《相似图形》习题1

合集下载

初三图形的相似练习题

初三图形的相似练习题

初三图形的相似练习题在初三的数学学习中,相似形是一个非常基础且重要的概念。

了解并掌握相似形的性质和运用方法,对于解决各种几何问题起到至关重要的作用。

为了帮助同学们更好地理解和掌握相似形的知识,下面将提供一些相似形的练习题供大家练习。

练习题1:已知图形ABCD与图形EFGH是相似形,已知AB=4cm,EF=6cm,BC=5cm,FG=10cm。

求图形EFGH的其他边长。

解答:由相似形的性质可知,相似形的对应边长之间的比例相等。

设ED为图形ABCD与图形EFGH对应的边长。

根据比例关系可以得到:AB/EF = BC/FG = CD/GH = AD/EH代入已知条件,得到:4/6 = 5/10 = CD/10解方程可得:CD = 20/3 cm由此可知,图形EFGH的其他边长为:EF = 6cm,FG = 10cm,GH = 2*(20/3) = 40/3 cm,EH = 2*4 = 8cm。

练习题2:已知图形PQRS与图形IJKL是相似形,已知PQ=8cm,IJ=12cm,PR=10cm,KL=15cm。

求图形PQRS的其他边长。

解答:同样地,根据相似形的性质可得到:PQ/IJ = PR/KL = PS/JL = QS/KI代入已知条件,得到:8/12 = 10/15 = PS/15解方程可得:PS = 20/3 cm由此可知,图形PQRS的其他边长为:PQ = 8cm,PR = 10cm,RS = 2*(20/3) = 40/3 cm,QS = 2*8 = 16cm。

练习题3:已知图形WXYZ与图形ABCD是相似形,已知WX=12cm,AB=8cm,YZ=16cm。

求图形WXYZ的其他边长。

解答:同样地,根据相似形的性质可得到:WX/AB = WY/AD =XZ/BC = YZ/CD代入已知条件,得到:12/8 = WY/AD = XZ/BC = 16/CD解方程可得:CD = 32/3 cm由此可知,图形WXYZ的其他边长为:WX = 12cm,XY = 2*(32/3) = 64/3 cm,YZ = 16cm,ZW = 2*12 = 24cm。

初中数学湘教版九年级上册第3章 图形的相似3.5 相似三角形的应用-章节测试习题(1)

初中数学湘教版九年级上册第3章 图形的相似3.5 相似三角形的应用-章节测试习题(1)

章节测试题1.【题文】如图,一块材料的形状是锐角三角形ABC,边BC=120 mm,高AD=80 mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【答案】48 mm.【分析】本题考查了正方形的性质、相似三角形的应用,注意数形结合的运用是解题关键.根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”,设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】∵四边形EGFH为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为x mm,则KD=EF=x mm,AK=(80﹣x) mm,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴,∴,解得x=48.答:正方形零件的边长为48 mm.2.【答题】如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A. 32米B. 米C. 36米D. 米【答案】A【分析】本题考查相似三角形的应用.【解答】∵BC⊥CA,MN⊥AN,∴∠C=∠MNA=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA. ∴,即,∴MN=32(m),∴楼房MN的高度为32m.选A.3.【答题】如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A. 17.5mB. 17mC. 16.5mD. 18m【答案】A【分析】本题考查相似三角形的应用.【解答】∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,选A.4.【答题】如图为一座房屋屋架结构示意图,已知屋檐AB=BC,横梁EF∥AC,点E为AB的中点,且BD⊥EF,屋架高BD=4m,横梁AC=12m,则支架DF长为()m.A. 2B. 2C.D. 2【答案】C【分析】本题考查相似三角形的应用.【解答】∵AB=BC,BD⊥EF,∴AD=DC=6 m,∴AB(m),∵EF∥AC,∴△BEF∽△BAC,∴,∵点E为AB的中点,∴F是BC的中点,∴FD是△ABC的中位线,∴DF AB(m).选C.5.【答题】如图,某人拿着一把分度值为厘米的刻度尺,站在距电线杆25m的地方,手臂向前伸直,将刻度尺竖直,看到刻度尺上14cm的长度恰好遮住电线杆.已知臂长为70cm,则电线杆的高是()A. 5mB. 6mC. 125mD. 4m【答案】A【分析】本题考查相似三角形的应用.【解答】作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴,∵AM=0.7 m,AN=25 m,BC=0.14 m,∴EF5(m).选A.6.【答题】如图是用卡钳测量容器内径的示意图,现量得卡钳上A,D两个端点之间的距离为10cm,,则容器的内径是()A. 5cmB. 10cmC. 15cmD. 20cm【答案】C【分析】本题考查相似三角形的应用.【解答】连接AD、BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴,∵A,D两个端点之间的距离为10 cm,∴BC=15 cm,选C.7.【答题】如图,A,B两点被一河隔开,为了测量A,B两点间的距离,小明过点B作BF⊥AB,在BF上取两点C,D,使BC=2CD,过点D作DE⊥BF且使点A,C,E在同一条直线上,测得DE=20m,则A,B两点间的距离是()A. 60mB. 50mC. 40mD. 30m【答案】C【分析】本题考查相似三角形的应用.【解答】∵AB⊥BF,ED⊥BF,∴AB∥DE,∴△ABC∽△EDC,∴,即,解得:AB=40,选C.8.【答题】《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么AC为______米.【答案】7【分析】本题考查相似三角形的应用.【解答】∵BD⊥AB,AC⊥AB,∴BD∥AC,∴△ACE∽△BDE,∴,∴,∴AC=7(米),故答案为7.9.【答题】如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为______米.【答案】2.5【分析】本题考查相似三角形的应用.【解答】作BF⊥OE于点F交CD于点G,根据题意得:AB=CG=OF=1.5米,BF=10米,BG=5米,DG=CD﹣CG=2﹣1.5=0.5米,∵DG∥EF,∴,∴,解得EF=1,∴EO=EF+OF=1+1.5=2.5(米),故答案为2.5.10.【答题】如图,小亮要测量一座钟塔的高度CD,他在与钟塔底端处在同一水平面上的地面放置一面镜子,并在镜子上做一个标记E,当他站在B处时,看到钟塔的顶端在镜子中的像与标记E重合.已知B、E、D在同一直线上,小亮的眼睛离地面的高度AB=1.6 m,BE=1.4 m,DE=14.7 m,则钟塔的高度CD为______m.【答案】16.8【分析】本题考查相似三角形的应用.【解答】∵AB⊥BD,CD⊥BD,∴∠ABE=∠CDE=90°,∵∠AEB=∠CED,∴△ABE∽△CDE,∴,∴,∴CD=16.8 m,故答案为16.8.11.【答题】如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.【答案】8【分析】本题考查相似三角形的应用.【解答】如图,∠CPD=90°,QC=4 m,QD=16 m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴,即,∴PQ=8,即旗杆的高度为8 m.故答案为8.12.【题文】某班在学习《利用相似三角形测高》时开展了“测量学校操场上旗杆的高度”的活动.小明将镜子放在离旗杆32 m的点C处(即AC=32 m),然后沿直线AC 后退,在点D处恰好看到旗杆顶端B在镜子中的像与镜子上的标记重合(如图),根据物理学知识可知:法线l⊥AD,∠1=∠2.若小明的眼睛离地面的高度DE为1.5 m,CD=3 m,求旗杆AB的高度.(要有证明过程,再求值)【答案】16 m.【分析】本题考查相似三角形的应用.【解答】∵法线l⊥AD,∠1=∠2,∴∠ECD=∠BCA,又∵∠EDC=∠BAC=90°,∴△ECD∽△BCA,∴,∵DE=1.5 m,CD=3 m,AC=32 m,∴,解得AB=16,答:旗杆AB的高度为16 m.13.【题文】“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.【答案】9.6米.【分析】本题考查相似三角形的应用.【解答】设NB的长为x米,则MB=x+1.1+2.8﹣1.5=(x+2.4)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴.同理,△EMF∽△AMB,∴.∵EF=CD,∴,即,解得x=6.6.∵,∴.解得AB=9.6.答:大树AB的高度为9.6米.14.【答题】如图,小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜.手电筒的灯泡位于点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处.点E到地面的高度ED=3.5m,点F到地面的高度FC=1.5m,灯泡到木板的水平距离AC=5.4m,墙到木板的水平距离为CD=4m.已知光在镜面反射中的入射角等于反射角,图中点A、B、C、D在同一水平面上,则灯泡到地面的高度GA为()A. 1.2mB. 1.3mC. 1.4mD. 1.5m【答案】A【分析】本题考查相似三角形的应用.【解答】由题意可得:FC∥DE,则△BFC∽BED,故,即,解得BC=3,则AB=5.4﹣3=2.4(m),∵光在镜面反射中的入射角等于反射角,∴∠FBC=∠GBA,又∵∠FCB=∠GAB,∴△BGA∽△BFC,∴,∴,解得AG=1.2(m),选A.15.【答题】如图,顽皮的小聪在小芳的作业本上用红笔画了个“×”(作业本中的横格线都平行,且相邻两条横格线间的距离都相等),A、B、C、D、O都在横格线上,且线段AD、BC交于点O.若线段AB=4cm,则线段CD长为()A. 4cmB. 5cmC. 6cmD. 8cm【答案】C【分析】本题考查相似三角形的应用.【解答】如图,过点O作OE⊥AB于点E,OF⊥CD于点F,则OE、OF分别是△AOB、△DOC的高线,∵练习本中的横格线都平行,∴△AOB∽△DOC,∴,即,∴CD=6cm.选C.16.【答题】如图,有一块直角边AB=4cm,BC=3cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A. B. C. D.【答案】D【解答】如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC•AB•BC•AC•BP,∴BP.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴.设DE=x,则,解得x,选D.17.【答题】《九章算术》中记载:“今有邑方不知大小,各开中门,出北门四十步有木,出西门八百一十步见木,问:邑方几何?”译文:如图,一座正方形城池北、西边正中A、C处各开一道门,从点A往正北方向走40步刚好有一棵树位于点B处,若从点C 往正西方向走810步到达点D处时正好看到此树,则正方形城池的边长为()A. 360步B. 270步C. 180步D. 90步【答案】A【解答】如图,设正方形城池的边长为x步,则AE=CE x,∵AE∥CD,∴∠BEA=∠EDC,∴Rt△BEA∽Rt△EDC,∴,即,∴x=360,即正方形城池的边长为360步.选A.18.【答题】如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB是()A. 4米B. 4.5米C. 5米D. 5.5米【答案】D【分析】本题考查相似三角形的应用.【解答】在△DEF和△DBC中,,∴△DEF∽△DBC,∴,即,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.选D.19.【答题】如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A. 4mB. mC. 5mD. m【答案】B【分析】本题考查相似三角形的应用.【解答】∵AB∥CD,∴△ABM∽△DCM,∴(相似三角形对应高的比等于相似比),∵MH∥AB,∴△MCH∽△ACB,∴,∴,解得MH.选B.20.【答题】用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压______cm.【答案】32【分析】本题考查相似三角形的应用.【解答】如图,AM、BN都与水平线垂直,即AM∥BN;易知△APM∽△BPN;∴,∵杠杆的动力臂AP与阻力臂BP之比为4:1,∴,即AM=4BN;∴当BN≥8cm时,AM≥32cm;故要使这块石头滚动,至少要将杠杆的端点A向下压32cm.故答案为32.。

