幅值可以是连续的,也可以是离散(量化)的。
如理想抽信号是典型的离散信号,其幅值是连续的。
(4)数字信号:是量化的离散信号,或时间与幅值均离散的信号,即时间离散幅度被量化的信号为数字信号。
1.2 序列1.2.1序列的定义离散时闻信号可用序列来表示。
序列是一串以序号为自变量的有序数字的集合,简写作x(n)。
x(n)可看作对模拟信号x a(n)的脉冲,即x(n)=x a(n)也可以看作一组有序的数据集合。
1.2.2常用的序列(熟练掌握)数字信号处理中常用的典型序列列举如下:1.单位脉冲序列 2. 单位阶跃序列 3. 矩形序列 4. 实指数序列 5. 复指数序列 6. 正弦7. 周期序列及判别 1.2.3 序列运算(掌握) 1.3 时域离散系统(掌握特性) 1.4 卷积(掌握)例1.4-1、例1.4-21、图表法;2、表格阵法;3、相乘对位相加法;4、卷积的性质(了解)。
1.5 常系数线性差分方程1.6 数字化处理方法 理解物理概念及采样过程:熟练掌握采样定理:()()r n x b k n y a r Mr k Nk -=-∑∑==00()()()k n y a r n x b n y k Nk r M r ---=∑∑==1或:1.6-8、9式第2章 Z 变换与离散系统的频域分析2.1 Z 变换z 变换的定义可由抽样信号的拉氏变换引出的定义及过程。
2.2.1 Z 变换的收敛区理解Z 变换的收敛区的概念。
数字信号处理期末复习资料

线性系统:系统的输入、输出之间满足线性叠加原理的系统。
时不变系统:若系统对输入信号的运算关系][∙T 在整个运算过程中不随时间变化,或者说系统对于输入信号的响应与信号加于系统的时间无关。
时域离散线性时不变系统:同时满足线性和时不变特性的系统。
系统的因果性:如果系n 时刻的输出只取决于n 时刻以及n 时刻以前的输入序列,而和n 时刻以后的输入序列无关,满足00)(<=n n h ,式的序列称为因果序列, 因果系统的单位脉冲响应必然是因果序列 稳定系统:是指对有界输入,系统输出也是有界的。
系统稳定的充分必要条件:系统的单位脉冲响应绝对可和 ,∞<∑∞-∞=n n h ][ 线性移不变系统是因果稳定系统的充要条件:|()|n h n ∞=-∞<∞∑,()0,0h n n =<采样定理表示的是采样信号X (t)的频谱与原模拟信号X (t )的频谱之间的关系,以及由采样信号不失真地恢复原模拟信号的条件。
采样以后的频谱与原频谱的关系:1.采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的2.理想低通滤波器从采样信号中不失真地提取原模拟信号−−→−)(t x a −→− −→− −→− −→−−→− 预滤:在采样之前加一抗混叠的低通滤波器,滤去高于的一些无用的高频分量,以及滤除其他的一些杂散信号。
A/DC :将模拟信号转换成数字信号,分为采样和量化两个过程。
数字信号处理:对采样信号进行处理。
D/AC :将数字信号转换成模拟信号,包括解码器、零阶保持器和平滑滤波器。
平滑滤波:滤除多余的高频分量,对时间波形其平滑作用。
信号与系统的分析方法有时域分析方法和频域分析方法。
序列的共轭对称性设序列满足)()(*n x n x e e -=,则称为共轭对称序列。
其中)()()(n jx n x n x ei er e +=、)()()(***n jx n x n x ei er e ---=-,共轭对称序列其实部是偶函数(即)()(*n x n x erer -=),而虚部是奇函数(即)()(*n x n x ei ei --=)。
