上海市虹口区2018年中考数学二模试题20190102286
上海市虹口区2018年中考数学二模试题20190102286

1 / 7上海市虹口区2018年中考数学二模试题(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计 算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.下列实数中,有理数是ABC .π;D .0.2.如果关于x 的一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值范围是A .1k <;B .10k k <≠且;C .1k >;D .10k k >≠且.3.如果将抛物线2y x =向左平移1个单位,那么所得新抛物线的表达式是A .21y x =+;B .21y x =-;C .2(1)y x =+;D .2(1)y x =-.4.如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为A .0.4;B .0.36;C .0.3;D .0.24.5.数学课上,小明进行了如下的尺规作图(如图所示):、OB 上分别截取OD 、OE ,使得OD=OE ;12DE 为半径作弧,两弧交于△; (3)作射线OC 交AB 边于点P .那么小明所求作的线段OP 是△AOB 的A .一条中线;B .一条高;C .一条角平分线;D .不确定.6.如图,在矩形ABCD 中,点E 是CD 的中点,联结BE ,如果AB =6,BC =4,那么分别以AD 、BE 为直径的⊙M 与⊙N 的位置关系是 A .外离;B .外切;C .相交;D .内切.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:26a a ÷= ▲ .第4题图AO B DE CP 第5题图 第6题图 E2 / 7① ② 8. 某病毒的直径是0.000 068毫米,这个数据用科学记数法表示为 ▲ 毫米.9.不等式组1,2 4.x x ->⎧⎨<⎩的解集是 ▲ .10x =的解为 ▲ . 11.已知反比例函数3ay x-=,如果当0x >时,y 随自变量x 的增大而增大,那么a 的取值范围为 ▲ .12.请写出一个图像的对称轴为y 轴,开口向下,且经过点(1,-2)的二次函数解析式,这个二次函数的解析式可以是 ▲ .13. 掷一枚材质均匀的骰子,掷得的点数为素数的概率是 ▲ .14. 在植树节当天,某校一个班的学生分成10个小组参加植树造林活动,如果10个小组植树的株数情况见下表,那么这10个小组植树株数的平均数是 ▲ 株. 15.如果正六边形的两条那么这个正六边形的边长为 ▲16.如图,在□ABCD 中,对角线AC 与BD 相交于点O ,如果AC a =,BD b =量a 、b 表示向量AB 是 ▲ .17.如图,在Rt △ABC 中,∠ACB =90°,AB=10,sin A =35,CD 为AB 边上的中线,以点B 为圆心,r 为半径作⊙B .如果⊙B 与中线CD 有且只有一个公共点,那么⊙B 的半径r 的取值范围为 ▲ .18.如图,在△ABC 中,AB =AC ,BC=8,tan B 32=,点D 是AB 的中点,如果把△BCD 沿直 线CD 翻折,使得点B 落在同一平面内的B ′处,联结A B ′,那么A B ′的长为 ▲ .78分) 19 2344)11a a a a -+÷++,其中a = 20.(本题满分10分)解方程组:22444,2 6.x xy y x y ⎧-+=⎨+=⎩21.(本题满分10分)如图,在△ABC 中,4sin 5B =,点F 在BC 上,AB=AF=5,过点F 作EF ⊥CB 交AC 于点E ,且:3:5AE E C =,A C D第17题图 BABC第18题图D第16题图 Dy (千米)第22题图求BF 的长与sin C 的值.22.(本题满分10分,第(1)小题6分,第(2)小题4分)甲、乙两车需运输一批货物到600公里外的某地,原计划甲车的速度比乙车每小时多10千米,这样甲车将比乙车早到2小时.实际甲车以原计划的速度行驶了4小时后,以较低速度继续行驶,结果甲、乙两车同时到达. (1)求甲车原计划的速度;(2)如图是甲车行驶的路程y (千米)与时间x (小时) 的不完整函数图像,那么点A 的坐标为 ▲ , 点B 的坐标为 ▲ ,4小时后的y 与x 的函数关 系式为 ▲ (不要求写定义域). 23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF AG BC BE ⋅=⋅. 24.(本题满分12分)如图,132y x =-+分别交于x 点D ,联结CD 交x (1(2)求tan ∠BCD ;(3)点P 在直线BC 25.(本题满分14如图,在梯形ABCD 交于点E 、F ,且点E 在(1)设BC 与⊙C (2)设BC= x ,EF=y (3)当BC =10时,点E 、P 、D 写出⊙P 的面积.初三数学评分参考建议2018.44 / 7说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位. 一、选择题(本大题共6题,每题4分,满分24分)1.D 2.A 3.C 4.B 5.C 6.B 二、填空题本大题共12题,每题4分,满分48分) 7.4a8.56.810-⨯9.1x <- 10.1x =11.3a > 12. 21y x =-- 等(答案不唯一) 13.1214.6 15.216.1122a b - 17. 56r <≤或245r =18三、解答题(本大题共7题,满分78分)19.解:原式=22131144a a a a a --+⋅+-+ ………………………………………………………(3分) 2(2)(2)11(2)a a a a a +-+=⋅+- ………………………………………………………(3分)22a a +=-…………………………………………………………………………… (2分)当a =, 原式7=--…………………………………………… (2分) .20.解:由①得, 22x y -=或22x y -=-……………………………………………(2分)将它们与方程②分别组成方程组,得:,262;2x x y y ⎧⎨+=-=⎩ 22,2 6.y y x x ⎧⎨+=-=-⎩……………………………………………………(4分) 分别解这两个方程组,得原方程组的解为114,1;x y =⎧⎨=⎩ 222,2.x y =⎧⎨=⎩. …………………………………………(4分)(代入消元法参照给分)。
(完整版)2018年上海市中考数学二模试卷