(必考题)初中数学九年级数学上册第四单元《图形相似》检测卷(有答案解析)(1)

(必考题)初中数学九年级数学上册第四单元《图形相似》检测卷(有答案解析)(1)

一、选择题1.如图,在平行四边形ABCD 中,E 是DC 上的点,:3:2DE EC =,连接AE 交BD 于点F ,则DEF 与DAF △的面积之比为( )A .2:5B .3:5C .4:25D .9:252.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为16米,若小明的眼睛与地面距离为1.5米,则旗杆的高度为( )A .643米 B .12米 C .9米 D .163米 3.下列说法中,正确的说法有( ) ①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③两个相似三角形的周长的比为23,则它们的面积的比为49; ④对角线互相垂直的平行四边形为正方形;⑤对角线垂直的四边形各边中点得到的四边形是矩形.A .1个B .2个C .3个D .4个4.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG 、GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足512MG GN MN MG -==,后人把512-这个数称为“黄金分割数”,把点G 称为线段MN 的“黄金分割点”.如图,在△ABC 中,已知AB =AC =3,BC =4,若点D 是边BC 边上的一个“黄金分割点”,则△ADC 的面积为( )A .55B .355C .205-D .1045-5.如图,在ABC中,中线BE,CD相交于点O,连接DE,给出下列结论∶①12DEBC=;②12SS=△DOE△COB;③AD OEAB OB=;④13COEADCSS=△△;⑤23BDOBCOSS=△△.其中不正确的个数是()A.1 B.2 C.3 D.46.点B是线段AC的黄金分割点,且AB<BC.若AC=4,则BC的长为()A.252+B.252-C.512-D.51-7.如图,已知∠1=∠2,那么添加一个条件后,仍不能判定△ABC与△ADE相似的是()A.∠C=∠AED B.∠B=∠D C.AB BCAD DE=D.AB ACAD AE=8.如图,在正方形ABCD中,BPC△是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①2BE AE=;②DFP BPH∽△△;③PFD PDB∽△△;④2DP PH PC=⋅.其中正确的是()A.①②③B.①③④C.②③④D.①②④9.若34,x y=则xy=()A.34B.74C.43D.7310.若ad=bc,则下列不成立的是( )A .a cb d= B .a c ab d b-=- C .a b c db d++= D .1 111a cb d ++=++ 11.如图,四个全等的直角三角形拼成“赵爽弦图”得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO GP =,下列结论:①GOP BCP ∠=∠,②BC BP =,③:21BG PG =+,④DP PO =.正确的是( )A .②③④B .①③④C .①②④D .①②③12.如图,在四边形ABCD 中,如果ADC BAC ∠=∠,那么下列条件中不能判定ADC 和BAC 相似的是( )A .DAC ABC ∠=∠B .CA 是BCD ∠的平分线C .AD DCAB AC= D .2AC BC CD =⋅二、填空题13.如图,△ABC 是测量小玻璃管内径的量具,AB 的长为18cm ,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处(D 、E 分别在AC 、BC 上,且DE ∥AB ),那么小玻璃管内径DE 是_____cm .14.如图,小静在横格纸上画了两条线段AB ,CD ,点A ,D 在同一条格线上,点B ,C 在同一条格线上,AB 与CD 的交点也在格线上,横格纸的横线平行且相邻横线间的距离相等,若4=AD ,则BC =______.15.如图,一组平行线L1、L2、L3截两相交直线L4、L5,则AOED=____.16.小明和他的同学在太阳下行走,小明身高1.4米,他的影长为1.75米,他同学的身高为1.6米,则此时他的同学的影长为__________米.17.已知点P在线段AB上,且AP∶PB=2∶3,则PB∶AB=____.18.如图,若ABC与DEF都是正方形网格中的格点三角形(顶点在格点上),则DEF与ABC的周长比为_________.19.在ABC中,D、E分别是AB、AC的中点,若ADE面积为14,则四边形DBCE的面积为_____.20.如图,4AB=,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,12BE DB=,作EF DE⊥并截取EF DE=,连结AF并延长交射线BM于点C.设BE x=,BC y=,则y关于x的函数解析式是__________.三、解答题21.如图,已知ADB A C ∠=∠+∠.(1)求证:CBDCAB ;(2)若1,2CD AD ==,求CB 的长.22.如图1,ABC 中,ACB 90∠=︒,D 为AB 上的一点,以CD 为直径的O 交BC 于E ,连接AE 交CD 于G ,交O 于F ,连接DF ,BAC EFD ∠=∠.(1)求证:AB 与O 相切;(2)如图2,若AF:FG 3:2=, ①若6AF =,求线段CG 的长; ②求tan CAE ∠的值.23.如图,在△ABC 中,∠C =∠ADE ,AB =3,AD =2,CE =5, 求证:(1)△ADE ∽△ACB ; (2)求AE 的长.24.如图,小明为了测量大树AB 的高度,在离B 点21米的N 处放了一个平面镜,小明沿BN 方向后退1.4米到D 点,此时从镜子中恰好看到树顶的A 点,已知小明的眼睛(点C )到地面的高度CD 是1.6米,求大树AB 的高度.25.如图,小军、小丽、小华利用晚间放学时间完成一个综合实践活动,活动内容是测量人行路上的路灯高度.小军和小丽分别站在路灯的两侧,小军站在水平地面上的点A 处,小丽站在点C 处,这时小军的身高AB 形成的影子为AE ,小丽身高CD 形成的影子为CF .(1)请画图确定灯泡P 的位置(2)已知小军和小丽的身高分别为1.8米和1.6米,小华测得小军和小丽在路灯下的影子AE 和CF 分别为1米和2米,小军和小丽之间的距离AC 为10米,点E ,A ,C ,F 在同一条直线上,请帮助他们3人求出路灯的高度.26.如图,ABC 的顶点坐标分别为()1,3A 、()4,2B 、()2,1C . (1)以原点O 为位似中心,在原点另一侧画出111A B C △,使1112AB A B = (2)写出1A 的坐标______. (3)111A B C △的面积是______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由平行四边形的性质得出CD ∥AB ,进而得出△DEF ∽△BAF ,再利用相似三角形的性质可得35EF DE AF BA ==,然后利用高相同的三角形面积比等于底的比得出结果. 【详解】解:∵四边形ABCD 为平行四边形, ∴CD ∥AB ,∴∠EDF=∠ABF ,∠DEF=∠BAF , ∴△DEF ∽△BAF . ∵DE :EC=3:2,∴33325DE BA ==+, ∴35EF DE AF BA ==, 设点D 到AE 的距离为h ,∴D 132152DEF AFEF hS S AF AF E h F ⋅===⋅. 故选择:B . 【点睛】本题考查了相似三角形的性质与判定及平行四边形的性质,解题的关键是掌握同高三角形的面积比等于底的比.2.B解析:B 【分析】如图,BC=2m ,CE=16m ,AB=1.5m ,利用题意得∠ACB=∠DCE ,则可判断△ACB △DCE ,然后利用相似比计算出DE 的长. 【详解】解:如图,BC=2m ,CE=16m ,AB=1.5m , 由题意得ACB DCE ∠=∠,ACB DCE ∴,AB BC DE CE ∴=,即1.52=16DE , 12DE m ∴=,∴旗杆的高度为12m .故选:B ..【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度,利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.3.C解析:C 【分析】根据矩形的判定定理、一元二次方程的解法、 【详解】解:①对角线互相平分且相等的四边形是矩形,故①错误; ②一元二次方程x 2-3x -4=0 (x -4)(x +1)=0 x -4=0或x =1=0x 1=4,x 2=-1,故②正确;③两个相似三角形的周长的比为23,则它们的面积的比为22()349=,故③正确;④对角线相等且互相垂直的平行四边形为正方形,故④错误; ⑤对角线垂直的四边形各边中点得到的四边形是矩形,说法正确. 故选:C 【点睛】本题考查的是命题的真假判断,掌握矩形的判定定理、一元二次方程的解法、中点四边形的性质、矩形、菱形和正方形的判断是解题的关键.4.A解析:A 【分析】作AF ⊥BC ,根据等腰三角形ABC 的性质求出AF 的长,再根据黄金分割点的定义求出CD 的长度,利用三角形面积公式即可解题. 【详解】解:过点A 作AF ⊥BC , ∵AB=AC , ∴BF=12BC=2, 在Rt ABF ,AF=2222325AB BF -=-=,∵D 是边BC 的两个“黄金分割”点, ∴512CD BC -=即5142CD-=, 解得CD=252-,∴12ADCC AF SD ⨯⨯==()125252⨯-⨯=55-, 故选:A .【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DC 和AF 的长是解题的关键.5.B解析:B 【分析】根据中位线的性质,//DE BC ,通过证明DOE COB △∽△,得DOE COBSS;根据相似三角形性质,通过证明ADE ABC △△∽,证得AD OEAB OB=;结合点D 是AB 的中点,点E 是AC 的中点,通过三角形面积关系计算,即可得到COE ADC S S △△,同理计算得BDOBCOS S △△,即可得到答案. 【详解】根据题意得:点D 是AB 的中点,点E 是AC 的中点 ∴DE 是ABC 的中位线 ∴12DE BC =,即①结论正确; 又∵DE 是ABC 的中位线∴//DE BC∴DEO CBO ∠=∠,EDO BCO ∠=∠ ∴DOE COB △∽△∴12OE OD DE OB OC BC ===,214DOE COBSDE SBC ⎛⎫== ⎪⎝⎭,即②结论错误; 又∵//DE BC∴ADE ABC =∠∠,AED ACB ∠=∠ ∴ADE ABC △△∽∴12AD DE AB BC == ∴AD OEAB OB=,即③结论正确; ∵12OE OB = ∴13OE OE BE OB OE ==+ ∴13COE BEC S OE S BE ==△△ ∵点D 是AB 的中点,点E 是AC 的中点 ∴12ADC ABC S AD S AB ==△△,12BEC ABC S CE S AC ==△△ ∴111326COE COE BEC ABC BEC ABC S S S S S S =⨯=⨯=△△△△△△ ∴1632COECOE ABC ADCS S S S ==△△△△,即④结论正确; ∵12OD DE OC BC == ∴12BDO BCO S OD S OC ==△△,即⑤结论错误; 故选:B . 