2019版高考数学一轮复习第三章三角函数解三角形课时分层作业二十四3.7应用举例文

合集下载

2019版高考数学一轮复习第3章三角函数解三角形3.5两角和与差的正弦余弦与正切公式课件理

2019版高考数学一轮复习第3章三角函数解三角形3.5两角和与差的正弦余弦与正切公式课件理
运用多个公式解决含多个未知数的问题。
动态演示
结合动画演示,直观地呈现三角函数的计算过 程。
总结
1 重点内容概括
回顾本章重点内容,检 查概念与公式的掌握程 度。
2 解题方法总结
总结解题技巧和常用公 式,为下一步的练习做 好准备。
3 知识点巩固提示
练习做题、做笔记,多 次温习概念与公式,通 过追溯源头的方式加深 理解。
正弦、余弦、正切公式
正弦公式
三角形任意两边的比值相等,即a/sinA=b/sinB=c/sinC。
余弦公式
根据勾股定理和余弦函数,得到c²=a²+b²-2ab*cosC。
正切公式
将正弦公式与余弦公式相除得到tanA=a/b*tanC-b/a。
解题技巧
1
使用两角和/差公式
判断题中是否存在三角形两个角之和/
合理运用公式
2
差,使用对应的公式。
根据题目中所给的信息,选择合适的
公式,并化简,变形运用。
3注意化简Fra bibliotek将多个三角函数合并为一个统一的三 角函数,然后进行化简,避免表达式 过于复杂。
练习题
求第三个角度
已知三角形内两角的度数,求第三个角的度数。
求解三角形的边长
已知部分边长与角度,求解三角形剩余边长度。
复杂问题
数学一轮复习:三角函数 解三角形
本课件旨在帮助你理解三角形的两角和与差,掌握正弦、余弦、正切公式, 并运用解题技巧快速解决问题。
三角形的两角和与差
两角和公式
两个角的和为第三个角的补角,即A+B=180°-C, 其中C为第三个角的度数。
两角差公式
两个角的差的余角等于这两个角的余角之积,即 A-B=C-》sinA*sinB=sinC*sin(A+B)。

高考数学一轮总复习第三章三角函数、解三角形3.7正弦定理和余弦定理的应用课时训练理(2021年整理)

高考数学一轮总复习第三章三角函数、解三角形3.7正弦定理和余弦定理的应用课时训练理(2021年整理)

2019年高考数学一轮总复习第三章三角函数、解三角形3.7 正弦定理和余弦定理的应用课时跟踪检测理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮总复习第三章三角函数、解三角形3.7 正弦定理和余弦定理的应用课时跟踪检测理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮总复习第三章三角函数、解三角形3.7 正弦定理和余弦定理的应用课时跟踪检测理的全部内容。

3.7 正弦定理和余弦定理的应用[课时跟踪检测][基础达标]1.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处.则这只船的航行速度为( )A。

错误!海里/时B.34错误!海里/时C。

错误!海里/时D.34错误!海里/时解析:如图,在△PMN中错误!=错误!,∴MN=错误!=34错误!,∴v=错误!=错误!(海里/时).答案:A2.如图,一条河的两岸平行,河的宽度d=0。

6 km,一艘客船从码头A 出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为()A.8 km/h B.6 2 km/hC.2错误! km/h D.10 km/h解析:设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知sinθ=错误!=错误!,从而cosθ=错误!,所以由余弦定理得错误!2=错误!2+12-2×错误!×2×1×错误!,解得v=6错误!。

2019版数学一轮高中全程复习方略课时作业24解三角形应用举例+Word版含解析.docx

2019版数学一轮高中全程复习方略课时作业24解三角形应用举例+Word版含解析.docx

课时作业24解三角形应用举例[授课提示:对应学生用书第218页]一、选择题1. (2018-武汉三中月考)如图,两座灯塔力和B 与海岸观察站C 的距离相等,灯塔/在观察站南偏 西40。

方向上,灯塔〃在观察站南偏东60。

方向上,则灯塔/在灯塔〃的()A. 北偏东10。

方向上B. 北偏西10。

方向上C ・南偏东80。

方向上D.南偏西80。

方向上解析:由条件及题图可知,ZA = ZABC=40°f 因为ZBCD=60。

,所以ZCBD = 30。

,所以ZDB4 = 10。

,因此灯塔/在灯塔B 南偏西80。

方向上.答案:D2•如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km, 速度为1 000 km/h,飞行员先看到山顶的俯角为30。

,经过1 min 后乂看到山顶 的俯角为75。

,则山顶的海拔高度为(精确到0」km )()A. 11.4 kmC ・ 6.5 kmD ・ 5.6 km解析:AB = 1 000X 1 000X 60— ,・ AB ・ ano-50000 ••5C_sin45o ,sin30— 3^2 •I 航线离山顶 〃 学°Xsin75°al 1.4 km.・・・山高为18-11.4=6.6 km. 答案:B3.某船开始看见灯塔在南偏东30。

方向,后来船沿南偏东60。

的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是()A. 5 kmB. 10 kmC ・ 5、/3 kmD ・ 5y [2 km解析:作出示意图(如图),点/为该船开始的位置,点3为灯塔的位置,点 C 为该船后来的位置,所以在△ ABC 中,有Z 必C=60。

一30。

= 30。

,5=120°, AC=15,北东ill. B.由正弦定理,得sinl20° = sin30°'15X*即BC=p~=5羽,即这时船与灯塔的距离是5筋km.2答案:C4.在四边形ABCD中,Z5=ZC= 120°, /B=4, BC=CD=2,则该四边形的面积等于()A. 7^3B. 6^3C.5^3D.V3解析:如图,取中点G,连接QG,则DG//BC, ZAGD=\20°・分别过C作QG的垂线,可求得BE=CF=书,DG=4, 所以四边形面积s=S^AGD + S四边形G〃cQ=*GXDGXsinl20o+*X(DG + BC)X BE=5y[3.答案:C5.如图,在离地面高400 m的热气球上,观测到山顶C处的仰角为15。

2019版高考数学一轮复习第三章三角函数与解三角形第4讲函数y=asin(ωx+φ)的图象课时作业理.docx

2019版高考数学一轮复习第三章三角函数与解三角形第4讲函数y=asin(ωx+φ)的图象课时作业理.docx

第4讲函数尸Msin(必+ 0)的图象知能」训纟东函数 y=sin((^x+ 0) (/GR, 。

>0, OW 0<2 n )的部分图象如图 X3-4-1,见I (C.向左平移令个单位长度D.向左平移专个单位长度3. (2017年四川眉山中学统测)将函数f(0 =3sin (2x+*j 的图彖向右平移手个单位长度,所得图彖对应的函数()A. 其一条对称轴方程为x=—~ P Ji 7 n ~lB. 在区间叵,-j^~上单调递增C. 当x=^+k^ (Aez)时取得最大值JI JI iD. 在区间[―石,力上单调递增4. (2015年湖南)将函数/V)=sin2尢的图象向右平移O (0V 个单位长度后得到函数呂3的图象,若对满足I f(x} —glxb | =2的%1, X2,有I 曲一疋|血=寸~,则e=()5 n JI JI JTG>0, -y<JI周期为n,将该函数的图象向左平移云个单位长度后,得到的图象对应的函数为奇函数,6则/V)的图象()< n A 5 nA.关于点辰,0丿对称B.关于直线x=—^i 称/5 兀、 JTC.关于点(-了莎,0丿对称D.关于直线x=—^\称6. _____ 设f(x) =£si n 3x+cos 3x,若对任意实数/都有| f(x) | W 曰,则实数臼的取值范 围是 _________ .A. C.2. A. 兀 兀 2,屮4JIJI°=匸,^=~B.D.67 =TJI —亍3^+cos 为了得到函数y=sin向右平移令个单位长度B.向右平移*个单位长度 3%的图象,可以将函数y=£cos 3丸的图象( 于)的最小正5. (2017年湖北咸宁模拟)已知函数f(x)=sinS+ 0) 心石,5 JT,兀、JI JI7. 已知函数f\x ) =sin^2%+—J,其中——, & .当日=可时,f (*)的值域是_________ ;若心)的值域是一右1,则超的取值范围是 ________________ •8. (2015年湖南)己知Q>0,在函数y=2sin QX 与y=2cos ex 的图象的交点中, 距离最短的两个交点的距离为2 並 则.9. (2015年天津)已知函数f (x )=sin ®/+cos e 无(e>0), 若函数f (x )在区间(—3、 •)内单调递增,吐函数代方的图象关于直线X= 3对称,则3的值为10. (2014 年北京)函数 /a )=3sin 2x+⑴写出f (0的最小正周期及图中必,风的值;11. (2017 年山东)设函数 f\x ) =sin (G”一" j + 一•]其中 0< 以3,己知 j=0.⑴求0(2)将函数y=f\^的图象上各点的横坐标伸长为原來的2倍(纵坐标不变),再将得到JT r JT 3 JT '的图彖向左平移才个单位,得到函数尸呂3的图彖,求£(力在一才,T 上的最小值.的部分图象如图X3-4-2.⑵求“方在区间第4讲函数y=Ssin ( g+妙)的图象1. C 解析:V-=3-l=2, A 7=8, :■ 32兀 兀 ■ HJT 兀~=~+ ^=~f 得(t)=~'故选C.2. A 解析:由于 y=sin 3%+cos 3/=£sin (3jv+_j _) y=y[2 因此只需将y=£cos3/的图象向右平移誇个单位长度,即可得到y=^2si n 3(xcos 3x=y/^si n (3卄寿)1 71'12 2( JIsin^3jr+—J 的图彖.(JI \JI3. B 解析:Ax )=3sinl2^+yJ 的图象向右平移㊁个单位长度所得图象对应的函数为f Jl \ Jl K =—3sin( 2^r+—I,其对称轴方程为 2x+—=—+k^ (&GZ), 兀 开 、3 2\“ jsJI kn・Ji(nA即 x=Ti+丁('WZ ),排除 A.当 x=—+kTi (Aez),得一3sin (2«Ji +_J= —3.故C 错误.由 勺~+2&兀 W2/+丁 W'^_+2&JT («WZ),得石+&”(«WZ),即 f(x)的增区间r n7 兀 ~i为 ~+k71 (Rwz).故选 B .4. D 解析:向右平移妙个单位长度后,得到g(x) =sin(2x —2 0), T | f(xj —gg) |=2,・;不妨令 2xi=—+2k^ (A^Z), 2x2 —2 © = —~ +2〃5(〃WZ).Xi — X2=~■—0 +JIJIJTJT^i —^Lin=—."=w ”=飞・故选 D .5. B 解析:由己知,得e = 2,则fd)=sin(2x+C).设平移后的函数为,则 “…(71) 3,…3/ 令2x ——=kn +—(/rEZ),易得f(x)的图象关于直线*=令■对称.故选B.6. [2, +°°) 解析:f(x) =£sin 3x+cos 3x=2sin (3/+石1 □ 1f\x) =3sin 2 x(JTg{x) =sinl 2^+—+ O一专-〈如自,且为奇函数,所以。