数字信号处理总复习

课程主要内容及基本要求一、离散傅里叶变换及应用(DFT & FFT)1.DFT的定义、性质、计算及应用——第3章2.DFT的快速算法(FFT)——第4章➢傅里叶变换的4种形式,傅里叶变换形式与时域信号的对应关系。
➢DFS的定义性质计算,理解周期卷积过程。
➢DFT的定义、计算、性质,掌握圆周移位、共轭对称性、圆周卷积与线性卷积的关系。
➢理解掌握频谱分析过程,频谱分析参数(DFT点数、频谱分辨力F、记录长度Tp等)的计算,存在的误差及减少措施。
➢理解掌握DIT和DIF的基2-FFT算法原理、运算流图、计算量➢理解IFFT算法原理➢了解CZT算法及分段卷积方法(重叠相加法、重叠保留法)二、数字滤波器设计与实现(IIR Filter & FIR Filter)1.IIR Filter 设计与实现——第6、5章2.线性相位FIR Filter 设计与实现——第7、5章➢掌握IIR滤波器结构、FIR滤波器结构,结构形式的主要特点、与H(z)表达式的关系➢冲激响应不变及双线性变换法原理、变换方法、特点、适用场合➢巴特沃思和切比雪夫Ⅰ型低通滤波器设计方法、频响特点、极点分布特点➢掌握利用模拟滤波器设计IIR数字滤波器的设计过程➢了解利用频带变换法设计各种类型数字滤波器的方法➢掌握线性相位FIR滤波器的特点➢理解掌握窗函数设计方法,窗函数主要指标和特点,影响过渡带宽度与阻带衰减的因素➢了解频率采样设计法第3章 离散傅里叶变换——复习1. 基本概念➢ 信号:信息的物理表现形式。
➢ 序列(离散时间信号):时间离散,幅值连续(无限精度)。
➢ 数字信号:时间离散,幅值量化(有限精度)。
➢ 信号处理:从信号中提取有用信息。
➢ 数字信号处理:用数字方法去处理。
或者说:用数字或符号表示的序列来描述信号,再用计算机或专用处理设备以数值计算的方法来处理这些序列,得到所需序列,提取信息。
2. Z 变换➢ Z 变换的定义:对离散时间信号(序列)的变换。
数字信号处理主要知识点整理复习总结

求出对应
的各种可能的序列的表达式。
解: 有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况: 三种收敛域对应三种不同的原序列。
时,
(1)当收敛域
令
,因为c内无极点,x(n)=0;
,C内有极点0,但z=0是一个n阶极点,改为求圆外极点留数,圆外极点有
数字信号处理课程 知识点概要
第1章 数字信号处理概念知识点
1、掌握连续信号、模拟信号、离散时间信号、数字信号的特点及相互关系(时间和幅度的连续性考量) 2、数字信号的产生; 3、典型数字信号处理系统的主要构成。
量化、编码 ——————
采样 ————
模拟信号
离散时间信号
数字信号
5、部分分式法进行逆Z变换 求极点 将X(z)分解成部分分式形式 通过查表,对每个分式分别进行逆Z变换 注:左边序列、右边序列对应不同收敛域 将部分分式逆Z变换结果相加得到完整的x(n)序列 6、Z变换的性质 移位、反向、乘指数序列、卷积
常用序列z变换(可直接使用)
7、DTFT与Z变换的关系
(a) 边界条件 时,是线性的但不是移不变的。
(b) 边界条件 时,是线性移不变的。
令
….
所以:
….
所以:
可见 是移一位的关系, 亦是移一位的关系。因此是移不变系统。
代入差分方程,得:
……..