【点睛】本题考查了三角形中位线、相似三角形、平行线的知识;解题的关键是熟练掌握三角形中位线、相似三角形的性质,从而完成求解.6.B解析:B 【分析】根据黄金分割的定义可得出较长的线段BC=12AC ,将AC=4代入即可得出BC 的长度. 【详解】 解:∵点B 是线段AC 的黄金分割点,且AB <BC ,∴AC , ∵AC=4,∴BC=2.故选:B .【点睛】本题考查了黄金分割的定义:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB的黄金分割点.其中AB≈0.618AB ,并且线段AB 的黄金分割点有两个. 7.C解析:C【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【详解】解:∵∠1=∠2∴∠DAE =∠BAC∴A ,B ,D 都可判定△ABC ∽△ADE选项C 中不是夹这两个角的边,所以不相似,故选:C .【点睛】本题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.8.D解析:D【分析】由正方形ABCD ,与BPC △是等边三角形的性质求解,求解30,EBA ∠=︒ 从而可判断①;证明60,PFE BPC ∠=∠=︒ =15,PBH PDF ∠=∠︒ 可判断②;由15,30,15,60,PBD BDP PDF PFD ∠=︒∠=︒∠=︒∠=︒ 可判断③; 证明30,PDH PCD ∠=︒=∠ 再证明,PDH PCD ∽ 可得,DP PH PC PD=从而可判断 ④. 【详解】 解: 正方形ABCD ,90,,ABC A BCD ADC CB CD AB ∴∠=∠=∠=∠=︒==BPC △是等边三角形,60,PBC PCB BPC ∴∠=︒=∠=∠906030,EBA ∴∠=︒-︒=︒2,BE AE ∴= 故①符合题意;正方形ABCD ,//,45,AD BC CBD ∴∠=︒60,PFE PCB ∴∠=∠=︒60,PFE BPC ∴∠=∠=︒BPC △是等边三角形,,PC BC CD ∴==而906030,PCD ∠=︒-︒=︒()11803075,2CDP ∴∠=︒-︒=︒ 907515,PDF ∴∠=︒-︒=︒由60,45,PBC CBD ∠=︒∠=︒15,PBH ∴∠=︒,PBH PDF ∴∠=∠,BPH DFP ∴∽ 故②符合题意;15,30,15,60,PBD BDP PDF PFD ∠=︒∠=︒∠=︒∠=︒,PFD BPD ∴不相似,故③不符合题意;正方形ABCD ,45CDB ∴∠=︒,90451530,PDH PCD ∴∠=︒-︒-︒=︒=∠,DPH CPD ∠=∠,PDH PCD ∴∽,DP PH PC PD∴= ∴ 2DP PH PC =⋅,故④符合题意,综上:符合题意的有:①②④.故选:.D【点睛】本题考查的是等边三角形的性质,含30的直角三角形的性质,正方形的性质,相似三角形的判定与性质,掌握以上知识是解题的关键.9.C解析:C【分析】根据比例的性质,两内项之积等于两外项之积进行计算即可求解.【详解】由比例的性质,由34,x y =得43x y =. 故选C .【点睛】本题考查了比例的性质,利用比例的性质是解题关键. 10.D解析:D【分析】根据比例和分式的基本性质,进行各种演变即可得到结论.【详解】A 由a c b d=可以得到ad=bc ,故本选项正确,不符合题意; B 、由a c ab d b -=-可得:(a-c )b=(b-d )a ,即ad=bc ,故本选项正确,不符合题意; C 、由a b c d b d ++=可得(a+b )d=(c+d )b ,即ad=bc ,故本选项正确,不符合题意; D 、由1?111a cb d ++=++,可得(a+1)(d+1)=(b+1)(c+1),即ad+a+d=bc+c ,不能得到ad=bc ,故本选项错误,符合题意;故选:D .【点睛】本题考查了比例线段,根据比例的性质能够灵活对一个比例式进行变形.11.D解析:D【分析】由正方形的性质证明180BOG BCG ∠+∠=︒,结合180BOG GOP ∠+∠=︒, 从而可判断①;由GO GP =,可得,GOP GPO ∠=∠从而可得,GPO BCP ∠=∠可判断②;设,,BG a CG b == 则,DH CG BF b === 再证明,DHP BGP ∽ 可得,DH HP BG PG= 求解2,b HP a= 再证明,PG b = 利用,HG HP PG =+ 列方程2,b a b b a -=+解关于a 的方程并检验即可判断③;证明,DHP CHD ∽求解DP = 再证明,BCP GPO ∽ 求解PO = 由,a b ≠ 可判断④,从而可得答案.【详解】解: 正方形ABCD 与正方形EFGH .45,45,DBC EGF ∴∠=︒∠=︒90,BGC ∠=︒4590135,EGC ∴∠=︒+︒=︒36036045135180,BOG BCP OBC OGC ∴∠+∠=︒-∠-∠=︒-︒-︒=︒180,BOG GOP ∠+∠=︒∴ GOP BCP ∠=∠,故①符合题意;GO GP =,,GOP GPO ∴∠=∠,GPO BCP ∴∠=∠,BC BP ∴= 故②符合题意;正方形,FGHE//,EH FG ∴,DHP BGP ∴∽,DH HP BG PG∴= 设,,BG a CG b == 则,DH CG BF b ===,,BC BP BG PC =⊥,PG CG b ∴==,b HP a b∴= 2,b HP a∴= ,FG HG HP PG a b ==+=-2,b a b b a∴-=+ 2220,a ba b ∴--=(21,2b a b ±∴==±经检验:(1a b =-不合题意,舍去,(1,a b ∴=+(11b BG a PG b b∴===+ 故③符合题意;,,BC BP BG CP =⊥,CBG PBG ∴∠=∠//,DE BG,HDP PBG ∴∠=∠,CBG DCH ∠=∠,HDP DCH ∴∠=∠,DHP CHD ∠=∠,DHP CHD ∴∽,DH DP CH CD∴= ,,DH b CH BG a ===CD ∴=b a ∴=DP ∴= 45,,,CBP PGO BC BP GP GO ∠=︒=∠==,BC BP PG GO∴= ,BCP GPO ∴∽ ,BC CP GP PO∴=22,BC CD PC CG b ====2,b b PO=PO ∴=,a b ≠,DP PO ∴≠ 故④不符合题意;故选:.D【点睛】本题考查的是四边形的内角和定理,等腰三角形的判定与性质,勾股定理的应用,正方形的性质,二次根式的运算,一元二次方程的解法,三角形相似的判定与性质,掌握以上知识是解题的关键.12.D解析:D【分析】已知∠ADC =∠BAC ,则A 、B 选项可根据有两组角对应相等的两个三角形相似来判定;C 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;D 选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似.【详解】在△ADC 和△BAC 中,∠ADC =∠BAC ,如果△ADC ∽△BAC ,需满足的条件有:①∠DAC =∠ABC 或AC 是∠BCD 的平分线; ②AD DC AB AC=; 故选:D .【点睛】 此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.二、填空题13.12【分析】利用平行证明△CDE ∽△CAB 根据相似三角形对应边成比例的性质即可求DE 长【详解】∵DE ∥AB ∴△CDE ∽△CAB ∴即解得:cm 故答案为:12【点睛】本题考查相似三角形的判定及其性质解题解析:12【分析】利用平行证明△CDE ∽△CAB ,根据相似三角形对应边成比例的性质即可求DE 长.【详解】∵DE ∥AB ,∴△CDE ∽△CAB , ∴=CD DE CA AB ,即()6020=6018DE - 解得:12DE =cm故答案为:12【点睛】本题考查相似三角形的判定及其性质,解题的关键是熟练掌握相似三角形的判定及其性质:相似三角形对应边成比例.14.6【分析】过点O 作OE ⊥AD 于点EOF ⊥CB 于点F 则EOF 三点共线根据平行线分线段成比例可得代入计算即可解答【详解】解:如图过点O 作OE ⊥AD 于点EOF ⊥CB 于点F 则EOF 三点共线∵横格纸的横线平行解析:6【分析】过点O 作OE ⊥AD 于点E ,OF ⊥CB 于点F ,则E 、O 、F 三点共线,根据平行线分线段成比例可得AD OE BC OF=,代入计算即可解答.【详解】解:如图,过点O 作OE ⊥AD 于点E ,OF ⊥CB 于点F ,则E 、O 、F 三点共线,∵横格纸的横线平行且相邻横线间的距离相等, ∴AD OE BC OF =, 即423BC =, ∴CD=6.故答案为:6.【点睛】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.15.【分析】根据L1//L2//L3证明△AOF ∽△EOB ∽△DOC 根据相似三角形的性质即可得到结论【详解】解:∵L1//L2//L3∴∠AFO=∠OCD ∠AOF=∠COD ∴△AOF ∽△DOC 同理△BO 解析:AF CD BE- 【分析】根据L 1//L 2//L 3,证明△AOF ∽△EOB ∽△DOC ,根据相似三角形的性质即可得到结论.【详解】解:∵L 1//L 2//L 3,∴∠AFO=∠OCD ,∠AOF=∠COD∴△AOF ∽△DOC ,同理,△BOE ∽△COD ,△AOF ∽△EOB , ∴AO AF OE BE =,即AO BE AF OE = ∴OE BE OD CD =, ∴OE BE OE ED CD=+ ∴OE CD BE OE BE ED ⋅=⋅+⋅∴()AO AF OE OE CD BE OE AF OE BE ED BE BE BE OE AF C CD BE B D E-=÷=⋅=-- 故答案为:AF CD BE - 【点睛】此题主要考查了相似三角形的判定与性质,熟练掌握相关定理是解答此题的关键. 16.【分析】在同一时刻物高和影长成比例列比例式求解即可【详解】解:设他的同学的影长为xm ∵同一时刻物高与影长成比例∴解得x=2经检验x=2是原方程的解∴他的同学的影长为2m 故答案为:2【点睛】此题主要考解析:【分析】在同一时刻物高和影长成比例,列比例式求解即可.