高考数学第三章 三角函数、解三角形 25 正弦定理和余弦定理的应用课时作业

高考数学第三章 三角函数、解三角形 25 正弦定理和余弦定理的应用课时作业

课时作业25 正弦定理和余弦定理的应用一、选择题1.已知△ABC 的面积为32,AC =3,∠B =π3,则△ABC 的周长等于( ) A .3+ 3 B .3 3 C .2+ 3D.332解析:设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则由三角形的面积公式和余弦定理得,b =3,12ac ·32=32,所以ac =2,又3=a 2+c 2-2ac ·12,所以3=(a +c )2-3ac ,解得a +c =3,所以△ABC 的周长为3+ 3.答案:A2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12 D .-12解析:由余弦定理得cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥12.即cos C 的最小值为12,故选C.答案:C3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,sin A ,sin B ,sin C 成等比数列,且c =2a ,则cos B 的值为( )A.14 B.34 C.24D.23解析:因为sin A ,sin B ,sin C 成等比数列,所以sin 2B =sin A sinC ,由正弦定理得b2=ac ,又c =2a ,故cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34. 答案:B4.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则( ) A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定解析:据题意由余弦定理可得a 2+b 2-2ab cos120°=c 2=(2a )2,化简整理得a 2=b 2+ab ,变形得a 2-b 2=(a +b )(a -b )=ab >0,故有a -b >0,即a >b .答案:A5.在△ABC 中,若sin(A -B )=1+2cos(B +C )sin(A +C ),则△ABC 的形状一定是( ) A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形解析:∵sin(A -B )=1+2cos(B +C )sin(A +C )=1-2cos A sin B ,∴sin A cos B -cos A sin B =1-2cos A sin B ,∴sin A cos B +cos A sin B =1,即sin(A +B )=1,则有A +B =π2,故三角形为直角三角形.答案:D6.(2016·云南一检)已知△ABC 的内角A ,B ,C 对的边分别为a ,b ,c ,sin A +2sin B =2sin C ,b =3,当内角C 最大时,△ABC 的面积等于( )A.9+334 B.6+324 C.326-24D.36-324解析:根据正弦定理及sin A +2sin B =2sin C ,得a +2b =2c ,c =a +322,cos C =a 2+b 2-c 22ab =a 2+9-a 2+62a +1846a=a 8+34a -24≥2a8·34a -24=6-24,当且仅当a 8=34a ,即a =6时,等号成立.此时sin C =6+24,S △ABC =12ab sin C =12×6×3×6+24=9+334. 答案:A 二、填空题7.在△ABC 中,若AB =3,AC =1,B =30°,则△ABC 的面积为________. 解析:如图所示,由正弦定理,得sin C =c ·sin B b =32. 而c>b ,∴C =60°或C =120°. ∴A =90°或A =30°. ∴S △ABC =12bc sin A =32或34.答案:34或328.已知以2,3,x 为边长的三角形不是钝角三角形,则x 的取值范围是________.解析:因为2<3,所以只需⎩⎪⎨⎪⎧22+x 2≥32,22+32≥x 2, 即5≤x 2≤13,又因为x >0,所以5≤x ≤13. 答案:[5,13]9.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 解析:由sin A +2sin B =2sin C , 结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab=34a 2+12b 2-2ab 22ab ≥2⎝ ⎛⎭⎪⎫34a 2⎝ ⎛⎭⎪⎫12b 2-2ab 22ab=6-24, 故6-24≤cos C <1, 故cos C 的最小值为6-24. 答案:6-24三、解答题10.(2015·山东卷)设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解:(1)由题意知f (x )=sin2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin2x 2-1-sin2x 2=sin2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z , 可得π4+k π≤x ≤3π4+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34. 11.已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(sin B ,1-cos B )与向量n =(2,0)的夹角θ的余弦值为12.(1)求角B 的大小;(2)若b =3,求a +c 的取值范围. 解:(1)∵m =(sin B ,1-cos B ),n =(2,0), ∴m ·n =2sin B ,|m |=sin 2B +(1-cos B )2=2-2cos B =2⎪⎪⎪⎪⎪⎪sin B 2.∵0<B <π,∴0<B 2<π2.∴sin B2>0.∴|m |=2sin B2. 又∵|n |=2, ∴cos θ=m ·n |m |·|n |=2sin B 4sinB 2=cos B 2=12.∴B 2=π3,∴B =23π. (2)由余弦定理,得b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝ ⎛⎭⎪⎫a +c 22=34(a +c )2,当且仅当a =c 时,取等号. ∴(a +c )2≤4,即a +c ≤2.又a +c >b =3,∴a +c ∈(3,2].1.(2016·石家庄市一模)已知平面图形ABCD 为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且AB =2,BC =4,CD =5,DA =3,则四边形ABCD 面积S 的最大值为( )A.30 B .230 C .430D .630解析:根据题意,连接BD ,则S =12×2×3×sin A +12×4×5×sin C =3sin A +10sin C .根据余弦定理得,BD 2=13-12cos A =41-40cos C ,得10cos C -3cos A =7,两边同时平方得100cos 2C +9cos 2A -60cos C cos A =49,得100sin 2C +9sin 2A =60-60cos C cos A ,而S 2=(3sin A +10sin C )2=100sin 2C +9sin 2A +60sin C sin A =60-60cos A cos C +60sin C sin A =60-60cos(C +A )≤120,所以S ≤230,故选B.答案:B2.(2016·哈尔滨模拟)在△ABC 中,若AB ―→·AC ―→=7,|AB ―→-AC ―→|=6,则△ABC 面积的最大值为( )A .24B .16C .12D .8 3解析:由题意可知AB =c ,AC =b ,所以b ·c cos A =7,所以cos A =7bc,|AB ―→-AC ―→|=6,所以b 2+c 2=50≥2bc ,所以bc ≤25.因为S △ABC =12bc sin A =12bc 1-cos 2A =12bc 1-49b 2c 2=12b 2c 2-49≤12625-49=12. 答案:C3.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长. 解:(1)S △ABD =12AB ·AD sin ∠BAD .S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .由正弦定理可得sin B sin C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC 及DC =22, 所以BD = 2.在△ABD 和△ADC 中,由余弦定理知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.4.(2015·湖南卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角.(1)证明:B -A =π2;(2)求sin A +sin C 的取值范围.解:(1)由a =b tan A 及正弦定理,得sin A cos A =a b =sin Asin B,所以sin B =cos A ,即sin B =sin ⎝ ⎛⎭⎪⎫π2+A . 又B 为钝角,因此π2+A ∈⎝ ⎛⎭⎪⎫π2,π,故B =π2+A ,即B -A =π2.(2)由(1)知,C =π-(A +B )=π-⎝ ⎛⎭⎪⎫2A +π2=π2-2A >0,所以A ∈⎝ ⎛⎭⎪⎫0,π4.于是sin A +sin C =sin A +sin ⎝⎛⎭⎪⎫π2-2A =sin A +cos2A =-2sin 2A +sin A +1 =-2⎝⎛⎭⎪⎫sin A -142+98.因为0<A <π4,所以0<sin A <22,因此22<-2⎝ ⎛⎭⎪⎫sin A -142+98≤98.由此可知sin A +sin C 的取值范围是⎝⎛⎦⎥⎤22,98.。