2018年上海市中考数学二模试卷一、选择题(每小题4分,共24分)1.(4分)(2018?上海)计算的结果是()A.B.C.D.32.(4分)(2018?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×10113.(4分)(2018?上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)24.(4分)(2018?上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠55.(4分)(2018?上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和406.(4分)(2018?上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍二、填空题(每小题4分,共48分)7.(4分)(2018?上海)计算:a(a+1)=_________.8.(4分)(2018?上海)函数y=的定义域是_________.9.(4分)(2018?上海)不等式组的解集是_________.10.(4分)(2018?上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔_________支.11.(4分)(2018?上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.(4分)(2018?上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.(4分)(2018?上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.(4分)(2018?上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.(4分)(2018?上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=_________(结果用、表示).16.(4分)(2018?上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是_________.17.(4分)(2018?上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为_________.18.(4分)(2018?上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为_________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(10分)(2018?上海)计算:﹣﹣+||.20.(10分)(2018?上海)解方程:﹣=.21.(10分)(2018?上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.22.(10分)(2018?上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.23.(12分)(2018?上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.24.(12分)(2018?上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(14分)(2018?上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.2018年上海市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.(4分)(2018?上海)计算的结果是()A.B.C.D.3考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的乘法运算法则进行运算即可.解答:解:?=,故选:B.点评:本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2.(4分)(2018?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:60 800 000 000=6.08×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2018?上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:C.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.(4分)(2018?上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.5.(4分)(2018?上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(4分)(2018?上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍考点:菱形的性质.专题:几何图形问题.分析:分别利用菱形的性质结合各选项进而求出即可.解答:解:A、∵四边形ABCD是菱形,∴AB=BC=AD,∵AC<BD,∴△ABD与△ABC的周长不相等,故此选项错误;B 、∵S △ABD =S 平行四边形ABCD ,S △ABC =S 平行四边形ABCD,∴△ABD 与△ABC 的面积相等,故此选项正确;C 、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D 、菱形的面积等于两条对角线之积的,故此选项错误;故选:B .点评:此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.二、填空题(每小题4分,共48分)7.(4分)(2018?上海)计算:a (a+1)=a 2+a.考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=a 2+a .故答案为:a 2+a点评:此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.8.(4分)(2018?上海)函数y=的定义域是x ≠1.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x ﹣1≠0,解得x ≠1.故答案为:x ≠1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(4分)(2018?上海)不等式组的解集是3<x <4.考点:解一元一次不等式组.专题:计算题.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x >3,解②得:x <4.则不等式组的解集是:3<x <4.故答案是:3<x <4点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x 介于两数之间.10.(4分)(2018?上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.考点:有理数的混合运算.专题:应用题.分析:三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.解答:解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.点评:此题考查有理数的混合运算,理解题意,列出算式解决问题.11.(4分)(2018?上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.考点:根的判别式.分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.