【详解】解:设他的同学的影长为xm ,∵同一时刻物高与影长成比例,∴1.4 1.61.75x=, 解得,x=2, 经检验,x=2是原方程的解,∴他的同学的影长为2m ,故答案为:2.【点睛】此题主要考查了同一时刻物高与影长成比例,利用同一时刻物高与影长成比例列出方程,通过解方程求出的影长,体现了方程的思想.17.3∶5(或)【分析】根据比例的性质直接求解即可【详解】解:由题意AP:PB=2:3∴PB:AB=PB:(AP+PB)=3:(2+3)=3:5;故答案是:3:5(或)【点睛】本题主要考查比例问题关键是解析:3∶5(或35) 【分析】根据比例的性质直接求解即可.【详解】解:由题意AP:PB=2:3,∴PB :AB = PB :(AP+PB)=3:(2+3)=3:5;故答案是:3:5(或35). 【点睛】本题主要考查比例问题,关键是根据比例的性质解答. 18.【分析】设正方形网格的边长为1根据勾股定理求出△EFD △ABC 的边长运用三边对应成比例则两个三角形相似这一判定定理证明△EDF ∽△BAC 即可解决问题【详解】解:设正方形网格的边长为1由勾股定理得:D【分析】设正方形网格的边长为1,根据勾股定理求出△EFD 、△ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△EDF ∽△BAC ,即可解决问题.【详解】解:设正方形网格的边长为1,由勾股定理得:DE 2=22+22,EF 2=22+42,∴DE =EF =同理可求:AC,BC∵DF =2,AB =2,∴1EF DE DF BC AB AC === ∴△EDF ∽△BAC ,∴DEF 与ABC,.【点睛】本题主要考查了勾股定理和相似三角形的判定及其性质,熟练掌握相似三角形的判定与性质是解题的关键.19.【分析】先根据三角形的中位线定理可得再根据相似三角形的判定与性质可得由此即可得出答案【详解】在中DE 分别是ABAC 的中点即面积为面积为则四边形DBCE 的面积为故答案为:【点睛】本题考查了三角形的中位 解析:34【分析】 先根据三角形的中位线定理可得1,//2DE BC DE BC =,再根据相似三角形的判定与性质可得14ADE ABC S S =,由此即可得出答案. 【详解】在ABC 中,D 、E 分别是AB 、AC 的中点,1,//2DE BC DE BC ∴=, ADE ABC ∴,214ADE ABC S DE SBC ⎛⎫∴== ⎪⎝⎭,即4ABC ADE S S =△△, ADE 面积为14, ABC ∴面积为1414⨯=, 则四边形DBCE 的面积为13144ABC ADE SS -=-=, 故答案为:34. 【点睛】本题考查了三角形的中位线定理、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键. 20.【分析】作FG ⊥BC 于G 依据已知条件求得△DBE ≌△EGF 得出FG=BE=xEG=DB=2x 然后根据平行线的性质即可求得【详解】解:作FG ⊥BC 于G ∵∠DEB+∠FEC=90°∠DEB+∠BDE=9解析:124x y x =-- 【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG=BE=x ,EG=DB=2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG ,在△DBE 与△EGF 中B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△EGF ,∴EG=DB ,FG=BE=x ,∴EG=DB=2BE=2x ,∴GC=y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC=FG :AB , 即34x y x y-=, ∴124x y x =--. 故答案为:124x y x =--. 【点睛】本题考查了三角形全等的判定和性质,以及平行线的性质,熟练掌握辅助线的做法是解题的关键.三、解答题21.(1)证明见解析;(2)CB =【分析】(1)根据三角形外角的性质易证A DBC ∠=∠,再根据∠C 为公共角,即可证明相似; (2)根据相似三角形对应边成比例,即可求得CB 的值.【详解】解:(1)∵ADB A C ∠=∠+∠,ADB DBC C ∠=∠+∠,∴A DBC ∠=∠,∵∠C=∠C ,∴△CBD ∽△CAB ;(2)∵1,2CD AD ==,∴3AC AD DC =+=,∵△CBD ∽△CAB , ∴CD CB CB AC =, ∴13CB CB =,即CB =. 【点睛】本题考查相似三角形的性质和判定,三角形外角的性质.在证明三角形相似时,不要忽略公共角相等这一条件.22.(1)见解析;(2)①GC =②12. 【分析】(1)由余角的定义得到1290∠+∠=︒,由三角形外角性质得到3+4EFD ∠=∠∠,结合已知条件可证得2=4∠∠,再由同弧所对的圆周角相对可得1=FDC ∠∠,由此证明490FDC ∠+∠=︒即可解题;(2)①连接CF ,由直径所得的圆周角是90°可证90FCD CDF ∠+∠=︒,继而证明FGC CGA ,由相似三角形对应边成比例解得FG CG CG GA =,据此解题即可; ②过点F 作FN CD ⊥,继而证明FCN DFN ,根据相似三角形的性质可得FN CN DN FN =,整理得2FN DN CN =⋅,再证明FGC CGA ,得到2252CG FG =,在Rt FNG 中,根据勾股定理解得222FN FG GN =-,继而得到DN CN ⋅=22FG GN -,由已知条件设2,3GN x ND x ==,CG m =,整理得到22231005m xm x --=,根据公式法解关于字母m 的一元二次方程,得到10,12,6CG x CN x FN DN CN x ===⋅=,最后根据等角的正切值相等解题即可.【详解】解:(1),EFD ECD BAC EFD ∠=∠∠=∠BAC ECD ∴∠=∠90ACB ∠=︒90CEA CAE ∴∠+∠=︒90ECD ACD BAC ACD ∴∠+∠=∠+∠=︒90ADC ∴∠=︒CD AB ∴⊥AB ∴与O 相切;(2)①:3:2,6AF FG AF ==4FG ∴=10AG ∴=连接CFCD 为直径90CFD ∴∠=︒90FCD CDF ∴∠+∠=︒90,CEA CAE CEA CDF ∠+∠=︒∠=∠CAE FCD ∴∠=∠FGC FGC ∠=∠FGC CGA ∴ FG GC CG AG∴= 241040CG FG GA ∴=⋅=⨯=210GC ∴=;②过点F 作FN CD ⊥,AB 与O 相切,AB CD ∴⊥ //FN AB ∴32AF DN FG GN ∴== 设2,3(0)GN x ND x x ==>90CNF FND ∠=∠=︒+=90FCN CFN CFN NFD ∠∠=∠+∠︒ FCN NFD ∴∠=∠FCN DFN ∴FN CN DN FN∴= 2FN DN CN ∴=⋅CAE FCD ∠=∠,FGC FGC ∠=∠FGC CGA ∴FG GC CG AG∴= :3:2AF FG =2252CG FG ∴= 在Rt FNG 中,222FN FG GN =-DN CN ∴⋅=22FG GN -2223()45x CG GN CG x ∴⋅+=- 即2223(2)45x CG x CG x ⋅+=- 设CG m = 22223645xm x m x ∴+=- 即22231005m xm x --= 22,3,105a b x c x ==-=- 222224(3)4(10)255b ac xx x ∴∆=-=--⨯⨯-= 13510425b xx m x a -+∴=== 23554225b x x m x a --===-(舍去)10,12,6CG x CN x FN DN CN x ∴===⋅=61tan 122FN x FCN CN x ∠=== CAE FCN ∠=∠ 2ta 1ta n n FCN CAE ∴∠==∠. 【点睛】本题考查切线的判定与性质、圆周角定理、相似三角形的判定与性质、勾股定理、正切等知识,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)见解析;(2)1【分析】(1)利用“两角法”进行证明;(2)利用(1)中相似三角形的对应边成比例来求AE 的长度.【详解】解:(1)证明:∵∠C =∠ADE ,∠A =∠A ,∴△ADE ∽△ACB(2)解:由(1)知,△ADE ∽△ACB ,则AD AE AC AB=∵AB =3,AD =2,CE =5, ∴253AE AE =+, 得:121,6AE AE ==-(舍去)∴AE 的长是1【点睛】本题考查了相似三角形的判定与性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.24.24米【分析】先证明△CDN ∽△ABN ,再利用相似三角形对应边成比例,进而可求解线段的长.【详解】解:∵AB ⊥DB ,DC ⊥DB ,∴∠CDN=∠ABN=90°,∵∠CND=∠ANB ,∴△CDN ∽△ABN . ∴CD AB DN BN =, 即1.61.421AB =, ∴AB=1.6×21÷1.4=24(米),答:大树AB 的高度为24米.【点睛】此题主要考查了相似三角形的应用,根据已知得出△CDN ∽△ABN 是解题关键. 25.(1)见解析;(2)路灯的高度7.2米.【分析】(1)连接EB ,FD ,延长EB 交FD 的延长线于点P ,点P 即为所求作.(2)过点P 作PH ⊥AC 于H .设AH =x 米,则CH =(10−x )米,利用相似三角形的性质构建方程求解即可.【详解】解:(1)作图如下:P ∴点即为所求灯泡的位置.(2)过P 做PH AC ⊥于点H ,设AH x =米,则(10)CH x =-米,PH AC ⊥,AB AC ⊥,E E ∠=∠,EAB EPH ∴△△∽.EA AB EH PH∴=. 1 1.81x PH∴=+. 1.8(1)PH x ∴=+.同理可证:FDC FPH ∽.CF DC FH PH ∴=. 即2 1.6210 1.8(1)x x =+-+. 解得:3x =. 1 1.813PH ∴=+. 解得:7.2PH =.答:路灯的高度7.2米.【点睛】本题考查作图−应用与设计,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.(1)见解析;(2)()12,6A --;(3)10【分析】(1)根据位似图形的性质即可以原点O 为位似中心,在原点另一侧画出111A B C △,使1112AB A B =; (2)结合(1)即可写出A 1的坐标;(3)根据网格利用割补法即可求出111A B C △的面积.【详解】解:(1)如图,111A B C △为所求.(2)由图可知:()12,6A --.故答案为:()2,6--.(3)111A B C △的面积是:1114626242410222⨯-⨯⨯-⨯⨯-⨯⨯=. 故答案为:10.【点睛】本题考查了作图−位似变换,解决本题的关键是掌握位似图形的性质.。