2019版高考数学一轮复习训练: 基础与考点过关 第三章 三角函数、三角恒等变换及解三角形

2019版高考数学一轮复习训练:  基础与考点过关 第三章 三角函数、三角恒等变换及解三角形

第三章 三角函数、三角恒等变换及解三角形第1课时 任意角和弧度制及任意角的三角函数1. (必修4P 10习题9改编)小明从家步行到学校需要15 min ,则这段时间内钟表的分针走过的角度是________.答案:-90°解析:利用定义得分针是顺时针走的,形成的角是负角.又周角为360°,所以360°60×15=90°,即分针走过的角度是-90°.2. (必修4P 10习题4改编)若角θ的终边与角4π5的终边相同,则在[0,2π)内终边与角θ2的终边相同的角的集合为__________________.(用列举法表示) 答案:⎩⎨⎧⎭⎬⎫2π5,7π5解析:由题意θ=4π5+2k π(k∈Z ),∴ θ2=2π5+k π(k∈Z ).由0≤θ2<2π,即0≤2π5+k π<2π知-25≤k<85,k ∈Z .∴ k =0或1.故在[0,2π)内终边与角θ2的终边相同的角的集合为⎩⎨⎧⎭⎬⎫2π5,7π5. 3. (必修4P 9例3改编)已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为__________.答案:6解析:设扇形的半径为R ,则12R 2α=2,∴ 12R 2×4=2.而R 2=1,∴ R =1,∴ 扇形的周长为2R +α·R=2+4=6.4. 已知角θ的终边经过点P(8,m +1),且sin θ=35,则m =________.答案:5解析:sin θ=m +182+(m +1)2=35,解得m =5. 5. 函数y =lg(2cos x -1)的定义域为____________.答案:⎝⎛⎭⎪⎫2k π-π3,2k π+π3(k∈Z ) 解析:∵ 2cos x -1>0,∴ cos x >12.利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴ x ∈⎝⎛⎭⎪⎫2k π-π3,2k π+π3(k∈Z ).1. 任意角(1) 角的概念的推广① 按旋转方向不同分为正角、负角、零角. ② 按终边位置不同分为象限角和轴线角. (2) 终边相同的角终边与角α相同的角可写成α+k·360°(k∈Z ). (3) 弧度制① 1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.② 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③ 弧度与角度的换算:360°=2π rad ;180°=π rad ;1°=π180 rad ;1 rad =180π度.④ 弧长公式:l =|α|r .扇形面积公式:S 扇形=12lr =12|α|r 2.2. 任意角的三角函数(1) 任意角的三角函数的定义设P(x ,y)是角α终边上任意一点,且|PO|=r(r >0),则有sin α=y r ,cos α=xr,tan α=yx,它们都是以角为自变量,以比值为函数值的函数.(2) 三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦. (3) 特殊角的三角函数值45°π42222160°π33212390°π21 0 /120°2π332-12- 3续表角αα弧度数sin αcos αtan α135°3π422-22-1150°5π612-32-33180°π0 -1 0270°3π2-1 0 /3.设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过点P作PM垂直x轴于点M,则点M是点P在x轴上的正射影.由三角函数的定义知,点P的坐标为(cos_α,sin_α),其中cos α=OM,sin α=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其反向延长线相交于点T,则tan α=AT.我们把有向线段OM,MP,AT叫做α的余弦线、正弦线、正切线.三角函数线[备课札记], 1象限角及终边相同的角), 1) (1) 已知α=-2 017°,则与角α终边相同的最小正角为________,最大负角为________.(2) (必修4P 10习题12改编)已知角α是第三象限角,试判断:① π-α是第几象限角?② α2是第几象限角?③ 2α的终边在什么位置?(1) 答案:143° -217° 解析:α可以写成-6×360°+143°的形式,则与α终边相同的角可以写成k·360°+143°(k∈Z )的形式.当k =0时,可得与角α终边相同的最小正角为143°,当k =-1时,可得最大负角为-217°.(2) 解:①∵ α是第三象限角,∴ 2k π+π<α<2k π+3π2,k ∈Z .∴ -2k π-π2<π-α<-2k π,k ∈Z .∴ π-α是第四象限角.② ∵ k π+π2<α2<k π+3π4,k ∈Z ,∴ α2是第二或第四象限角.③ ∵ 4k π+2π<2α<4k π+3π,k ∈Z ,∴ 2α的终边在第一或第二象限或y 轴非负半轴上. 变式训练(必修4P 10习题5改编)终边在直线y =3x 上的角的集合可表示为____________.答案:⎩⎨⎧⎭⎬⎫x|x =k π+π3,k ∈Z 解析:直线y =3x 经过第一象限、第三象限,直线的倾斜角为π3,则终边在该直线上的角的集合为{x|x =k π+π3,k ∈Z }., 2 三角函数的定义), 2) (1) 点P 是始边与x 轴的正半轴重合、顶点在原点的角θ的终边上的一点,若|OP|=2,θ=60°,则点P 的坐标是__________;(2) (2017·泰州模拟)已知角α的终边过点P(-8m ,-6sin 30°),且cos α=-45,则m 的值为________.答案:(1) (1,3) (2) 12解析:(1) 设点P 的坐标为(x ,y),由三角函数的定义,得sin 60°=y2,cos 60°=x2,所以x =2cos 60°=1,y =2sin 60°=3,故点P 的坐标为(1,3). (2) ∵ r=64m 2+9,∴ cos α=-8m 64m 2+9=-45,∴ m >0,∴ 4m 264m 2+9=125,即m =12.变式训练(2017·无锡期末)已知角α的终边与单位圆的交点为P ⎝ ⎛⎭⎪⎫-12,y ,则sin α·tan α=________.答案:-32解析:由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时sin α·tan α=-32. 当y =-32时,sin α=-32,tan α=3,此时sin α·tan α=-32., 3 三角函数的符号及判定), 3) 点A(sin 2 017°,cos(-2 017°))位于第________象限. 答案:三 解析:因为2 017°=5×360°+217°是第三象限角,所以sin 2 017°<0.又-2 017°=-6×360°+143°是第二象限角,所以cos(-2 017°)<0,所以点A(sin 2 017°,cos(-2 017°))位于第三象限.变式训练下列判断正确的是________.(填序号)① sin 300°>0;② cos(-305°)<0;③ tan ⎝ ⎛⎭⎪⎫-223π>0;④ sin 10<0. 答案:④解析:300°=360°-60°,则300°是第四象限角; -305°=-360°+55°,则-305°是第一象限角; -223π=-8π+23π,则-223π是第二象限角; 因为3π<10<72π,所以10是第三象限角.故sin 300°<0,cos(-305°)>0,tan ⎝ ⎛⎭⎪⎫-223<0,sin 10<0,④正确., 4 弧长公式与扇形面积公式), 4) 扇形AOB 的周长为8 cm.(1) 若这个扇形的面积为3 cm 2,求圆心角的大小;(2) 求这个扇形的面积取得最大值时圆心角的大小和弦长AB. 解:设扇形AOB 的半径为r cm ,弧长为l cm ,圆心角为α,(1) 由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴ α=l r =23或6.(2) ∵ 2r+l =8,∴ S 扇=12lr =14l ·2r ≤14·⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4(cm 2), 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值,∴ r =2,∴ 弦长AB =2×2sin 1=4sin 1(cm). 备选变式(教师专享)已知扇形的周长是 4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是________;扇形的圆心角所对的弦长为________cm.答案: 2 2sin 1解析:设此扇形的半径为r cm ,弧长为l cm ,则2r +l =4,面积S =12rl =12r(4-2r)=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2 cm.从而α=l r =21=2.扇形的圆心角所对的弦长为2sin 1 cm.1. 若tan(α+45°)<0,则sin α,cos α,sin 2α,cos 2α中一定为负数的是__________.答案:cos 2α解析:∵ tan(α+45°)<0,∴ k ·180°-135°<α<k ·180°-45°,∴ k ·360°-270°<2α<k ·360°-90°,∴ cos 2α<0.2. (2017·苏州期末)已知角θ的终边经过点P(4,m),且sin θ=35,则m =________.答案:3解析:sin θ=m 16+m 2=35,解得m =3. 3. 若α=k·360°+θ,β=m·360°-θ(k ,m ∈Z ),则下列关于角α与β的终边的位置关系的说法正确的是________.(填序号)① 重合;② 关于原点对称;③ 关于x 轴对称;④ 关于y 轴对称. 答案:③解析:显然角α与角θ的终边相同,角β与角-θ的终边相同,而θ与-θ的终边关于x 轴对称,故说法正确的是③.4. 已知一扇形的圆心角为α (α>0),扇形所在圆的半径为R.(1) 若α=90°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2) 若扇形的周长是一定值C cm(C>0),当α为多少弧度时,该扇形有最大面积?解:(1) 设弧长为l ,弓形面积为S 弓,又α=90°=π2,R =10,则l =π2×10=5π(cm),S 弓=S 扇-S 三角形=12×5π×10-12×102=25π-50 (cm 2).(2) 扇形周长C =2R +l =(2R +αR)cm ,∴ R =C2+αcm ,∴ S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2=C 2α2·14+4α+α2=C 22·14+α+4α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216cm 2.1. 给出下列命题:① 第二象限角大于第一象限角;② 三角形的内角是第一象限角或第二象限角;③ 不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④ 若sin α=sin β,则α与β的终边相同; ⑤ 若cos θ<0,则θ是第二或第三象限的角. 其中正确的命题是________.(填序号) 答案:③解析:由于第一象限角370°大于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;正弦值相等,但角的终边不一定相同,故④错;当θ=π时,cos θ=-1<0,θ既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.2. 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.答案:-35解析:取终边上一点(a ,2a )(a≠0),根据任意角的三角函数定义,可得cos θ=±55,故cos 2θ=2cos 2θ-1=-35.3. (2017·扬州一中月考改编)已知角α的终边与单位圆x 2+y 2=1交于点P ⎝ ⎛⎭⎪⎫12,y 0,则cos α=________.答案:12解析:∵ r=1,∴ cos α=x r =12.4. (2017·苏北四市期末)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.答案:(-2,3]解析:∵ cos α≤0,sin α>0,∴ 角α的终边落在第二象限或y 轴的正半轴上. ∴ ⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴ -2<a≤3.1. (1) 要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再根据条件解方程或不等式.(2) 已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.若直线的倾斜角为特殊角,也可直接写出角.2. 已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解α的三角函数值.3. 弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要熟练地掌握弧度制下扇形的弧长与面积公式.4. 利用单位圆解有关三角函数的不等式(组)的一般步骤 (1) 用边界值定出角的终边位置. (2) 根据不等式(组)定出角的范围. (3) 求交集,找单位圆中公共的部分. (4) 写出角的表达式.