所以:
因此为线性系统。
3. 判断系统是否是因果稳定系统。
Causal and Noncausal System(因果系统) causal system: (1) 响应不出现于激励之前 (2) h(n)=0, n<0 (线性、时不变系统) Stable System (稳定系统) (1) 有界输入导致有界输出 (2) (线性、时不变系统) (3) H(z)的极点均位于Z平面单位圆内(因果系统)
数字信号处理总复习

第一部分 信号与系统分析
时域分析:信号和系统的性质;LTI系统的输入、输出关系
变换域分析:信号和系统的性质;LTI系统的输入、输出关系、 频率特性分析(DTFT、ZT、DFT)、性质及应用 例1:判断系统:
2 2 y (n ) x (n ) sin( n ) 9 7
的(1)线性;(2)时变性;(3)因果性;(4)稳定性 (5)是否是周期序列;若是求出其周期。
2 0 lg| H( ) |/d B 0 -5 0 -1 00 0 0 .5 (b ) 2 00 0 -2 00 0 2 00 0 1
2 0lg| H( ) |/d B 0 -5 0
/ 2
-1 00 0
0 .5 d )
6 00 0
t 8 00 0
2 00 0 -2 00 0 2 00 0 4 00 0 (e) 6 00 0 t 8 00 0
求该滤波器的单位脉冲响应h(n),判断是否具有线性相位,求 其幅频特性和相位特性,并画出直接型结构。 例3 用双线性变换法设计一个3阶巴特沃斯低通滤波器。已知 ωc=0.2π。
例4 用窗函数法设计一个线性相位FIR低通滤波器,给定
阻带起始频率为 Ωst 2 3 103 rad / s,阻带衰减不小于 50dB。
x(0) x(4) x(2) x(6) x(1) x(5) x(3) x(7)
0 WN
0 WN 0 WN
X(0)
0 WN
-1
0 WN
X(1) X(2) X(3)
0 WN
1 WN
-1
2 WN
-1
-1
-1 -1 -1
X(4) X(5) X(6) X(7)
-1
0 WN
数字信号处理复习资料

1正弦序列数字频率与模拟角频率Ω的关系为=ΩT,模拟角频率Ω与序列的数字频率成线性关系。
=Ω/Fs表示数字域频率是模拟角频率对采样频率的归一化频率。
2线性系统T[x1(n)+x2(n)]=y1(n)+y2(n)表征线性系统的可加性;T[ax1(n)]=ay1(n)表征线性系统的比例性或齐次性(a位常数)。
y(n)=T[ax1(n)+bx2(n)]=ay1(n)+by2(n3检查仪的系统是否是时不变系统,就是检查其是否满足y(n)=T[x(n)] y(n-n0)= T[x(n-n0)]4线性时不变系统具有因果性的充分必要条件是系统的单位脉冲响应满足下式:h(n)=0 n<05系统稳定的充分必要条件是系统的单位脉冲响应绝对可和,用公式表示为系统稳定的条件是H(z)的收敛域包含单位圆。
如果系统因果且稳定,收敛域包含点和单位圆,那么收敛域可表示为r<≤ 0<r<1 这样H(z)的极点集中在单位圆的内部。
最小相位系统:如果因果稳定系统H(z)的所有零点都在单位圆内,则称之为“最小相位系统”特点:1、任何一个非最小相位系统的系统函数H(z)均可由一个最小相位系统(z)和一个全通系统(z)级联而成,即H(z)=(z)(z) 2、在幅频响应特性相同的所有因果稳定系统集中,最小相位系统的相位延迟最小。
3最小相位系统保证其逆系统存在。
、6FT[x(n)]存在的哇充分条件是序列x(n)绝对可和,既满足下式:7序列x(n)的Z变换定义为X(z)式中z是一个复变量,它所在的复平面称为z平面。
Z变化存在的条件是等号右边级数收敛,要求级数绝对可和,即. Z变量取值的域称为收敛域,一般收敛域位环状域,即8用DFT进行谱分析产生误差的现象:1、混叠现象。
2、栅栏效应。
3、阶段效应。
原因:1、泄露2、谱间干扰。
循环卷积等于线性卷积的条件是L≥N+M-19 DIT-FFT算法的分解过程可见,N=时,其运算流图应有M级蝶形,每一级都有N/2个蝶形运算构成。
数字信号处理知识点

数字信号处理知识点1. 引言数字信号处理(Digital Signal Processing,DSP)是应用数字计算技术来过滤、压缩、存储、生成、识别和其他方式处理信号的科学领域。