914第四章:相似图形试题

914第四章:相似图形试题

第一部分:基础复习八年级数学(下)第四章:相似图形一中考要求:1.在丰富的现实情境中,经历对图形相似问题的观察操作思考交流类比归纳等过程,进一步发展学生的探索精神合作意识以及从图形相似的角度提出问题分析问题解决问题的能力,增强应用数学的意识.2.结合现实情境了解线段的比,成比例线段;通过建筑艺术等方面的实例了解黄金分割,并通过图形相似的具体应用,进一步体会数学与自然及人类社会的密切联系,加深对数学的人文价值的理解和认识.3.通过典型实例,了解现实生活中的相似图形.4.了解相似多边形,经历探索相似多边形性质的过程,知道相似多边形的对应角相等,对应边成比例,周长的比等于相似比,面积的比等于相似比的平方;探索并掌握两个三角形相似的条件.5.了解图形的位似,能够利用作位似图形等方法将一个图形放大或缩小;利用图形的相似解决一些实际问题.二中考卷研究(一)中考对知识点的考查:课标中考涉及的知识点如下表:(二)中考热点:1.将图形的折叠问题照镜问题转化为轴对称图形问题及将轴对称问题运用于综合题中是年的热点题型之一.2.将图形的平移和旋转干体的实际问题结合在一起综合考查是年的热点题型.3.运用相似三角形或相似多边形的性质解决实际问题是年的热点题型.三中考命题趋势及复习对策图形的相似这部分内容在中考中大致有两部分,一得利用比例的基本性质进行比例变形,通常以填空选择题为主,在复习中,首先要掌握好比例的基本性质,重视图形的作用,擅于结合图形进行分析运用;二是相似多边形中主要以相似三角形的考查为主,其中包括选择题,填空题,简单的解答题,证明题,这类题一般都是证明相似,比例或等积式,计算线段长或面积,写函数关系式等,一般为8~11分,要想学好这部分内容不但要学会它的判定方法和性质,而且还要熟悉基本图形,能从复杂的图形中分解出基本图形.★★★(I)考点突破★★★考点1:比例基本性质及运用一考点讲解:1.线段比的含义:如果选用同一长度单位得两条线段ab的长度分别为mn,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的一样,两条线段的比ab中,a叫做比的前项b叫做比的后项.注意:(1)针对两条线段,(2)两条线段的长度单位相同,但与所采用的单位无关;(3)其比值为一个不带单位的正数.2.线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段abcd,如果a c=b d或a:b=c:d,那么abcd叫做成比例的项,线段ad叫做比例外项,线段bd 叫做比例内项,线段d叫做abc的第四比例项,当比例内项相同时,即争a bb c或a:b=b:c,那么线段b叫做线段a和c的比例中项.3.比例的性质要注意灵活地运用比例线段的多种不同的变化形式,即由a c=b d推出b d=a c等,但无论怎样变化,它们都保持ad=bc的基本性质不变.4.黄金分割:在线段AB上有一点C,若AC:AB=BC:AC,则C点就是AB的黄金分割点.二经典考题剖析:【考题1-1】(温州模拟,4分)雨后初晴,一学生在运动场上玩耍,从他前面2m远一块小积水处,他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40m,该生的眼部高度是1.5m,那么旗杆的高度是___________m.【考题1-2】(常州模拟,3分)已知三个数1,2, 3 ,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是_____________.【考题1-3】( 南京,3分)在比例尺为1:8000的南京市城区地图上,太平南路的长度约为25 cm ,它的实际长度约为( ) A .320cm B .320m C .2000cm D .2000m 三针对性训练:( 分钟) (答案: )1.AB 两地的实际距离为2500m ,在一张平面图上的距离是5cm ,这张平面地图的比例尺为__________. 2.已知 x y =3,那么x-yy 的值是____________-3.点C 把线段 AB 分成两条线段AC 和BC (AC >BC ),如果点C 是线段AB 的黄金分割点,那么_ ______与_______的比叫做黄金比. 4.已知点C 是线段AB 的黄金分割点,带AC AB ≈0.6 18,那么CBAC的近似值是_______5.两直角边的长分别为3和4的直角三角形的斜边与斜边上的高的比为( )A .5:3B .5:4C .5:12D .25:12 6.如果a= 2,b= 9,c= 6,d= 3, 那么( ) A .abcd 成比例 B .acbd 成比例 C adbc 成比例 Dacdb 成比例7.已知 x :y=3:2,则下列各式中不正确的是( ) A x+y y = 52 B x-y y = 12 C x x+y = 35 D x y-x =318.如果点C 为线段 AB 的黄金分割点,且AC >BC ,则下列各式不正确的是( )A .AB :AC =AC :BC B .ACAB CACAB D .AC ≈0.61 8AB9.创新实验学校设计的矩形花坛的平面图,这个花坛的长为10m ,宽为6m .⑴ 在比例尺为1:50的平面图上,这个矩形花坛的长和宽各是多少cm ?⑵ 在平面图上,这个花坛的长和宽的比是多少? ⑶ 花坛的长和宽的比为多少? ⑷ 你发现这两个比有什么关系? 10 以长为2的定线段AB 为边作正方形ABCD ,取 AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF=PD ,以AF 为边作正方形AMEF ,点M 在AD 上(如图l -4-1).(1)求AMMD 的长; (2)你能说明点M 是线段AD 的黄金分割点吗?考点2:相似三角形的性质和判定一考点讲解: 1.相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形的对应边的比叫做相似比. 2.相似三角形的性质:①相似三角形的对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比.④相似三角形面积的比等于相似比的平方.3.相似三角形的判定:①两角对应相等的两个三角形相似.②两边对应成比例,且夹角相等的两个三角形相似.③三边对应成比例的两个三角形相似.④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.注:①直角三角形被斜边上的高分成的两个三角形和原三角形相似.②在运用三角形相似的性质和判定时,要找对对应角对应边,相等的角所对的边是对应边.4.在这部分的学习过程中就注意以下问题:①要多观察图形,通过具体问题掌握图形相似的有关知识.②在学习“探索三角形相似的条件”时要与“探索三角形全等的条件”进行比较,通过类比提高解决问题的能力,注意尽可能多地挖掘题目中的隐含条件. 二经典考题剖析:【考题2-1】(郸县,3分)下列命题中,正确的是( ) A .所有的等腰三角形都相似 B .所有的直角三角形都相似 C .所有的等边三角形都相似 D .所有的矩形都相似【考题2-2】(海口,3分)如图l -4-2,DE 两点分别在△CAB 上,且 DE 与BC 不平行,请填上一个你认为适合的条件_________,使得△ADE ∽△ABC .【考题2-3】(南山)如图l -4-3,D 是△ABC 的边AB 上的点,请你添加一个条件,使△ACD 与△ABC 相似.你添加的条件是___________三针对性训练:( 45分钟) (答案:251 )1对于下列命题:(1)所有等腰三角形都相似;(2)有一个底角相等的两个等腰三角形相似;(3)有一个角相等的两个等腰三角形相似;(4)顶角相等的两个等腰三角形相似.其中真命题的个数是( )A .l 个B .2个C .3个D .4个 2.△ABC 中,D 是AB 上的一点,再在 AC 上取一点 E ,使得△ADE 与△ABC 相似,则满足这样条件的E 点共有( )A .0个B .1个C .2个D .无数个3.若三角形三边之比为3:5:7,与它相似的三角形的最长边为21㎝,则其余两边之和为()A.24cm B.21cm C.19cm D.9cm4.厨房角柜的台面是三角形,如图l-4-4,如果把各边中点的连线所围成的三角形铺成黑色大理石.(图中阴影部分)其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是()A.14B.41C.13D.345.如图1-4-5,AD⊥BC于D,CE⊥AB 于E,交AD于F,图中相似三角形的对数是()A.3 B.4 C.5 D.66.若△ABC与△A′B′C′相似,△ABC的周长为15,△△A′B′C′的周长为45,则△ABC和△A′B′C′的面积比为__________.7.如图1-4-6,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在C′的位置,则BC′和BC之间的数量关系是___________.8.梯形ABCD中,AB∥DC,CD=8,AB=12,S梯形ABCD=90,两腰的延长线相交于点M,则SΔMCD=___9.在△ABC中,AB=3,AC=4,BC=5,现将它折叠,使B点与C点重合,如图14-7,则折痕DE的长是多少?10 如图l-4-8,在yABCD中,过点B作BE⊥CD,垂足为E,连结AE,F为AE上一点,且∠BFE=∠C.⑴求证:△ABF∽△EAD;⑵若AB=4,∠BA=30°,求AE的长;⑶在⑴⑵的条件下,若AD=3,求BF的长.考点3:相似多边及位似图形一考点讲解:1.定义:对应角相等,对应边成比例的两个多边形叫做相似多边形.2.相似多边形的性质:(1)相似多边形的周长的比等于相似比;(2)相似多边形的对应对角线的比等于相似比;(3)相似多边形的面积的比等于相似比的平方;(4)相似多边形的对应对角线相似,相似比等于相似多边形的相似比.3.位似图形的定义:如果两个图形不仅是相似图形.而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又叫做位似比.4.在学习这部分内容时应注意以下问题:(1)要多观察图形,通过具体问题掌握图形相似的有关知识;(2)在学习“探索多边形相似条件”时要与“探索多边形全等的条件”进行比较,通过类比提高解决问题的能力,注意尽可能多地挖掘题目中的隐含的条件。

初三数学第四章图形的相似章节练习题及答案

初三数学第四章图形的相似章节练习题及答案

初三数学第四章图形的相似章节练习题及答案刚刚学习过图形的相似这一章节的学生们,大家都掌握了吗下面为大家带来一份初三数学上第四章图形的相似的章节练习题,文末附有答案,有需要的同学可以看一看,更多内容欢迎关注!知识点 1 平行线分线段成比例定理1. 如图,已知直线11 II 12 II 13 , AB=4 BC=6 DE=3 则EF为()A.2B.4.5C.6D.82. 如图,已知11 II 12 II 13,如果DE: EF=3: 4, BC=8 那么AB 的长是()A.323B.6C.3D.1633. (乐山中考)如图,1 1 I 12I 13,两条直线与这三条平行线分别交于点A B、C和D E、F.已知ABBC=32则DEDF勺值为()A.32B.23C.25D.354. 如图,已知11 II 12 II 13 , AB=3 DE=2 EF=4,求AC的长.知识点 2 平行线分线段成比例定理勺推论5. (成都中考)如图,在厶ABC中, DE// BC AD=6 DB=3 AE=4 则EC的长为()A.1B.2C.3D.46. 如图,在厶ABC中 , D, E分别在AB, AC上,且DE// BC,贝卩下列不成立的比例式是()A.ADDB=AECEB.ADDB=DEBCC.ADAB=AEACD.ABDB=ACCE7. 已知线段a、b、c,求作线段x使ax二be,下列每个图中的两条虚线都是平行线,则作法正确的是()8. 如图,已知EG/ BC GF// DC, AE=3 EB=2 AF=6 求AD的值.中档题9. (嘉兴中考)如图,直线11 // 12 // 13 ,直线AC分别交11 ,12 ,13 于点A, B,C;直线DF分别交11,12,13 于点D,E,F,AC与DF相交于点H,且AH=2 HB=1 BC=5则DEEF的值为()A.12B.2C.25D.3510. (包头中考)如图,在厶ABC中,点D, E,F分别在边AB AC BC上,且DE// BC EF// AB.若AD=2BD 贝卩CFBF的值为()A.12B.13C.14D.2311. (扬州中考)如图练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上,若线段AB=4cm 则线段BC= _______ cm.12. 如图已知AD/ BE/ CF 它们依次交直线11 、12 于点A、B、C和点D E、F,如果AB=6 BC=8 DF=21,求DE的长.13. 如图,F是口ABCD勺边CD上一点,连接BF并延长交AD的延长线于点 E. 求证:DEAE=DFDC.14. 如图,在厶ABC中 , DF// AC DE// BC.求证:AE?CB=AC?CF.综合题15. 如图,在矩形ABCD K E是边CB延长线上的点,且EB=ABDE与AB相交于点F, AD=2 CD=1求AE及DF的长.参考答案1.B2.B3.D4. v 11 // 12 // 13,二ABBC=DEEF卩3BC=24「. BC=6.••• AC=AB+BC=3+6=9. 5.B 6.B 7.A 8. v EG/ BCAEEB=AGG又v GF // DC 二AGGC=AFF D.AEEB=AFFD卩32=6FD.「. FD=4.「.AD=AF+FD=10.9.D 10.A 11.12 12. 设DE为x,贝S EF=21-x. v AD// BE// CF, • ABBC 二DEE即68=x21-x.解得x=9.经检验,x=9是原分式方程的解,•DE=9. 13.证明:v 四边形ABCD是平行四边形,• CD// AB AD// BC. •DEAE=EFE同理可得EFEB=DFDC. DEAE=DFDC. 14证明:v DE// BC • ADAB二AEAC.DF// AC • ADAB=CFCB. AEAC=CFCB.AE?CB二AC?CF.5. v 四边形ABCD^矩形,且AD=2CD=1 • BC=AD=2 AB=CD=1 / ABC M C=90°,AB// DC;. EB=AB=1 在Rt△ ABE中, AE 二AB2+BE2二在Rt△ DCE中, DE二DC2+CE2=12+32=T0.AB// DC • EFDF二EBBC=1 设EF二x,贝S DF=2x.v EF+DF=DE • x+2x=10. • x=103.•DF=2x=2310.。