第2课时 同角三角函数的基本关系式与 诱导公式(对应学生用书(文)、(理)51~52页)1. 已知sin α=14,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=__________. 答案:-1515解析:由sin α=14,α∈⎝ ⎛⎭⎪⎫π2,π,得cos α=-154, 则tan α=sin αcos α=-1515.2. (必修4P 20练习2改编)sin(-585°)的值为__________.答案:22解析:sin(-585°)=-sin 585°=-sin(360°+225°)=-sin 225°=-sin(180°+45°)=sin 45°=22.3. (2017·苏北四市摸底)已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,则cos α的值为________.答案:15解析:∵ sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α,∴ cos α=15. 4. (必修4P 23习题11改编)已知tan α=2,则2sin α-cos αsin α+cos α=__________.答案:1解析:因为tan α=2,所以2sin α-cos αsin α+cos α=2tan α-1tan α+1=2×2-12+1=1.5. (必修4P 21例4改编)若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫π3+α+cos 2⎝ ⎛⎭⎪⎫5π6+α=__________.答案:119解析:∵ sin ⎝ ⎛⎭⎪⎫π6-α=13,∴ sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α=13,∴ cos ⎝ ⎛⎭⎪⎫π3+α=13.∴ cos 2⎝ ⎛⎭⎪⎫5π6+α=1-sin 2⎝ ⎛⎭⎪⎫5π6+α=1-sin 2⎝⎛⎭⎪⎫π+α-π6 =1-sin 2⎝ ⎛⎭⎪⎫π6-α=1-19=89.∴ cos ⎝ ⎛⎭⎪⎫π3+α+cos 2⎝ ⎛⎭⎪⎫5π6+α=13+89=119.1. 同角三角函数的基本关系(1) 平方关系:sin 2α+cos 2α=1.(2) 商数关系:tan_α=sin αcos α.2. 诱导公式k ·2±α(k∈Z )与α的三角函数关系的记忆规律:奇变偶不变,符号看象限., 1 同角三角函数的基本关系式), 1) (必修4P 23习题20改编)已知-π2<x<0,sin x +cos x =15.(1) 求sin 2x -cos 2x 的值;(2) 求tan x2sin x +cos x的值.解:由sin x +cos x =15,得1+2sin xcos x =125,则2sin xcos x =-2425.∵ -π2<x<0,∴ sin x<0,cos x>0,即sin x -cos x<0.则sin x -cos x =-sin 2x -2sin xcos x +cos 2x =-1+2425=-75.(1) sin 2x -cos 2x =(sin x +cos x)(sin x -cos x)=15×⎝ ⎛⎭⎪⎫-75=-725. (2) 由⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,得⎩⎪⎨⎪⎧sin x =-35,cos x =45,则tan x =-34.即tan x 2sin x +cos x =-34-65+45=158. 变式训练(2017·盐城模拟)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为________.答案:32解析:∵ 5π4<α<3π2,∴ cos α<0,sin α<0,且cos α>sin α,∴ cos α-sinα>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴ cos α-sin α=32. , 2) (必修4P 23习题12(2)改编)化简: (1+sin α1-sin α-1-sin α1+sin α)·(1+cos α1-cos α-1-cos α1+cos α).解:原式=[(1+sin α)2cos 2α-(1-sin α)2cos 2α]·[(1+cos α)2sin 2α-(1-cos α)2sin 2α]=(1+sin α|cos α|-1-sin α|cos α|)·(1+cos α|sin α|-1-cos α|sin α|)=2sin α|cos α|·2cos α|sin α|=⎩⎪⎨⎪⎧4,α在第一、三象限时,-4,α在第二、四象限时. 备选变式(教师专享)若α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________.答案:0解析:原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|.因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0., 2 诱导公式及其运用), 3) 已知sin ⎝ ⎛⎭⎪⎫x +π6=13,则sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x 的值为__________.答案:59解析:由诱导公式得sin ⎝ ⎛⎭⎪⎫x -5π6=-sin ⎝ ⎛⎭⎪⎫x +π6=-13,sin 2⎝ ⎛⎭⎪⎫π3-x =cos 2⎝⎛⎭⎪⎫x +π6=89,则sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x =89-13=59.变式训练已知cos ⎝ ⎛⎭⎪⎫π6-θ=a(|a|≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=__________.答案:0解析:由题意知,cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ= -cos ⎝ ⎛⎭⎪⎫π6-θ=-a. sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a ,∴ cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0., 3 同角三角函数的基本关系与诱导公式的综合应用), 4) (1) 设tan(5π+α)=m ,求sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值;(2) 在△ABC 中,若sin(2π-A)=-2sin(π-B),3cos A =-2cos(π-B),求△ABC 的三个内角.解:(1) 由tan(5π+α)=m ,得tan α=m ,∴ sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1.(2) 由已知得⎩⎨⎧sin A =2sin B , ①3cos A =2cos B , ②①2+②2得2cos 2A =1,即cos A =±22.(ⅰ) 当cos A =22时,cos B =32. 又∵ A,B 是三角形的内角,∴ A =π4,B =π6,∴ C =π-(A +B)=7π12.(ⅱ) 当cos A =-22时,cos B =-32. 又∵ A,B 是三角形的内角,∴ A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.变式训练 (1) (2017·江西联考)已知tan(π-α)=-23,且α∈⎝⎛⎭⎪⎫-π,-π2,求cos (-α)+3sin (π+α)cos (π-α)+9sin α的值;(2) 在△ABC 中,若sin(3π-A)=2sin(π-B),cos ⎝ ⎛⎭⎪⎫3π2-A =2cos(π-B).试判断三角形的形状.解:(1) 由已知得tan α=23,cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-3×23-1+9×23=-15.(2) 由题设条件,得sin A =2sin B ,-sin A =-2cos B , ∴ sin B =cos B ,∴ tan B =1.∵ B ∈(0,π),∴ B =π4,∴ sin A =2×22=1. 又A∈(0,π),∴ A =π2,∴ C =π4.∴ △ABC 是等腰直角三角形.1. 已知cos 31°=a ,则sin 239°·tan 149°的值是________.答案:1-a 2解析:sin 239°·tan 149°=sin(270°-31°)·tan(180°-31°)=(-cos31°)·(-tan 31°)=sin 31°=1-a 2.2. 已知α为锐角,且tan(π-α)+3=0,则sin α的值是________.答案:31010解析:(解法1)由tan(π-α)+3=0,得tan α=3,即sin αcos α=3,sin α=3cos α,所以sin 2α=9(1-sin 2α),10sin 2α=9,sin 2α=910.因为α为锐角,所以sin α=31010.(解法2)因为α为锐角,且tan(π-α)+3=0,所以-tan α+3=0即tan α=3.在如图所示的直角三角形中,令∠A=α,BC =3,则AC =1,所以AB =32+12=10,故sin α=310=31010.3. (2017·南通调研)已知sin θ+cos θ=43,θ∈⎝⎛⎭⎪⎫0,π4,则sin θ-cos θ=________.答案:-23解析:∵ sin θ+cos θ=43,∴ 2sin θcos θ=79,∴ (sin θ-cos θ)2=1-2sin θcos θ=29,∴ sin θ-cos θ=23或-23.∵θ∈⎝⎛⎭⎪⎫0,π4,∴ sin θ<cos θ,∴ sin θ-cos θ=-23.4. 已知sin 2θ+4cos θ+1=2,则(cos θ+3)(sin θ+1)的值为__________.答案:4解析:因为sin 2θ+4cos θ+1=2,所以sin 2θ+4=2cos θ+2,即cos 2θ+2cos θ-3=0,解得cos θ=1或cos θ=-3(舍去).由cos θ=1得sin θ=0,故(cos θ+3)(sin θ+1)=4.1. 已知sin(3π-α)=-2sin ⎝ ⎛⎭⎪⎫π2 +α,则sin αcos α=__________. 答案:-25解析:因为sin(3π-α)=sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,所以sin α=-2cos α,所以tan α=-2,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-25. 2. 已知cos(-80°)=k ,那么tan 100°=__________.答案:-1-k2k解析:因为cos(-80°)=cos 80°=k ,所以sin 80°=1-cos 280°=1-k 2.所以tan 100°=-tan 80°=-sin 80°cos 80°=-1-k2k.3. (2017·盐城调研)若3sin α+cos α=0,则1cos 2α+2sin αcos α=________.答案:103解析:∵ 3sin α+cos α=0,且cos α≠0,∴ tan α=-13,∴1cos 2α+2sin αcos α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=1+⎝ ⎛⎭⎪⎫-1321-23=103. 4. (2017·南京、盐城模拟)已知cos ⎝ ⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=________.答案:-223解析:因为⎝ ⎛⎭⎪⎫5π12+α+⎝ ⎛⎭⎪⎫π12-α=π2,所以cos ⎝ ⎛⎭⎪⎫π12-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-α=sin ⎝ ⎛⎭⎪⎫5π12+α. 因为-π<α<-π2,所以-7π12<α+5π12<-π12.又cos ⎝ ⎛⎭⎪⎫5π12+α=13>0,所以-π2<α+5π12<-π12, 所以sin ⎝ ⎛⎭⎪⎫5π12+α=-1-cos 2⎝ ⎛⎭⎪⎫5π12+α=-1-⎝ ⎛⎭⎪⎫132=-223.1. 利用平方关系解决问题时,要注意开方运算结果的符号,需要根据角α的范围进行确定.2. 应熟练应用诱导公式.诱导公式的应用原则是:负化正、大化小、化到锐角为终了.诱导公式的应用是求任意角的三角函数值,其一般步骤:① 负角变正角,再写成2k π+α(k∈Z ),0≤α<2π的形式;② 转化为锐角.3. 同角三角函数基本关系可用于统一函数;诱导公式主要用于统一角,其主要作用是进行三角函数的求值、化简和证明,如已知一个角的某一三角函数值,求这个角的其他三角函数值时,要特别注意平方关系的使用.4. 三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:① 弦切互化法:主要利用公式tan x =sin x cos x 进行切化弦或弦化切,如asin x +bcos xcsin x +dcos x,asin 2x +bsin xcos x +ccos 2x 等类型可进行弦化切.② 和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.③ 注意变角技巧:如32π+α为π+⎝ ⎛⎭⎪⎫π2+α或2π-⎝ ⎛⎭⎪⎫π2-α等. ④ 巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝ ⎛⎭⎪⎫1+1tan 2θ=tan π4=…5. 