本文旨在概述数字信号处理的核心技术和知识点,为学习和应用DSP提供明确的指导。
2. 信号的基本概念2.1 模拟信号与数字信号2.2 信号的时域和频域特性2.3 采样定理(奈奎斯特定理)2.4 量化和编码2.5 信号重构3. 离散时间信号与系统3.1 离散时间信号的定义3.2 线性时不变(LTI)系统3.3 卷积和系统响应3.4 Z变换及其应用3.5 差分方程4. 傅里叶分析4.1 傅里叶级数4.2 傅里叶变换4.3 快速傅里叶变换(FFT)4.4 频谱分析5. 滤波器设计5.1 滤波器的基本概念5.2 理想滤波器5.3 窗函数法5.4 IIR滤波器设计5.5 FIR滤波器设计6. 信号的检测与估计6.1 信号检测理论6.2 最小二乘估计6.3 卡尔曼滤波6.4 信号的自适应滤波7. 语音与图像处理7.1 语音信号的特性7.2 语音编码技术7.3 图像信号的基本概念7.4 图像压缩技术7.5 图像增强技术8. 实时数字信号处理系统8.1 DSP芯片的特性8.2 实时操作系统8.3 硬件与软件协同设计8.4 系统性能评估9. 应用实例9.1 通信系统中的DSP应用9.2 生物医学信号处理9.3 音频和视频处理9.4 雷达和声纳系统10. 结论数字信号处理是一个多学科交叉的领域,涉及信号理论、数学、计算机科学和电子工程。
掌握DSP的基础知识对于理解和设计现代通信系统、音频和视频处理系统以及其他相关应用至关重要。
请注意,本文仅为数字信号处理知识点的概述,每个部分都需要深入学习才能完全理解和应用。
读者应参考相关教材、课程和实践项目,以获得更全面和深入的知识。
数字信号处理期末考试资料

《数字信号处理》考试复习资料 一、填空题1.单位采样序列的定义式10()00n n n δ=⎧=⎨≠⎩ 。
单位阶跃序列的定义式⎩⎨⎧<≥=)0(0)0(1)(n n n u2.对一个低通带限信号进行均匀理想采样,当采样频率 大于等于 信号最高频率的两倍时,采样后的信号可以精确地重建原信号。
3.对于右边序列的Z 变换的收敛域是x R ->一个圆的外部 或者 z 。
4.根据对不同信号的处理可将滤波器分为 模拟 滤波器和 数字 滤波器。
5.FIR 数字滤波器满足第一类线性相位的充要条件是 ()(1)h n h N n =--。
6.在实际应用中,在对于相位要求不敏感的场合,如一些检测信号、语音通信等,可以选用IIR (无限冲激响应)数字 滤波器,这样可以充分发挥其经济高效的特点。
7、基2—FFT 算法基本运算单元是 蝶形 运算,一般要求N =2,2M M 为正整数 或者 的正整数幂。
8.若十进制数“1”的二进制表示为“001”,则将它码位倒序后,所表示的十进制数为 4 。
9.满足 叠加原理(或齐次性和可加性) 的系统称为线性系统.10.正弦序列3()cos()74x n A n ππ=+的周期为 14 点,余弦序列2()cos()74x n A n ππ=+的周期为 7 点,正弦序列32()sin()53x n A n ππ=+ 的周期为 10 点.(qp=ωπ2为有理数,周期为p )11、单位阶跃序列()u n 的Z 变换的收敛域为1z >.12.对线性非时变系统,稳定性的充要条件是()n h n ∞=-∞<∞∑,因果性的充要条件是000()0()0n h n n n h n n <=<-=当时,或当时,。
13.在设计IIR 数字滤波器的时候,经常采用的方法是利用现有的 模拟滤波器 设计方法及其相应的转换方法得到数字滤波器.14.已知一个长度为N 的序列()x n ,它的离散傅里叶变换()[()]X k DFT x n ==1()01N kn Nn x n Wk N -=≤≤-∑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.序列a{n}为{1,2,4},序列b(n)为{4,2,1},求线性卷积a(n)*b(n)答:a(n)*b(n)={4,10,21,10,4}2.序列x1(n)的长度为N1,序列x2(n)的长度为N2,则他们线性卷积长度为多少?答:N1+N2-1第二次1.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。
第三次1.简述时域取样定理的基本内容。