2021年中考数学复习《图形相似》专题训练题含答案

2021年中考数学复习《图形相似》专题训练题含答案

《图形相似》提升训练.一.选择题(共14小题)1.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②2.如图,在△ABC中,D为AB边上一点,E为CD中点,AC=,∠ABC=30°,∠A=∠BED=45°,则BD的长为()A.B. +1﹣C.﹣D.﹣13.如图,在Rt△ABC中,∠ABC=90°,AB=6,AC=10,∠BAC和∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,那么EF的长为()A.B.C.D.4.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对5.如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个 B.3个 C.2个 D.1个6.如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④7.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.58.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:109.如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D 点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④10.如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P 作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是()A.B.C.D.11.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:612.在△ABC与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组 B.2组 C.3组 D.4组13.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则S△EDH =13S△CFH.A.1个 B.2个 C.3个 D.4个14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若=,则=.其中结论正确的有()A.1个 B.2个 C.3个 D.4个二.填空题(共5小题)15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为cm.16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②==;③PD2=PH•CD;④=,其中正确的是(写出所有正确结论的序号).17.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为4,则四边形BOGC的面积=.18.如图,在菱形ABCD中,∠B=60°,BC=6,E为BC中点,F是AB上一点,G 为AD上一点,且BF=2,∠FEG=60°,EG交AC于点H,下列结论正确的是.(填序号即可)①△BEF∽△CHE②AG=1③EH==3S△AGH④S△BEF19.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,A n,则点A2022的坐标为三.解答题(共7小题)20.如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC 于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.21.已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.22.如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述()(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM并于点D,分别求出当AD=、AD=1、AD=时,OD的值.(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是(cm)(直接写出结果,结果四舍五入取整数).23.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,点P为线段BE延长线上一点,连接CP,以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:=;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.25.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,6).(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1;(2)以原点O为位似中心,在图中画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2,并写出A2、B2、C2的坐标.26.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图3,猜想AE与DF的数量关系并说明理由;②将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图4中画出草图,并直接写出AE′和DF′的数量关系.参考答案与试题解析一.选择题(共14小题)1.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②【解答】解:①由折叠可得,AD=AF,DG=FG,在△ADG和△AFG中,,∴△ADG≌△AFG(SSS),∴∠ADG=∠AFG,故①正确;②∵GF∥DC,∴∠EGF=∠DEG,由翻折的性质可知:GD=GF,DE=EF,∠DGE=∠EGF,∴∠DGE=∠DEG,∴GD=DE,∴DG=GF=DE=EF,∴四边形DEFG为菱形,故②正确;③如图所示,连接DF交AE于O,∵四边形DEFG为菱形,∴GE⊥DF,OG=OE=GE,∵∠DOE=∠ADE=90°,∠OED=∠DEA,∴△DOE∽△ADE,∴=,即DE2=EO•AE,∵EO=GE,DE=DG,∴DG2=AE•EG,故③正确;④由折叠可得,AF=AD=5,∴Rt△ABF中,BF==3,∴CF=5﹣3=2,设CE=x,则DE=EF=4﹣x,∵Rt△CEF中,CE2+CF2=EF2,∴x2+22=(4﹣x)2,解得x=,∴CE=,故④错误;故选:B.2.如图,在△ABC中,D为AB边上一点,E为CD中点,AC=,∠ABC=30°,∠A=∠BED=45°,则BD的长为()A.B. +1﹣C.﹣D.﹣1【解答】解:如图,过C作CF⊥AB于F,过点B作BG⊥CD于G,在Rt△BEG 中,∠BED=45°,则GE=GB.在Rt△AFC中,∠A=45°,AC=,则AF=CF==1,在Rt△BFC中,∠ABC=30°,CF=1,则BC=2CF=2,BF=CF=,设DF=x,CE=DE=y,则BD=﹣x,∴△CDF∽△BDG,∴==,∴==,∴DG=,BG=,∵GE=GB,∴y+=,∴2y2+x(﹣x)=﹣x,在Rt△CDF中,∵CF2+DF2=CD2,∴1+x2=4y2,∴+x(﹣x)=﹣x,整理得:x2﹣(2+2)x+2﹣1=0,解得x=1+﹣或1+﹣(舍弃),∴BD=﹣x=﹣1.故选:D.3.如图,在Rt△ABC中,∠ABC=90°,AB=6,AC=10,∠BAC和∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,那么EF的长为()A.B.C.D.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,∵BC===8,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=.故选:C.4.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对【解答】解:∵∠ADE=∠ACD=∠ABC∴DE∥BC∴△ADE∽△ABC,∵DE∥BC∴∠EDC=∠DCB,∵∠ACD=∠ABC,∴△EDC∽△DCB,同理:∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∵△ADE∽△ABC,△ABC∽△ACD,∴△ADE∽△ACD∴共4对故选:D.5.如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,如图3.S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,∴S△CFG=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,∴S四边形DEGF =S△CFG=;所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;本题结论正确的有:①③.故选:C.6.如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选:B.7.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OC M=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,的最小值是1﹣=,故⑤正确;此时S△OMN综上所述,正确结论的个数是5个,故选:D.8.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选:D.9.如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D 点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④【解答】解:∵矩形纸片ABCD中,G、F分别为AD、BC的中点,∴GF⊥AD,由折叠可得,AH=AD=2AG,∠AHE=∠D=90°,∴∠AHG=30°,∠EHM=90°﹣30°=60°,∴∠HAG=60°=∠AED=∠MEH,∴△EHM中,∠EMH=60°=∠EHM=∠MEH,∴△MEH为等边三角形,故①正确;∵∠EHM=60°,HE=HF,∴∠HEF=30°,∴∠FEM=60°+30°=90°,即AE⊥EF,故②正确;∵∠PEH=∠MHE=60°=∠HEA,∠EPH=∠EHA=90°,∴△PHE∽△HAE,故③正确;设AD=2=AH,则AG=1,∴Rt△AGH中,GH=AG=,Rt△AEH中,EH===HF,∴GF==AB,∴==,故④正确,综上所述,正确的结论是①②③④,故选:D.10.如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P 作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是()A.B.C.D.【解答】解:设BP=x(0<x<4),由勾股定理得AB=5,∵∠PQB=∠C=90°,∠B=∠B,∴△PBQ∽△ABC,∴==,即==∴PQ=x,QB=xS △APQ =PQ ×AQ=+x= ∴当x=时,△APQ 的面积最大,最大值是.故选:C .11.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 与BD 相交于点O ,如果S △ACD :S △ABC =1:2,那么S △AOD :S △BOC 是( )A .1:3B .1:4C .1:5D .1:6【解答】解:∵在梯形ABCD 中,AD ∥BC ,而且S △ACD :S △ABC =1:2,∴AD :BC=1:2;∵AD ∥BC ,∴△AOD ~△BOC ,∵AD :BC=1:2,∴S △AOD :S △BOC =1:4.故选:B .12.在△ABC 与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B′C′的共有( )A .1组B .2组C .3组D .4组【解答】解:共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似.故选:C.13.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;=13S△CFH.④若=,则S△EDHA.1个 B.2个 C.3个 D.4个【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF ≌△DHC (SAS ),∴∠HEF=∠HDC ,∴∠AEH +∠ADH=∠AEF +∠HEF +∠ADF ﹣∠HDC=∠AEF +∠ADF=180°,故②正确;③由②知:△EHF ≌△DHC ,故③正确; ④∵=,∴AE=2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH=GH ,∠FHG=90°,∵∠EGH=∠FHG +∠HFG=90°+∠HFG=∠HFD ,在△EGH 和△DFH 中,,∴△EGH ≌△DFH (SAS ),∴∠EHG=∠DHF ,EH=DH ,∠DHE=∠EHG +∠DHG=∠DHF +∠DHG=∠FHG=90°, ∴△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,如图所示:设HM=x ,则CF=2x ,∴DF=2FC=4x ,∴DM=5x ,DH=x ,CD=6x ,则S △CFH =×HM ×CF=•x•2x=x 2,S △EDH =×DH 2=×=13x 2, ∴则S △EDH =13S △CFH ,故④正确;其中结论正确的有:①②③④,4个;故选:D .14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若=,则=.其中结论正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故②正确;③∵△EHF≌△DHC(已证),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,如图,过H点作HM⊥CD于M,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC =×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH =13S△DHC,故④正确;故选:D.二.填空题(共5小题)15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为(15﹣5)cm.【解答】解:∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案为(15﹣5).16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②==;③PD2=PH•CD;④=,其中正确的是①②③(写出所有正确结论的序号).【解答】解:∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正确;∵∠DCF=90°﹣60°=30°,∴tan∠DCF==,∵△DFP∽△BPH,∴==,∵BP=CP=CD,∴==,故②正确;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH•CP,又∵CP=CD,∴PD2=PH•CD,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD∵S△BPD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴=,故④错误;故答案为:①②③.17.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G 并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为4,则四边形BOGC的面积=7.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴==,∵△ADE的面积为4,=16,∴S△ABC∵DE∥BC,∴△ODE∽△OFB,∠EDG=∠F,∠DEG=∠GCF,∴=,又EG=CG,∴△DEG≌△FCG(AAS),∴DE=CF,∴BF=3DE,∵DE∥BC,∴△ODE∽△OFB,∴==,∵AD=BD,=S△ADE=4,∴S△BDE∵AE=CE=2EG,∴S △DEG =S △ADE =×4=2, ∵=,∴S △ODE =S △BDE =×4=1,∴S △OEG =S △DEG ﹣S △ODE =×4=1,∵S 四边形DBCE =S △ABC ﹣S △ADE =3×4=12,∴S 四边形OBCG =S 四边形DBCE ﹣S △BDE ﹣S △OEG =7.故答案为:7.18.如图,在菱形ABCD 中,∠B=60°,BC=6,E 为BC 中点,F 是AB 上一点,G 为AD 上一点,且BF=2,∠FEG=60°,EG 交AC 于点H ,下列结论正确的是①②③.(填序号即可)①△BEF ∽△CHE②AG=1③EH=④S △BEF =3S △AGH【解答】解:∵菱形ABCD 中,∠B=60°,∠FEG=60°,∴∠B=∠ECH=60°,∠BEF=CHE=120°﹣∠CEH ,∴△BEF ∽△CHE ,故①正确;∴=,又∵BC=6,E为BC中点,BF=2,∴,即CH=4.5,又∵AC=BC=6,∴AH=1.5,∵AG∥CE,∴△AGH∽△CEH,∴,∴AG=CE=1,故②正确;如图,过F作FP⊥BC于P,则∠BFP=30°∴BP=BF=1,PE=3﹣1=2,PF=,∴Rt△EFP中,EF==,又∵,∴EH=EF=,故③正确;∵AG=CE,BF=CE,△△BEF∽△CHE,△AGH∽△CEH,∴S△CEH=9S△AGH,S△CEH=S△BEF,∴9S△AGH =S△BEF,∴S△BEF =4S△AGH,故④错误;故答案为:①②③.19.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,A n,则点A2022的坐标为(0,32021)【解答】解:∵菱形A1B1C1D1的边长为2,∠A1B1C1=60°,∴OA1=A1B1•sin30°=2×=1,OB1=A1B1•cos30°=2×=,∴A1(0,1).∵1C2D1A2∽菱形A1B1C1D1,∴OA2===3,∴A2(0,3).同理可得A3(0,9)…∴A2022(0,32021).故答案为:(0,32021).三.解答题(共7小题)20.如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC 于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.【解答】证明:(1)∵AD2=DE•DF,∴,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴∠F=∠DAE,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴△BFD∽△CAD;(2)∵△BFD∽△CAD,∴,∵,∴,∵△BFD∽△CAD,∴∠B=∠C,∴AB=AC,∴,∴BF•DE=AB•AD.21.已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中∴△ADC≌△ABC,∴CD=CB,∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;(2)解:∵△ADC≌△ABC,∴∠ADC=∠B,∵CF=CB,∴∠CFB=∠B,∴∠ADC=∠CFB,∴∠ADC+∠AFC=180°,∵四边形AFCD的内角和等于360°,∴∠DCF+∠DAF=180°,∵CD=CF,∴∠CDG=∠CFD,∵∠DCF+∠CDF+∠CFD=180°,∴∠DAF=∠CDF+∠CFD=2∠CDG,∵∠DAB=2∠DAC,∴∠CDG=∠DAC,∵∠DCG=∠ACD,∴△DGC∽△ADC;(3)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,=,∵∠ADC=2∠HAG,AD=3,DC=2,∴∠HAG=∠DGC,=,∴∠HAG=∠AHG,=,∴HG=AG,∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∞△AGF,∴==,∴=.22.如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C 是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述()(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM并于点D,分别求出当AD=、AD=1、AD=时,OD的值.(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是113(cm)(直接写出结果,结果四舍五入取整数).【解答】解:(1)∵点C是AB的中点,∴OC=AB,∴点C的运动轨迹是以O为圆心,AB长为半径的圆弧,经过的路程的圆周.故选甲.(2)过D作DH⊥OP于H,设DH=a,在Rt△OHD中,∵∠AOD=90°﹣600=300,∴OD=2a,OH=a,∵DH⊥OA,OQ⊥OA,∴DH∥QO,∴=,当AD=时,BD=,∴=,∴AH=a,在Rt△AHD中,∵AH2+DH2=AD2,∴a2+a2=,解得a=,OD=,当AD=1时,BD=1,∴=,∴AH=a,在Rt△AHD中,∵AH2+DH2=AD2,∴3a2+a2=1,解得a=,OD=1,当AD=时,BD=,∴=,∴AH=2a,在Rt△AHD中,∵AH2+DH2=AD2,∴12a2+a2=,解得a=,OD=.(3)由题意当等腰直角三角形的直角边为80cm时,斜边为≈113cm,所以这根木棒最长可以是113cm.故答案为113cm.23.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,点P为线段BE延长线上一点,连接CP,以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:=;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由.【解答】(1)证明:∵,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴=;(2)AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,∵=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=2.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【解答】(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴=,∴PB2=PA•PC=12,∴PB=2;故答案为:2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.25.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,6).(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1;(2)以原点O为位似中心,在图中画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2,并写出A2、B2、C2的坐标.【解答】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所作,点A2、B2、C2的坐标分别为(﹣2,4),B(2,8),C(6,6).26.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系DF=AE;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图3,猜想AE与DF的数量关系并说明理由;②将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图4中画出草图,并直接写出AE′和DF′的数量关系.【解答】解:(1)①∵四边形ABCD为正方形,∴△ABD为等腰直角三角形,∴BD=AB,∵EF⊥AB,∴△BEF为等腰直角三角形,BF=BE,∴BD﹣BF=AB﹣BE,即DF=AE,故答案为:DF=AE;②DF=AE.理由如下:∵△EBF绕点B逆时针旋转到图2所示的位置,∴∠ABE=∠DBF,∵=,=,∴=,∴△ABE∽△DBF,∴==,即AE与DF的数量关系是:DF=AE;(2)①AE与DF的数量关系是:DF=AE;理由:在图3中,作FM⊥AD,垂足为M.∵∠A=∠AEF=∠AMF=90°,∴四边形AEFM是矩形,∴FM=AE,∵AD=BC=mAB,∴Rt△ABD中,BD==AB,∵MF∥AB,∴△DMF∽△ABD,∴==,∴DF=MF=AE;②AE′和DF′的数量关系:DF'=AE'.如图3,∵四边形ABCD为矩形,∴AD=BC=mAB,∴B D==AB,∵EF⊥AB,∴EF∥AD,∴△BEF∽△BAD,∴=,∴==,如图4,∵△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,∴==,∴△ABE′∽△DBF′,∴==,即DF′=AE′.。