在△ABC 中常用到以下结论: sin(A +B)=sin(π-C)=sin C , cos(A +B)=cos(π-C)=-cos C , tan(A +B)=tan(π-C)=-tan C ,sin ⎝ ⎛⎭⎪⎫A 2+B 2=sin ⎝ ⎛⎭⎪⎫π2-C 2=cos C 2, cos ⎝ ⎛⎭⎪⎫A 2+B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2.[备课札记]第3课时 三角函数的图象和性质(对应学生用书(文)、(理)53~55页)1. (2017·南京期初)若函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为π,则f ⎝ ⎛⎭⎪⎫π3的值是________.答案:12解析:由题意,得2πω=π,所以ω=2,f(x)=sin ⎝ ⎛⎭⎪⎫2x +π6.因此f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2π3+π6=sin 5π6=12.2. 将函数f(x)=2sin 2x 的图象上每一点向右平移π6个单位,得到函数y =g(x)的图象,则g(x)=____________.答案:2sin ⎝⎛⎭⎪⎫2x -π3 解析:将函数f(x)=2sin 2x 的图象上每一点向右平移π6个单位,得到函数g(x)=2sin2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3的图象.本题主要考查三角函数的图象变换(平移变换).3. 已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,值域为[a ,b],则b -a 的值是__________.答案:3解析:因为x∈⎣⎢⎡⎦⎥⎤π3,π,所以cos x ∈⎣⎢⎡⎦⎥⎤-1,12,所以y =2cos x 的值域为[-2,1],所以b -a =3.4. 函数f(x)=sin ⎝⎛⎭⎪⎫2x -π3的单调递增区间为________.答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k∈Z ) 解析:由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k∈Z ). 5. (必修4P 45习题9改编)电流强度I(A)随时间t(s)变化的函数I =Asin(ωt +φ)⎝⎛⎭⎪⎫A>0,ω>0,0<φ<π2的部分图象如图所示,则当t =1100 s 时,电流强度是__________A.答案:-5解析:由图象知A =10,T 2=4300-1300=1100,∴ ω=2πT=100π.∴ I =10sin(100πt+φ).⎝ ⎛⎭⎪⎫1300,10为五点中的第二个点,∴ 100π×1300+φ=π2.∴ φ=π6.∴ I =10sin(100πt +π6),当t =1100s 时,I =-5 A.1. 周期函数的定义周期函数的概念:对于函数y =f(x),如果存在一个非零的常数T ,使得当x 取定义域内的每一个值时,f(x +T)=f(x)都成立,那么称y =f(x)为周期函数;函数y =Asin(ωx+φ)和y =Acos(ωx +φ)的周期均为T =2π|ω|;函数y =Atan(ωx +φ)的周期为T =π|ω|.2. 三角函数的图象和性质在确定正弦函数y =sin x 在[0,2π]上的图象形状时,起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数呢?4. 函数 y =Asin(ωx +φ)的特征若函数y =Asin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.[备课札记], 1 “五点法”与“变换法”作图), 1) (必修4P 40练习7改编)已知函数f(x)=2sin(ωx +π3)(ω>0)的周期为π.(1) 用“五点法”作出它在长度为一个周期的闭区间上的图象;(2) 说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.解:∵ T=π,∴ 2πω=π,即ω=2.∴ f(x)=2sin ⎝⎛⎭⎪⎫2x +π3. (1) 令X =2x +π3,则y =2sin ⎝⎛⎭⎪⎫2x +π3=2sin X. 列表如下: x -π6 π12 π3 7π12 5π6X 0 π2 π 3π22π y =sin X 0 1 0 -1 0y =2sin ⎝⎛⎭⎪⎫2x +π3 0 2 0 -2 0(2) (解法1)把y =sin x 的图象上所有点向左平移π3个单位,得到y =sin ⎝⎛⎭⎪⎫x +π3的图象;再把y =sin ⎝⎛⎭⎪⎫x +π3的图象上所有点的横坐标变为原来的12(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象;最后把y =sin ⎝⎛⎭⎪⎫2x +π3的图象上所有点的纵坐标变为原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. (解法2)将y =sin x 的图象上每一点的横坐标x 变为原来的12,纵坐标不变,得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎪⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. 备选变式(教师专享)已知f(x)=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32. (1) 求ω和φ的值;(2) 在给定坐标系中作出函数f(x)在[0,π]上的图象;(3) 若f(x)>22,求x 的取值范围.解:(1) 周期T =2πω=π,∴ ω=2.∵ f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=cos ⎝ ⎛⎭⎪⎫π2+φ=-sin φ=32.又-π2<φ<0,∴ φ=-π3. (2) 由(1)得f(x)=cos ⎝⎛⎭⎪⎫2x -π3,列表如下:(3)∵ cos ⎝ ⎛⎭⎪⎫2x -π3>22,∴ 2k π-π4<2x -π3<2k π+π4,∴ 2k π+π12<2x<2k π+7π12, ∴ k π+π24<x<k π+7π24,k ∈Z ,∴ x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫k π+π24<x<k π+7π24,k ∈Z .,2 三角函数的性质)●典型示例2已知函数f(x)=2sin ⎝⎛⎭⎪⎫2x +π4+1. (1) 求f(x)的最小正周期和单调递增区间;(2) 求f(x)在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值;(3) 求f(x)图象的一条对称轴和一个对称中心,使得它们到y 轴的距离分别最小. 【思维导图】【规范解答】解:(1) 函数f(x)的最小正周期为T =2π2=π. 令-π2+2k π≤2x +π4≤π2+2k π(k∈Z ),解得-3π8+k π≤x ≤π8+k π(k∈Z ),所以函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k∈Z ). (2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4.由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f(x)取最大值2+1;当2x +π4=5π4,即x =π2时,f(x)取最小值0.综上,f(x)在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.(3) 令2x +π4=π2+k π(k∈Z ),解得x =π8+k π2(k∈Z ),所以当k =0时,直线x =π8是所有对称轴中最靠近y 轴的.令2x +π4=k π(k∈Z ),解得x =-π8+k π2(k∈Z ),所以当k =0时,⎝ ⎛⎭⎪⎫-π8,1是所有对称中心中最靠近y 轴的, 所以所求的对称轴为直线x =π8,对称中心为⎝ ⎛⎭⎪⎫-π8,1. 【精要点评】 对于三角函数f(x)=Asin(ωx +φ)的性质(定义域、单调性、对称性、最值或值域等)问题,通常用换元的方法,令t =ωx +φ,将其转化为函数y =Asin t ,再进行其性质的研究.●总结归纳解有关三角函数性质的问题,通常需先将函数转化为f(x)=Asin(ωx +φ)的形式,再用研究复合函数的单调性、值域的方法利用正弦函数的图象和性质来处理.若ω<0,还需先利用诱导公式转化为f(x)=Asin(ωx +φ)(ω>0)的形式,再将ωx +φ看成整体,利用正弦函数y =sin x 的性质进行求解.●题组练透1. 将函数y =sin 2x 的图象向左平移φ(φ>0)个单位,若所得的图象过点⎝ ⎛⎭⎪⎫π6,32,则φ的最小值为__________.答案:π6解析:易知y =sin 2(x +φ),即y =sin(2x +2φ).∵ 图象过点⎝⎛⎭⎪⎫π6,32,∴ sin ⎝ ⎛⎭⎪⎫π3+2φ=32,∴ π3+2φ=π3+2k π或π3+2φ=2π3+2k π,k ∈Z ,即φ=k π或φ=π6+k π,k ∈Z .∵ φ>0,∴ φ的最小值为π6.K2. 设函数y =sin ⎝⎛⎭⎪⎫ωx +π3(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为__________.答案:2解析:当x =π12时,令ωx +π3=π2,则正数ω=2.3. 函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________. 答案:-22解析:由已知x∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22. 4. 设函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π3⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且满足f(-x)=-f(x).(1) 求函数f(x)的单调递增区间;(2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,试求y =f ⎝⎛⎭⎪⎫x -π6的最值,并写出取得最值时自变量x 的值.解:(1) 因为f(x)的最小正周期为π,所以T =2πω=π,解得ω=2.又f(-x)=-f(x),所以f(0)=0,所以sin ⎝⎛⎭⎪⎫φ+π3=0.又|φ|<π2,所以φ=-π3,所以ω=2,φ=-π3,所以f(x)=2sin 2x.则2x ∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k∈Z ),解得函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k∈Z ). (2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,y =f ⎝ ⎛⎭⎪⎫x -π6=2sin 2⎝⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3. 当2x -π3=π2,即x =5π12时,f(x)取得最大值2;当2x -π3=-π3,即x =0时,f(x)取得最小值- 3., 3 根据图象和性质确定函数y =Asin(ωx +φ)的解析式), 3) 设函数f(x)=Asin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x∈R )的部分图象如图所示.(1) 求函数y =f(x)的解析式;(2) 当x∈⎣⎢⎡⎦⎥⎤-π2,π2时,求f(x)的取值范围.解:(1) 由图象知,A =2. 又T 4=5π6-π3=π2,ω>0,所以T =2π=2πω,得ω=1.所以f(x)=2sin(x +φ),将点⎝ ⎛⎭⎪⎫π3,2代入,得π3+φ=π2+2k π(k∈Z ),即φ=π6+2k π(k∈Z ). 又-π2<φ<π2,所以φ=π6.所以f(x)=2sin ⎝⎛⎭⎪⎫x +π6.(2) 当x∈⎣⎢⎡⎦⎥⎤-π2,π2时,x +π6∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-32,1,即f(x)∈[-3,2].变式训练已知函数f(x)=2sin ⎝⎛⎭⎪⎫ωx +φ-π6(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝ ⎛⎭⎪⎫π8的值; (2) 将函数y =f(x)的图象向右平移π6个单位后,再将得到的图象上各点的横坐标变为原来的4倍,纵坐标不变,得到函数y =g(x)的图象,求g(x)的解析式,并写出g(x)的单调递减区间.解:(1) ∵ f(x)为偶函数,∴ φ-π6=k π+π2,k ∈Z ,解得φ=2π3+k π,k ∈Z .∵ 0<φ<π,∴ φ=2π3.由题意得2πω=2×π2,解得ω=2.故f(x)=2cos 2x ,f ⎝ ⎛⎭⎪⎫π8=2cos π4= 2. (2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎪⎫x -π6的图象,再将所得图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到f ⎝ ⎛⎭⎪⎫x 4-π6的图象,所以g(x)=f(x 4-π6)=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x 4-π6=2cos ⎝ ⎛⎭⎪⎫x 2-π3. 