第四次1.δ(n)的Z变换是?答:Z(δ(n))=12.LTI系统,输入x(n)时,输出y(n);输入为3x(n-2),输出为?答:3y(n-2第五次1、已知序列Z变换的收敛域为|z|>2,则该序列为什么序列?答:因果序列加右边序列1.相同的z变换表达式一定对应相同的时间序列吗?答:不一定,因为虽然z变换的表答式相同,但未给定收敛域,即存在因果序列和反因果序列两种情况。
2.抽样序列在单位圆上的z变换,等于其理想抽样信号的傅立叶变换?答:相等,傅里叶变换X(e^jw)=∑+∞∞-(-jwn)x(n)e^而Z变换为X(z)= ∑+∞∞-(-n)x(n)Z^令Z=e^(-jw)即X(z)|z=e^jw=X(e^jw)此时正是对应在单位圆上3.试说明离散傅立叶变换和z变换之间的关系。
答:抽样序列在单位圆上的z变换,等于其理想抽样信号的傅立叶变换。
第七次1.序列的傅里叶变换是频率w的周期函数,周期是2π吗?答:是,X(e^jw)= ∑+∞∞-(-jwn)x(n)e^= ∑+∞∞-+2mπn)x(n)e^-j(w(m为整数)2.x(n)=sinw(n)所代表的序列不一定是周期的吗?答:不一定,在于w(n)是否被2π整除。
第八次1.一个有限长为x(n)=δ(n)+ 2δ(n-5)(1)计算序列x(n)的10点DFT变换(2)前序列y(n)的DFT为y(k)=e^(j2k2π/10)x(k),式中x(k)是x(n)10点离散傅里叶变换,求序列y(n)答:(1)X(k)=∑-=-1)/π2(^)(NnNknjenx=∑=-+9)5/(^5)-2δ(nδ(n)[njwkn e=1+2e^(-jπk)=1+2(-1)^k (k=0,1,2,3……9)(2)y(k)=e^(j2k2π/10)x(k)=W k210-x(k)相当于将序列x(n)向左平移2个单位,即y(n)=δ(n+2)+ 2δ(n-3)第九次1、时间抽取法FFT对两个经时间抽取的n/2点离散序列x(2n)和x(an-1)做DFT,并将结果相加就得一个N点的DFT(x)2、用微处理机对实数序列做谱分析,要求谱分辨率小于等于50HZ,信号最高频率为1KHZ,试确定以下参数;(1)最小记录时间Tpmin(2)最大取样间隔Tmax(3)最小采样点数Nmin答:(1)Tpmin=1/F=1/50=0.02s (2)Tmax=1/2fc=1/2000=0.5ms (3)Nmin=Tpmin/Tmax=40第十次1、8点序列的按时间抽取的DFT-2FFT如何表示?答:第十一次1、已知序列x(n)=4δ(n)+ 3δ(n-1)+ 2δ(n-2)+ δ(n-3),x(k)是x(n)的6点DFT(1)有限长序列y(n)的6点DFT是y(k)= W k46x(k),求y(n)(2)若有限序列w(n)的6点DFT等于x(k)实部w(k)=Re(x(k)),求w(n)答:(1)y(n)=x(n-4)=4δ(n-4)+ 3δ(n-5)+ 2δ(n-6)+ δ(n-7)(2)x(k)=∑=5knNW)(nnx= ∑=5kn63)W-δ(n+2)-2δ(n+1)-3δ(n+4δ(n)n=4+3k6W+22k6W+3k6W又x(k)=4+3-k6W+2-2k6W+-3k6W则w(k)=Re(x(k))=1/2(8+3k6W+22k6W+23k6W+35k6W+24k6W)则w(n)=4δ(n)+ 3/2δ(n-1)+ δ(n-2)+ δ(n-3)+δ(n-4)+ 3/2δ(n-5)第十二次1、用DFT对连续信号进行谱分析的误差问题有哪些?答:由DFT变换的分析法得x(k)看不到Xa(j )的全部频谱特性,而只看到N个离散采样点的谱成于点就产生了所谓的栅栏效应、频谱混叠、截断效应第十三次1、8点序列的按频率抽取的DFT -2FFT如何表示.?答:第十题反过来第十四次1、用差分方程表示系统的直接型和级联型结构y(n)-3/4y(n-1)+1/8y(n-2)=x(n)+1/3x(n-1)①直接型②级联型第十五次1、系统的单位脉冲响应h(n)=2δ(n)+ 3δ(n-1)+ 4δ(n-2)+ 2δ(n-3)+ 0.5δ(n-5),写出系统函数,并画出它的直接型结构答:H(z)=2+3Z^-1+4Z^-2+2Z^-3+0.5Z^-5第十六次1、 简述用双线性法设计IIR 数字低通滤波器的设计步骤? 