图形相似专题练习含答案解析

图形相似专题练习含答案解析

图形的相似1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,那么MN等于〔〕A.B.C.D.2.图中的两个三角形是位似图形,它们的位似中心是〔〕A.点P B.点O C.点M D.点N3.△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,那么△DEF的周长为〔〕A.2 B.3 C.6 D.544.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为适宜的条件:,使△ADE∽△ABC.〔不再添加其他的字母和线段;只填一个条件,多填不给分!〕5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.〔1〕请写出图中各对相似三角形〔相似比为1除外〕;〔2〕求BP:PQ:QR.6.计算:|3﹣|+〔〕0+〔cos230°〕2﹣4sin60°.7.计算:﹣2sin45°+〔2﹣π〕0﹣.8.计算:|﹣|﹣+〔π﹣4〕0﹣sin30°.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,假设牵引底端B离地面1.5米,求此时风筝离地面高度.〔计算结果准确到0.1米,≈1.732〕10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.〔计算结果准确到0.1米,参考数据:≈1.414,≈1.732.〕12.明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:;〔2〕请在图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.13.我国南方局部省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.〔准确到0.1米〕14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.〔1〕求证:AC=AE;〔2〕求AD的长.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E〔,2〕,连接AE,ED.〔1〕求经过A,E,D三点的抛物线的表达式;〔2〕假设以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下列图网格中画出放大后的五边形A′E′D′C′B′;〔3〕经过A′,E′,D′三点的抛物线能否由〔1〕中的抛物线平移得到?请说明理由.16.某县社会主义新农村建立办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段〔村子和公路的宽均不计〕,点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村〔线段CD某处〕,甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村〔线段AB某处〕,请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停顿运动,点Q也随之停顿.设点P,Q运动的时间是t秒〔t>0〕.〔1〕D,F两点间的距离是;〔2〕射线QK能否把四边形CDEF分成面积相等的两局部?假设能,求出t的值;假设不能,说明理由;〔3〕当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;〔4〕连接PG,当PG∥AB时,请直接写出t的值.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.图形的相似参考答案与试题解析1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,那么MN等于〔〕A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM〔三线合一〕,BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,=MN•AC=AM•MC,又S△AMC∴MN==.应选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.图中的两个三角形是位似图形,它们的位似中心是〔〕A.点P B.点O C.点M D.点N【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,应选A.【点评】位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.考察位似图形的概念.3.△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,那么△DEF的周长为〔〕A.2 B.3 C.6 D.54【考点】相似三角形的性质.【专题】压轴题.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.应选C.【点评】此题考察对相似三角形性质的理解.〔1〕相似三角形周长的比等于相似比;〔2〕相似三角形面积的比等于相似比的平方;〔3〕相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为适宜的条件:∠B=∠1或,使△ADE∽△ABC.〔不再添加其他的字母和线段;只填一个条件,多填不给分!〕【考点】相似三角形的判定.【专题】压轴题;开放型.【分析】此题属于开放题,答案不唯一.注意此题的条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【解答】解:此题答案不唯一,如∠C=∠2或∠B=∠1或.【点评】此题考察了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似.要注意正确找出两三角形的对应边、对应角,根据判定定理解题.5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.〔1〕请写出图中各对相似三角形〔相似比为1除外〕;〔2〕求BP:PQ:QR.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】此题的图形比拟复杂,需要仔细分析图形.〔1〕根据平行四边形的性质,可得到角相等.∠BPC=∠BRE,∠BCP=∠E,可得△BCP ∽△BER;〔2〕根据AB∥CD、AC∥DE,可得出△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系.【解答】解:〔1〕∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠BAP=∠PCQ,∵∠APB=∠CPQ,∴△PCQ∽△PAB;∵△PCQ∽△RDQ,△PCQ∽△PAB,∴△PAB∽△RDQ.〔2〕∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,∵AC∥DE,∴BC:CE=BP:PR,∴BP=PR,∴PC是△BER的中位线,∴BP=PR,又∵PC∥DR,∴△PCQ∽△RDQ.又∵点R是DE中点,∴DR=RE.,∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP:PQ:QR=3:1:2【点评】此题考察了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.6.计算:|3﹣|+〔〕0+〔cos230°〕2﹣4sin60°.【考点】实数的运算;零指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题.【分析】根据实数的有关运算法那么计算.【解答】解:原式==﹣.【点评】此题考察实数的根本运算,难度适中.7.〔2021•〕计算:﹣2sin45°+〔2﹣π〕0﹣.【考点】实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题;压轴题.【分析】此题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进展计算,然后根据实数的运算法那么求得计算结果.【解答】解:原式==.【点评】此题考察实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.8.计算:|﹣|﹣+〔π﹣4〕0﹣sin30°.【考点】特殊角的三角函数值;绝对值;零指数幂;二次根式的性质与化简.【专题】计算题.【分析】此题涉及零指数幂、特殊角的三角函数值、二次根式化简三个考点.在计算时,需要针对每个考点分别进展计算,然后根据实数的运算法那么求得计算结果.【解答】解:原式=﹣3+1﹣=﹣2.【点评】此题考察实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.注意:任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,假设牵引底端B离地面1.5米,求此时风筝离地面高度.〔计算结果准确到0.1米,≈1.732〕【考点】解直角三角形的应用﹣仰角俯角问题.【专题】计算题;压轴题.【分析】由题可知,在直角三角形中,知道角以及斜边,求对边,可以用正弦值进展解答.【解答】解:在Rt△BCD中,CD=BC×sin60°=20×=10又DE=AB=1.5,∴CE=CD+DE=CD+AB=10+1.5≈18.8答:此时风筝离地面的高度约是18.8米.【点评】此题考察直角三角形知识在解决实际问题中的应用.10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.〔计算结果准确到0.1米,参考数据:≈1.414,≈1.732.〕【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形:根据题意构造直角三角形;此题涉及到两个直角三角形Rt△BCD、Rt△ACD,应利用其公共边DC构造方程关系式,进而可解即可求出答案.【解答】解:在Rt△BCD中,tan45°==1,∴CD=BC.在Rt△ACD中,tan30°=,∴.∴.∴3CD=CD+10.∴CD=+5≈13.66〔米〕∴条幅顶端D点距离地面的高度为13.66+1.44=15.1〔米〕.【点评】此题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.12.明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:皮尺,标杆;〔2〕请在图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.【考点】相似三角形的应用.【专题】方案型;开放型.【分析】树比拟高不易直接到达,因而可以利用三角形相似解决,利用树在下出现的影子来解决.【解答】解:〔1〕皮尺,标杆;〔2〕测量示意图如下图;〔3〕如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.【点评】此题运用相似三角形的知识测量高度及考察学生的实践操作能力,应用所学知识解决问题的能力.此题答案有多种,测量方案也有多种,如〔1〕皮尺、标杆、平面镜;〔2〕皮尺、三角尺、标杆.13.我国南方局部省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.〔准确到0.1米〕【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形,据题意构造直角三角形;此题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:作BD⊥AC于D.在Rt△ADB中,sin∠ABD=.∴AD=AB•sin∠ABD=15×sin21°≈5.38米.〔3分〕∵cos∠ABD=.∴BD=AB•cos∠ABD=15×c os21°≈14.00米.〔5分〕在Rt△BDC中,tan∠CBD=.∴CD=BD•tan∠CBD≈14.00×tan38°≈10.94米.〔8分〕∵cos∠CBD=.∴BC=≈≈17.77米〔10分〕∴AD+CD+BC≈5.38+10.94+17.77=34.09≈34.1米〔11分〕答:折断前发射塔的高约为34.1米.〔12分〕注意:按以下方法进展近似计算视为正确,请相应评分.①假设到最后再进展近似计算结果为:AD+CD+BC=34.1;②假设解题过程中所有三角函数值均先准确到0.01,那么近似计算的结果为:AD+CD+BC≈5.40+10.88+17.66=33.94≈33.9.【点评】此题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.〔1〕求证:AC=AE;〔2〕求AD的长.【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【专题】计算题;压轴题.