当2k π≤x 2-π3≤2k π+π(k∈Z ),即4k π+2π3≤x ≤4k π+8π3(k∈Z )时,g(x)单调递减.因此g(x)的单调递减区间为[4k π+2π3,4k π+8π3](k∈Z )., 4 三角函数的应用), 4) (必修4P 42例2改编)如图,一个水轮的半径为4 m ,水轮圆心O距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1) 将点P 距离水面的高度z(m)表示为时间t(s)的函数; (2) 点P 第一次到达最高点大约需要多少时间?解:(1) 建立如图所示的直角坐标系,设角φ⎝ ⎛⎭⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6.则OP 在t(s)内所转过的角为π6t.由题意可知水轮逆时针转动,得z =4sin ⎝ ⎛⎭⎪⎫π6t +φ+2. 当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求函数解析式为z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2.(2) 令z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2=6,得sin ⎝ ⎛⎭⎪⎫π6t -π6=1.令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s. 备选变式(教师专享)如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面距离为0.8 m ,且60 s 转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为h.(1) 求h 与θ之间的函数解析式; (2) 设从OA 开始转动,经过t s 后到达OB ,求h 与t 之间的函数解析式,并求缆车到达最高点时用的最少时间是多少.解:(1) 以圆心O 为原点,建立如图所示的平面直角坐标系.则以Ox 为始边,OB 为终边的角为θ-π2,故点B 的坐标为⎝ ⎛⎭⎪⎫4.8cos ⎝ ⎛⎭⎪⎫θ-π2,4.8sin ⎝ ⎛⎭⎪⎫θ-π2, ∴ h =5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2. (2) 点A 在圆上转动的角速度是π30rad/s ,故t s 转过的弧度数为π30t ,∴ h =5.6+4.8sin ⎝ ⎛⎭⎪⎫π30t -π2,t ∈[0,+∞).到达最高点时,h =10.4 m.由sin ⎝ ⎛⎭⎪⎫π30t -π2=1,得π30t -π2=π2,∴ t =30 s ,∴ 缆车到达最高点时,用的最少时间为30 s.1. 已知函数f(x)=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且它的图象过点⎝ ⎛⎭⎪⎫-π12,-2,则φ的值为__________. 答案:-π12解析:f(x)=2sin(ωx +φ) 的最小正周期为π,则ω=2,所以f(x)=2sin(2x +φ),它的图象过点⎝ ⎛⎭⎪⎫-π12,-2,则sin ⎝⎛⎭⎪⎫φ-π6=-22⎝ ⎛⎭⎪⎫|φ|<π2,故φ=-π12. 2. 函数f(x)=2sin(ωx +φ)的部分图象如图所示.若A ,B 两点之间的距离AB =5,则ω的值为________.答案:π3解析:AB =5,|y A -y B |=4,则|x A -x B |=3=T 2,则T =6,则2πω=6,ω=π3.3. 将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π12个单位得到的图象关于点⎝ ⎛⎭⎪⎫π3,0对称,则φ=________.答案:π6解析:由题意得平移以后的函数为y =sin ⎝ ⎛⎭⎪⎫2x +π6+φ,因为图象关于点⎝ ⎛⎭⎪⎫π3,0对称,所以2×π3+π6+φ=k π(k∈Z ),解得φ=k π-5π6(k∈Z ).因为0<φ<π,所以φ=π6.4. 函数f(x)=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象如图所示. (1) 求φ及图中x 0的值;(2) 求f(x)在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.解:(1) 由图可知,f(0)=f(x 0)=32, 即cos φ=32,cos(πx 0+φ)=32. 又φ∈⎝⎛⎭⎪⎫0,π2,x 0>0,所以φ=π6,x 0=53.(2) 由(1)可知f(x)=cos ⎝⎛⎭⎪⎫πx +π6. 因为x∈⎣⎢⎡⎦⎥⎤-12,13,所以-π3≤πx +π6≤π2. 所以当πx +π6=0,即x =-16时,f(x)取得最大值1;当πx +π6=π2,即x =13时,f(x)取得最小值0.1. (2017·南师附中、淮阴中学、海门中学、天一中学四校联考)将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数y =f(x)的图象,若函数f(x)的图象过原点,则φ=________.答案:3π4解析:将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数f(x)=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图象,若函数f(x)的图象过原点,则f(0)=sin ⎝ ⎛⎭⎪⎫π4+φ=0,π4+φ=k π,k ∈Z ,φ=k π-π4,k ∈Z .又0<φ<π,则φ=3π4. 2. 若函数y =sin(ωx -φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在区间⎣⎢⎡⎦⎥⎤-π2,π上的图象如图所示,则ω,φ的值分别是______.答案:2,π3解析:由题图可知,T =2⎣⎢⎡⎦⎥⎤π6-⎝ ⎛⎭⎪⎫-π3=π,所以ω=2πT =2.又sin ⎝ ⎛⎭⎪⎫2×π6-φ=0,所以π3-φ=k π(k∈Z ),即φ=π3-k π(k∈Z ).而|φ|<π2,所以φ=π3.3. (2017·第三次全国大联考江苏卷)将函数f(x)=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P ⎝⎛⎭⎪⎫0,32,则φ的值为________.答案:5π6解析:由题意,可得sin θ=32.因为-π2<θ<π2,所以θ=π3.因为g(x)=sin ⎝ ⎛⎭⎪⎫2x -2φ+π3,所以sin ⎝⎛⎭⎪⎫-2φ+π3=32.又因为0<φ<π,所以-2φ+π3∈⎝ ⎛⎭⎪⎫-5π3,π3,-2φ+π3=-4π3,φ=5π6. 4. 已知函数f(x)=3sin 2x +2cos 2x +m 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为3,则(1) m =________;(2) 当f(x)在[a ,b]上至少含20个零点时,b -a 的最小值为________.答案:(1) 0 (2) 28π3解析:(1) f(x)= 3 sin 2x +2cos 2x +m =3sin 2x +1+cos 2x +m =2sin ⎝ ⎛⎭⎪⎫2x +π6+m +1.因为0≤x≤π2,所以π6≤2x +π6≤7π6.所以-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, f(x)max =2+m +1=3+m =3,∴ m =0.(2) 由(1)得f(x)=2sin ⎝⎛⎭⎪⎫2x +π6+1,周期T =2π2=π,在长为π的闭区间内有2个或3个零点.由2sin ⎝ ⎛⎭⎪⎫2x +π6+1=0,得sin ⎝⎛⎭⎪⎫2x +π6=-12, 2x +π6=2k π+7π6,k ∈Z 或2x +π6=2k π+11π6,k ∈Z ,所以x =k π+π2或x =k π+5π6,k ∈Z .不妨设a =π2,则当b =9π+π2时,f(x)在区间[a ,b]上恰有19个零点,当b =9π+5π6时恰有20个零点,此时b -a 的最小值为9π+π3=28π3.1. 求三角函数的定义域实际上是解简单的三角函数不等式,常借助三角函数线或三角函数图象来求解.2. 求解三角函数的值域(最值)常见到以下几种类型: ① 形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求值域(最值);② 形如y =asin 2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③ 形如y =asin xcos x +b(sin x ±cos x)+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).3. 对于形如y =Asin(ωx +φ)+k 函数的性质(定义域、值域、单调性、对称性、最值等),可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.4. 求函数y =Asin(ωx +φ)(A >0,ω>0)的解析式,常用的解题方法是待定系数法,由最高(低)点的纵坐标确定A ,由周期确定ω,由适合解析式的点的坐标来确定φ,但由条件求得y =Asin(ωx +φ)(A >0,ω>0)的解析式一般不惟一,只有限定φ的取值范围,才能得出惟一解.5. 由y =sin x 的图象变换到y =Asin(ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.[备课札记]第4课时 两角和与差的正弦、余弦和 正切公式(对应学生用书(文)、(理)56~58页)1. 设α∈⎝ ⎛⎭⎪⎫0,π2,若sin α=35,则cos ⎝ ⎛⎭⎪⎫α+π4=________.答案:210解析:∵ α∈⎝ ⎛⎭⎪⎫0,π2,且sin α=35,∴ cos α=45.∴ cos ⎝⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=45×22-35×22=210. 2. (必修4P 106练习4改编)sin 20°cos 10 °-cos 160°sin 10°=__________.答案:12解析:sin 20°·cos 10°-cos 160°·sin 10°=sin 20°·cos 10°+cos 20°·sin10°=sin 30°=12.3. (必修4P 109练习8改编)函数y =2sin x +6cos x 的值域是__________. 答案:[-22,22]解析:y =2sin x +6cos x =22sin ⎝ ⎛⎭⎪⎫x +π3∈[-22,22].4. (必修4P 118习题9改编)若α+β=π4,则(tan α+1)·(tan β+1)的值是________.答案:2解析:(tan α+1)(tan β+1)=tan αtan β+tan α+tan β+1=tan αtan β+tan(α+β)(1-tan αtan β)+1=tan αtan β+tan π4·(1-tan αtan β)+1=2.5. (必修4P 110例6改编)已知sin(α+β)=12,sin(α-β)=110,则tan αtan β的值为________.答案:32解析:(解法1)⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=110⇒⎩⎪⎨⎪⎧sin αcos β=310,cos αsin β=15,从而tan αtan β=sin αcos βcos αsin β=310×5=32.(解法2)设x =tan αtan β,∵ sin (α+β)sin (α-β)=5,∴ sin (α+β)cos αcos βsin (α-β)cos αcos β=tan α+tan βtan α-tan β=tan αtan β+1tan αtan β-1=x +1x -1=5. ∴ x =32,即tan αtan β =32.1. 两角差的余弦公式推导过程设单位圆上两点P 1(cos α,sin α),P 2(cos β,sin β),则∠P 1OP 2=α-β(α>β).向量a =OP 1→=(cos α,sin α),b =OP 2→=(cos β,sin β), 则a·b =|a||b|cos(α-β)=cos(α-β),由向量数量积的坐标表示,可知a·b =cos αcos β+sin αsin β,因而cos(α-β)=cos αcos β+sin αsin β. 2. 公式之间的关系及导出过程3. 公式 cos(α-β)=cos_αcos_β+sin_αsin_β; cos(α+β)=cos_αcos_β-sin_αsin_β; sin(α-β)=sin_αcos_β-cos_αsin_β; sin(α+β)=sin_αcos_β+cos_αsin_β;tan(α-β)=tan α-tan β1+tan αtan β;tan(α+β)=tan α+tan β1-tan αtan β.4. asin α+bcos α=a 2+b 2sin(α+φ),其中cos φ=a a 2+b2,sin φ=b a 2+b2,tan φ=ba .φ的终边所在象限由a ,b 的符号来决定.5. 常用公式变形tan α+tan β=tan(α+β)(1-tan_αtan_β); tan α-tan β=tan(α-β)(1+tan_αtan_β);sin α+cos α=2sin ⎝⎛⎭⎪⎫α+π4; sin α-cos α=2sin ⎝⎛⎪⎫α-π4.[备课札记]。