答:①根据设计要求确定相应的模拟滤波器的传递函数H(z);②再得到数字滤波器的传递函数H(z)=Ha(s)|s=Z/T(1-Z^-1)/(1+Z^-1)=Ha(Z/T(1-Z^-1)/(1+Z^-1)) ③由w=2arctan (T Ω/2)得到低频段接近线性在高频段非线性较为严重对其作预畸变方法,补偿通带截止频率和阻带截止频率分别为Wp ,Ws 预畸变处理距为Ωp ,Ωs第十七次1、 用脉冲响应不变法一个数字滤波器,模拟原型的系统函数为H (s )=(s+a)/[(s+a )^2+b^2]? 答:Ha (s )=2^2)^(b a s a s +++= )(1jb a s A +++ )(2jb a s A -+A1=)(jb a s a s -++|s=-(a+jb )=0.5; A2= )(jb a s as +++|s=-(a-jb )=0.5;则Ha (s )=)(5.1jb a s +++)(5.0jb a s -+,又H (z )=)1^()1(^11--Z T S e A +)1^()2(^12--Z T S e A ,代入H(z)=1^])a -jb ([^15.0--Z T e +1^])a -jb ([^15.0---Z T e第十八次1、 简述用窗函数法设计FIR 数字低通滤波器设计的步骤? ① 给出设计的滤波器的频率响应函数Ha (e^jw );② 根据允许的过滤带宽积和阻带衰减,选择窗函数和它的宽度N ; ③ 计算设计的滤波器的冲击响应hd (n )Hd (n )=πππ-21Hd (e^jw )e^(jwn)dw ;④ 计算FIR 数字滤波器的单位取样响应h (n ),h (n )=hd (n )w (n )其中w (n )是选择的窗函数;⑤ 计算FIR 数字滤波器的频率响应,验证是否达到所求的指标H (e^jw )=∑-=1N nh(n)e^jw ;⑥ 由H(e^jw)计算幅度响应H(w)和相位响应g (w );第十九次1、 设某FIR 数字滤波器的冲击响应,h(0)=h(7)=1,h(1)=h(6)=3,h(2)=h(5)=5,h(3)=h(4)=6,其他的值h(n)=0,试求H(e^jw)的幅频响应和相频响应表达式,并画出该滤波器流程图的线性相位结构形成?答:h(n)={ 1, 3 , 5 ,6 ,6 ,5 ,3 ,1} 0<=n<=7H(e^jw)= =∑-=1N nh(n)e^jwn=1+3e^-jw+5e^-j2w+6e^-j3w+6e^-j4w+5e^-j5w+3e^-j6w+e^-j7w=e^-7/2jw(e^7/2jw+e^-7/2jw)+3e^-7/2jw(e^5/2jw+e^-5/2jw)+5e^-7/2jw(e^3/2jw+e^-3/2jw)+6e^j7/2w(e^jw/2+e^-jw/2)=[12cos(w/2)+10cos(3w/2)+6cos(5w/2)+2cos(7w/2)] e^-7/2jw则幅频响应:H(w)= 12cos(w/2)+10cos(3w/2)+6cos(5w/2)+2cos(7w/2) 相频响应:w w 2/7)(-=ϕ线性相位结构H(z)=1+3Z^-1+5 Z^-2+6 Z^-3+6 Z^-4+5 Z^-5+3 Z^-6+ Z^-7第二十次1、 用矩形窗设计线性相位低通滤波器,逼近滤波器传递函数为Hd(e^jw)=e^-jwa 0<=|w|<=wc Hd(e^jw)=0 wc<=|w|<=π (1) 求出相应的理想低通的单位脉冲响应hd (n )(2) 求出矩形窗设计法的h (n )表达式,确定a 和N 的关系 (3) N 取奇数或偶数的滤波器特性有什么影响? 答:(1)hd (n )=π21⎰--ππjwndw e jw e Hd ^)^(=π21⎰--wcwc jwndw jwae e ^^=)()]( sin[ananwc--π(2)要满足线性相位条件,则a=21-N,则Nπ4<=8πN>=32则h(n)=hd(n)RN(n)=)()](sin[ananwc--πRN(n)=⎪⎩⎪⎨⎧--)()](sin[ananwcπ2/)1(,1其他-=-<=<=NaNn(4)N为奇数时:Hg(w)关于w=0,π,2 π偶对称,可实现各类幅频特性;N为偶数时:Hg(w)关于w= π对称即幅度响应函数Hg(w)=0,则实现高通带阻滤波特性。