【分析】〔1〕由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED全等,根据全等三角形的对应边相等即可得证;〔2〕由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB﹣AE可求出EB的长,再由〔1〕∠AED=90°,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB﹣CD表示出BD=12﹣x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长.【解答】解:〔1〕∵∠ACB=90°,且∠ACB为圆O的圆周角〔〕,∴AD为圆O的直径〔90°的圆周角所对的弦为圆的直径〕,∴∠AED=90°〔直径所对的圆周角为直角〕,又AD是△ABC的∠BAC的平分线〔〕,∴∠CAD=∠EAD〔角平分线定义〕,∴CD=DE〔在同圆或等圆中,相等的圆周角所对的弦相等〕,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED〔HL〕,∴AC=AE〔全等三角形的对应边相等〕;〔2〕∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,由〔1〕得到∠AED=90°,那么有∠BED=90°,设CD=DE=x,那么DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即〔12﹣x〕2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==.【点评】此题考察了圆周角定理,勾股定理,以及全等三角形的判定与性质,利用了转化的思想,此题的思路为:根据圆周角定理得出直角,利用勾股定理构造方程来求解,从而得到解决问题的目的.灵活运用圆周角定理及勾股定理是解此题的关键.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E〔,2〕,连接AE,ED.〔1〕求经过A,E,D三点的抛物线的表达式;〔2〕假设以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下列图网格中画出放大后的五边形A′E′D′C′B′;〔3〕经过A′,E′,D′三点的抛物线能否由〔1〕中的抛物线平移得到?请说明理由.【考点】作图﹣位似变换;二次函数图象与几何变换;待定系数法求二次函数解析式;矩形的性质.【专题】压轴题;网格型.【分析】〔1〕A,E,D三点坐标,可用一般式来求解;〔2〕延长OA到A′,使OA′=3OA,同理可得到其余各点;〔3〕根据二次项系数是否一样即可判断两个函数是否由平移得到.【解答】解:〔1〕设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c∵A〔1,〕,E〔,2〕,D〔2,〕〔1分〕∴,解之,得∴过A,E,D三点的抛物线的表达式为y=﹣2x2+6x﹣.〔4分〕〔2〕如图.〔7分〕〔3〕不能,理由如下:〔8分〕设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′∵A′〔3,〕,E′〔,6〕,D′〔6,〕∴,解之,得a=﹣2,,∴a≠a′∴经过A′,E′,D′三点的抛物线不能由〔1〕中的抛物线平移得到.〔8分〕【点评】一般用待定系数法来求函数解析式;位似变化的方法应熟练掌握;抛物线平移不改变a的值.16.某县社会主义新农村建立办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段〔村子和公路的宽均不计〕,点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村〔线段CD某处〕,甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村〔线段AB某处〕,请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?【考点】作图—应用与设计作图.【专题】压轴题;方案型.【分析】〔1〕由题意可得,供水站建在点M处,根据垂线段最短、两点之间线段最短,可知铺设到甲村某处和乙村某处的管道长度之和的最小值为MB+MD,求值即可;〔2〕作点M关于射线OE的对称点M',那么MM'=2ME,连接AM'交OE于点P,且证明P点与D点重合,即AM'过D点.求出AM'的值即是铺设到点A和点M处的管道长度之和最小的值;〔3〕作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM 于点H,连接GM,那么GM=GM',可证得N,D两点重合,即M'N过D点.求GM+GD=M'D的值就是最小值.【解答】解:方案一:由题意可得:∵A在M的正西方向,∴AM∥OE,∠BAM=∠BOE=30°,又∵∠BMA=60°∴MB⊥OB,∴点M到甲村的最短距离为MB,〔1分〕∵点M到乙村的最短距离为MD,∴将供水站建在点M处时,管道沿MD,MB线路铺设的长度之和最小,即最小值为MB+MD=3+〔km〕;〔3分〕方案二:如图①,作点M关于射线OE的对称点M',那么MM'=2ME,连接AM'交OE于点P,PE∥AM,PE=AM,∵AM=2BM=6,∴PE=3,〔4分〕在Rt△DME中,∵DE=DM•sin60°=×=3,ME=DM=×,∴PE=DE,∴P点与D点重合,即AM'过D点,〔6分〕在线段CD上任取一点P',连接P'A,P′M,P'M',那么P'M=P′M',∵AP'+P'M'>AM',∴把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小,即最小值为AD+DM=AM'=;〔7分〕方案三:作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,那么GM=GM',∴M'N为点M'到OE的最短距离,即M'N=GM+GN在Rt△M'HM中,∠MM'N=30°,MM'=6,∴MH=3,∴NE=MH=3,∵DE=3,∴N,D两点重合,即M'N过D点,在Rt△M'DM中,DM=,∴M'D=〔10分〕在线段AB上任取一点G',过G'作G'N'⊥OE于N'点,连接G'M',G'M,显然G'M+G'N'=G'M'+G'N'>M'D,∴把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小,即最小值为GM+GD=M'D=,〔11分〕综上,∵3+<,∴供水站建在M处,所需铺设的管道长度最短.〔12分〕【点评】此题主要考察线路最短问题的作图和求值问题,有一定的难度.17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停顿运动,点Q也随之停顿.设点P,Q运动的时间是t秒〔t>0〕.〔1〕D,F两点间的距离是25 ;〔2〕射线QK能否把四边形CDEF分成面积相等的两局部?假设能,求出t的值;假设不能,说明理由;〔3〕当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;〔4〕连接PG,当PG∥AB时,请直接写出t的值.【考点】相似三角形的判定与性质;三角形中位线定理;矩形的判定与性质.【专题】压轴题.【分析】〔1〕由中位线定理即可求出DF的长;〔2〕连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF 分为面积相等的两局部,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;〔3〕①当点P在EF上〔2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;②当点P在FC上〔5≤t≤7〕时,PB=PF+BF就可以得到;〔4〕当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.【解答】解:〔1〕Rt△ABC中,∠C=90°,AB=50,∵D,F是AC,BC的中点,∴DF为△ABC的中位线,∴DF=AB=25故答案为:25.〔2〕能.如图1,连接DF,过点F作FH⊥AB于点H,∵D,F是AC,BC的中点,∴DE∥BC,EF∥AC,四边形CDEF为矩形,∴QK过DF的中点O时,即过矩形CDEF的中点,QK把矩形CDEF分为面积相等的两局部此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.故t==.〔3〕①当点P在EF上〔2≤t≤5〕时,如图2,QB=4t,DE+EP=7t,由△PQE∽△BCA,得.∴t=4;②当点P在FC上〔5≤t≤7〕时,如图3,QB=4t,从而PB===5t,由PF=7t﹣35,BF=20,得5t=7t﹣35+20.解得t=7;〔4〕如图4,t=1;如图5,t=7.〔注:判断PG∥AB可分为以下几种情形:当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻,如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7当时,点P,G均在FC上,也不存在PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB〕【点评】此题主要运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.【考点】相似三角形的判定;平行四边形的性质.【专题】压轴题;开放型.【分析】根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.【解答】解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.〔3分〕如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.〔6分〕∴△AEF∽△BEC.〔7分〕【点评】考察了平行线的性质及相似三角形的判定定理.。

相似图形练习题

相似图形练习题

相似图形练习题一、选择题1. 两个图形相似,下列说法正确的是:A. 它们的对应角相等B. 它们的对应边成比例B. 它们是全等图形D. 它们的形状相同,大小不同2. 相似图形的相似比是:A. 任意两个对应边的比例B. 对应高的比C. 对应角的比D. 对应边长的平方比3. 如果两个图形相似,那么它们的周长比为:A. 面积比B. 相似比C. 相似比的平方D. 相似比的立方4. 相似图形的面积比是:A. 周长比B. 相似比C. 相似比的平方D. 相似比的立方5. 下列哪个条件不能保证两个图形相似:A. 对应角相等B. 对应边成比例C. 面积相等D. 周长相等二、填空题6. 若两个图形的相似比为k,则它们的面积比为______。

7. 一个图形放大或缩小后,得到的新图形与原图形______。

8. 若两个三角形的对应角相等,且对应边的比相等,则这两个三角形______。

9. 在相似图形中,对应线段的长度比等于______。

10. 相似图形的周长比等于它们的______。

三、判断题11. 两个图形相似,它们的对应边长一定相等。

(对/错)12. 如果两个图形的周长比为2:3,则它们的面积比为4:9。

(对/错)13. 相似图形的对应角一定相等。

(对/错)14. 相似比为1的两个图形是全等图形。

(对/错)15. 两个图形相似,它们的面积比等于周长比的平方。

(对/错)四、简答题16. 描述如何判断两个三角形是否相似。

17. 解释相似比和面积比之间的关系。

18. 给出两个相似图形的周长比和面积比的例子,并解释它们之间的关系。

19. 如果一个图形的边长扩大了2倍,它的面积会如何变化?20. 为什么说相似图形的面积比是相似比的平方?五、计算题21. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,求三角形ABC的面积与三角形DEF的面积之比。

22. 已知两个相似圆形的半径分别为3cm和6cm,求它们的面积比。

23. 如果一个矩形的长和宽分别扩大了1.5倍,它的面积扩大了多少倍?24. 假设一个图形的周长扩大了2倍,求它的面积扩大了多少倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似图形》习题
一、请你填一填.
(1)以下五个命题:①所有的正方形都相似;②所有的矩形都相似;③所有的三角形都相似;
④所有的等腰直角三角形都相似;⑤所有的正五边形都相似.
其中正确的命题有_______.
(2)已知三个数1,2,3,请你再写一个数,使这四个数能成比例,那么这个数是_______ _(填写一个即可).
(3)相同时刻的物高与影长成比例,如果有一根电线杆在地面上的影长是50米,同时高为1. 5米的标竿的影长为2.5米,那么这根电线杆的高为________米.
(4)在一张比例尺为1∶50000的地图上,量得A、B两地的图上距离为2.5厘米,那么A、B两地的实际距离是________米.
二、这些图形相似吗?
如图,图(1)是一个正六边形ABCDEF,使线段BC、FE的长增加相等的数,得图(2),将图(1)中的点A、D分别向两边拉长相等的量,得图(3).
那么图(1)与图(2)相似吗?图(1)与图(3)相似吗?图(2)与图(3)呢?为什么?
三、比一比谁做得又对又快
(1)如图,等腰梯形ABCD与等腰梯形A′B′C′D′相似,∠A′=65°,A′B′=6cm,AB=8cm,AD=5cm,试求梯形ABCD的各角的度数与A′D′、B′C′的长.
(2)如图,有一个半径为50米的圆形草坪,现在沿草坪的四周开辟了宽10米的环形跑道,那么:①草坪的外边缘与环形跑道的外边缘所成的两个圆相似吗?
②这两个圆的半径之比和周长之比分别是多少?它们有什么关系吗?。

相关文档
最新文档