高考数学一轮复习 第三章 三角函数、解三角形 课时作业24课件 文

高考数学一轮复习 第三章 三角函数、解三角形 课时作业24课件 文
12/11/2021
6.(2019·湖南师大附中月考)在△ABC 中,若bcccoossCB=11++ccooss22CB,则△ ABC 的形状是( )
A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形
12/11/2021
解析 由已知11++ccooss22CB=22ccooss22CB=ccooss22BC=bcccoossCB,所以ccoossCB=bc或ccoossCB =0,即 C=90°或ccoossCB=bc。当 C=90°时,△ABC 为直角三角形。当ccoossCB= bc时,由正弦定理,得bc=ssiinnBC,所以ccoossCB=ssiinnBC,即 sinCcosC=sinBcosB, 即 sin2C=sin2B。因为 B,C 均为△ABC 的内角,所以 2C=2B 或 2C+2B =180°,所以 B=C 或 B+C=90°,所以△ABC 为等腰三角形或直角三角形。 故选 D。
7
721。由余弦定理 a2=b2+c2-2bccosA 可得 c2-2c-3=0,所以 c
=3。
答案
21 7
3
12/11/2021
9.(2019·河北衡水中学、河南顶级名校联考)已知在△ABC 中,角 A,B,
C 所对的边分别是 a,b,c,cosA= 55,cosB= 1100,c= 2,则 a=________。 解析 因为 cosA= 55,cosB= 1100,A,B,C 为三角形内角,所以 sinA
答案 D
12/11/2021
二、填空题 7.在锐角△ABC 中,角 A,B 所对的边分别为 a,b,若 2asinB= 3b, 则角 A=________。
解析 因为 2asinB= 3b,所以 2sinAsinB= 3sinB,得 sinA= 23,所

2019年高考数学(文)一轮复习第3章三角函数、解三角形第2节同角三角函数的基本关系与诱导公式学案整理

2019年高考数学(文)一轮复习第3章三角函数、解三角形第2节同角三角函数的基本关系与诱导公式学案整理
第二节 同角三角函数的基本关系与诱导公式
[ 考纲传真 ] 1. 理解同角三角函数的基本关系式:
sin
2
2
sin
α + cos α = 1,cos
α α = tan
α .2.
能利用单位圆中的三角函数线推导出
π 2 ±α , π ± α 的正弦、余弦、正切的诱导公式.
( 对应学生用书第 41 页 )
[ 基础知识填充 ]
1 α cos α = 得 2sin
2 α cos α=- ,
3
3
所以 (cos
α - sin
α ) 2= 1-2sin
5 α cos α = ,
3
又 α 是第二象限角,所以 cos α - sin α < 0,
15 所以 cos α - sin α =- 3 ,
2
2
3
15
因此 cos 2 α = cos α- sin α = (cos α + sin α )(cos α - sin α ) = 3 × - 3 =
cos_ α
余弦 cos α
- cos α
cos α
- cos_ α
sin α
-sin α
正切
tan α
tan α
- tan α
- tan_ α
口诀
函数名不变,符号看象限
函数名改变符号看象限
[ 知识拓展 ]
同角三角函数的基本关系式的几种变形
(1)(sin α ±cos α ) 2=1±2s in α cos α .
( 1) A
5
3
2
cos2α + 4sin α cos α
(2) - 3 [(1) ∵ tan α =4,则 cos α + 2sin 2α = sin2 α +cos2 α =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层作业二十四应用举例一、选择题(每小题5分,共25分)1.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( )A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°【解析】选D.由题意可知∠ACD=40°,∠DCB=60°,CA=CB,所以∠CAB=∠CBA= 40°,又因为∠BCD=60°,所以∠CBD=30°,∠DBA=10°,故灯塔A在B的南偏西80°.2.如图所示,为了测量某湖泊两侧A,B间的距离,李宁同学首先选定了与A,B不共线的一点C(△ABC的角A,B,C所对的边分别记为a,b,c),然后给出了三种测量方案:①测量A,C,b;②测量a,b,C;③测量A,B,a.则一定能确定A,B间的距离的所有方案的序号为( )A.①②B.②③C.①③D.①②③【解析】选D.对于①③可以利用正弦定理确定唯一的A,B两点间的距离,对于②直接利用余弦定理即可确定A,B两点间的距离.3.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km后,看见灯塔在正西方向,则这时船与灯塔的距离是( )A.5 kmB.10 kmC.5 kmD.5 km【解析】选C.作出示意图(如图),点A为该船开始的位置,点B为灯塔的位置,点C为该船后来的位置,所以在△ABC中,有∠BAC=60°-30°=30°,B=120°,AC=15,由正弦定理,得=,即BC==5,即这时船与灯塔的距离是5 km.【变式备选】为绘制海底地貌图,测量海底两点C,D之间的距离,海底探测仪沿水平方向在A,B两点进行测量,A,B,C,D在同一个铅垂平面内,海底探测仪测得∠BAC=30°,∠DAC=45°,∠ABD=45°,∠DBC=75°,A,B两点的距离为海里,则C,D之间的距离为( )A.海里B.2海里C.海里D.海里【解析】选A.∠ADB=180°-30°-45°-45°=60°,在△ABD中,由正弦定理,得BD==,在△ABC中,∠ACB=180°-30°-45°-75°=30°,所以BC=BA=,在△BCD中,由余弦定理,得CD2=BC2+BD2-2BC·BDcos∠DBC=3+-2×××=5,所以CD=.4.(2018·深圳模拟)一架直升飞机在200 m高度处进行测绘,测得一塔顶与塔底的俯角分别是30°和60°,则塔高为( )世纪金榜导学号37680485A.mB.mC.mD.m【解析】选A.如图所示.在Rt△ACD中可得CD==BE,在△ABE中,由正弦定理得=⇒AB=,所以DE=BC=200-=(m).5.台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A的正东40千米处,B城市处于危险区内的持续时间为( )A.0.5小时B.1小时C.1.5小时D.2小时【解析】选B.根据题意画出相应的图形,如图所示.BE=BF=30 km,△ABD为等腰直角三角形且AB=40 km,由勾股定理得AD=BD=20km,由BD⊥AD,可得ED=DF,在Rt△BED中,由勾股定理得ED==10 km,所以EF=2ED=20 km,因此B市处于危险区内的时间为20÷20=1(h).二、填空题(每小题5分,共15分)6.如图,一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8 n mile.此船的航速是______ n mile/h.【解析】设航速为v n mile/h,在△ABS中,AB=v,BS=8 n mile,∠BSA=45°,由正弦定理,得=,所以v=32.答案:327.(2018·潍坊模拟)如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.【解析】在△BCD中,由正弦定理得,=,解得BC=10米,所以在Rt△ABC中,tan 60°=,解得AB=10米,所以塔AB的高是10米.答案:108.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2分钟,从D沿DC走到C用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.【解题指南】连接OC,在△OCD中,借助余弦定理求半径OC.【解析】连接OC,由题意知CD=150米,OD=100米,∠CDO=60°,在△COD中,由余弦定理得OC2=CD2+OD2-2CD·OD·cos 60°,即OC=50.答案:50三、解答题(每小题10分,共20分)9.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,则山顶的海拔高度为多少米?(取=1.4,=1.7)【解析】如图,作CD垂直于AB的延长线于点D,由题意知∠A=15°,∠DBC=45°,所以∠ACB=30°,AB=50×420=21 000(m).又在△ABC中,=,所以BC=×sin 15°=10 500(-)(m).因为CD⊥AD,所以CD=BC·sin∠DBC=10 500(-)×=10 500(-1)=7 350(m).故山顶的海拔高度为10 000-7 350=2 650(m).10.如图,一架飞机以600 km/h的速度,沿方位角60°的航向从A地出发向B地飞行,飞行了36 min后到达E地,飞机由于天气原因按命令改飞C地,已知AD= 600 km,CD=1 200 km,BC=500 km,且∠ADC=30°,∠BCD=113°.问收到命令时飞机应该沿什么航向飞行,此时E地离C地的距离是多少?【解题指南】在△ACD中使用余弦定理得出AC及∠ACD,在△ABC中使用余弦定理得出AB及∠CAE,再在△ACE中使用余弦定理得出CE及∠AEC.【解析】在△ACD中由余弦定理,得:AC2=(600)2+1 2002-2×600×1 200×=360 000,所以AC=600,则CD2=AD2+AC2,即△ACD是直角三角形,且∠ACD=60°,又∠BCD=113°,则∠ACB=53°,因为tan 37°=,所以cos 53°=sin 37°=.在△ABC中,由余弦定理,得:AB2=6002+5002-2×600×500×=5002,则AB=500,又BC=500,则△ABC是等腰三角形,且∠BAC=53°,由已知有AE=600×=360,在△ACE中,由余弦定理,有CE==480,又AC2=AE2+CE2,则∠AEC=90°.由飞机出发时的方位角为60°,则飞机由E地改飞C地的方位角为:90°+60°=150°.答:收到命令时飞机应该沿方位角150°的航向飞行,E地离C地480 km.1.(5分)如图,某海上缉私小分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°方向进行海上巡逻,当航行半小时到达B处时,发现北偏西45°方向有一艘船C,若船C位于A的北偏东30°方向上,则缉私艇所在的B处与船C的距离是( )A.5(+)kmB.5(-)kmC.10(-)kmD.10(+)km【解析】选C.由题意知∠BAC=60°-30°=30°,∠CBA=30°+45°=75°,所以∠ACB=180°-30°-75°=75°,故AC=AB,因为AB=40×=20,所以AC=AB=20.在△ABC中,由余弦定理得:BC2=AC2+AB2-2AC·ABcos∠CAB=400+400-2×20×20cos 30°=400(2-),故BC===10(-).2.(5分)(2018·广州模拟)如图,在海岸线上相距2千米的A,C两地分别测得小岛B在A的北偏西α方向,在C的北偏西-α方向,且cos α=,则B,C之间的距离是( )A.30千米B.30千米C.12千米D.12千米【解析】选D.依题意得,AC=2,sin∠BAC=sin=cos α=,sin B=sin=cos 2α=2cos2α-1=,在△ABC中,由正弦定理得,BC===12,则B与C之间的距离是12千米.【变式备选】(2018·长沙模拟)地面上有两座塔AB,CD,相距120米,一人分别在两塔底测得一塔顶的仰角是另一塔顶仰角的2倍,在两塔底连线的中点O处测得塔顶的仰角互为余角,则两塔的高度分别为( )A.50米,100米B.40米,90米C.40米,50米D.30米,40米【解析】选B.设高塔高H,矮塔高h,在矮塔下望高塔仰角为α,在O点望高塔仰角为β.分别在两塔底部测得一塔顶仰角是另一塔顶仰角的两倍,所以在高塔下望矮塔仰角为,即tan α=,tan=,根据倍角公式有=①,在塔底连线的中点O测得两塔顶的仰角互为余角,所以在O点望矮塔仰角为-β,即tan β=,tan=,根据诱导公式有=②,联立①②得H=90,h=40.即两座塔的高度为40米,90米.3.(5分)(2018·宜昌模拟)如图所示,在海岛A上有一座海拔千米的山峰,山顶上设有一座观察站P,一艘轮船沿一固定方向匀速航行,上午10:00时,测得此船在岛北偏东20°且俯角为30°的B处,到10:10时,又测得该船在岛北偏西40°且俯角为60°的C处,则该船的航行速度为________ km/h.【解题指南】在Rt△PAB,Rt△PAC中确定AB,AC的长,进而求得∠CAB的大小,在△ABC中,利用余弦定理求得BC,用路程除以时间即为船的速度.【解析】在Rt△PAB中,∠APB=60°,PA=,所以AB=3.在Rt△PAC中,∠APC=30°,所以AC=1.在△ACB中,∠CAB=20°+40°=60°,所以BC==.则船的航行速度为÷=6(km/h).答案:64.(12分)如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?【解析】由题意知AB=5(3+)海里,因为∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,所以∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BD=====10(海里).又因为∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=20海里,在△DBC中,由余弦定理得CD2=BD2+BC2-2BD·BC·cos∠DBC=300+1 200-2×10×20×=900,所以CD=30(海里),所以需要的时间t==1(小时).即该救援船到达D点需要1小时.5.(13分)如图,某人位于塔AB的正东方向上的C处,在与塔垂直的水平面内沿南偏西60°的方向以每小时6千米的速度步行了1分钟以后到达D处,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角∠AEB=α,α的最大值为60°.(1)求该人沿南偏西60°的方向走到仰角α最大时,走了几分钟.(2)求塔的高AB.【解析】(1)依题意知,在△DBC中,∠BCD=30°,∠DBC=180°-∠DBF=180°-45°=135°,CD=6 000×=100(米),∠BDC=180°-135°-30°=15°,由正弦定理得=,所以BC=====50(-1)(米).在Rt△ABE中,tan α=.因为AB为定长,所以当BE的长最小时,α取最大值60°,这时BE⊥CD.当BE⊥CD时,在Rt△BEC中,EC=BC·cos∠BCE=50(-1)×=25(3-)(米).设该人沿南偏西60°的方向走到仰角α最大时,走了t分钟,则t=×60=×60=(分钟).(2)由(1)知当α取得最大值60°时,BE⊥CD,在Rt△BEC中,BE=BC·sin∠BCD,所以AB=BE·tan 60°=BC·sin∠BCD·tan 60°=50(-1)××=25(3-)(米).即所求塔高AB为25(3-)米.- 11 -。

相关文档
最新文档