解答:解:∵关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.(4分)(2018?上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.考点:解直角三角形的应用-坡度坡角问题.专题:应用题.分析:首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.解答:解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.点评:此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.13.(4分)(2018?上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.考点:概率公式.分析:由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.解答:解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,∴恰好抽到初三(1)班的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2018?上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是y=﹣(只需写一个).考点:反比例函数的性质.专题:开放型.分析:首先根据反比例函数的性质可得k<0,再写一个符合条件的数即可.解答:解:∵反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,∴k<0,∴y=﹣,故答案为:y=﹣.点评:此题主要考查了反比例函数的性质,关键是掌握对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.15.(4分)(2018?上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=﹣(结果用、表示).考点:*平面向量.分析:由点E在边AB上,且AB=3EB.设=,可求得,又由在平行四边形ABCD中,=,求得,再利用三角形法则求解即可求得答案.解答:解:∵AB=3EB.=,∴==,∵平行四边形ABCD中,=,∴==,∴=﹣=﹣.故答案为:﹣.点评:此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.16.(4分)(2018?上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是乙.考点:方差;折线统计图.专题:图表型.分析:根据方差的意义数据波动越小,数据越稳定即可得出答案.解答:解:根据图形可得:乙的成绩波动最小,数据最稳定,则三人中成绩最稳定的是乙;故答案为:乙.点评:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(4分)(2018?上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类.分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.18.(4分)(2018?上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F 与BE交于点G.设AB=t,那么△EFG的周长为2t(用含t的代数式表示).考点:翻折变换(折叠问题).专题:几何图形问题.分析:根据翻折的性质可得CE=C′E,再根据直角三角形30°角所对的直角边等于斜边的一半判断出∠EBC′=30°,然后求出∠BGD′=60°,根据对顶角相等可得∠FGE=∠∠BGD′=60°,根据两直线平行,内错角相等可得∠AFG=∠FGE,再求出∠EFG=60°,然后判断出△EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解.解答:解:由翻折的性质得,CE=C′E,∵BE=2CE,∴BE=2C′E,又∵∠C′=∠C=90°,∴∠EBC′=30°,∵∠FD′C′=∠D=90°,∴∠BGD′=60°,∴∠FGE=∠BGD′=60°,∵AD∥BC,∴∠AFG=∠FGE=60°,∴∠EFG=(180°﹣∠AFG)=(180°﹣60°)=60°,∴△EFG是等边三角形,∵AB=t,∴EF=t÷=t,∴△EFG的周长=3×t=2t.故答案为:2t.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半,等边三角形的判定与性质,熟记性质并判断出△EFG是等边三角形是解题的关键.三、解答题(本题共7题,满分78分)19.(10分)(2018?上海)计算:﹣﹣+||.考点:实数的运算;分数指数幂.专题:计算题.分析:本题涉及绝对值、二次根式化简两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣﹣2+2﹣=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(10分)(2018?上海)解方程:﹣=.考点:解分式方程.专题:计算题;转化思想.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:(x+1)2﹣2=x﹣1,整理得:x2+x=0,即x(x+1)=0,解得:x=0或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=0.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)(2018?上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.考点:一次函数的应用.专题:应用题;待定系数法.分析:(1)设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出其解即可;(2)当x=6.2时,代入(1)的解析式就可以求出y的值.解答:解:(1)设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29.75.∴y关于x的函数关系式为:y=+29.75;(2)当x=6.2时,y=×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.点评:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.22.(10分)(2018?上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.考点:解直角三角形;直角三角形斜边上的中线.专题:几何图形问题.分析:(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=2,得AC=2,则CE=1,从而得出BE.解答:解:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°∴∠BCD+∠ACH=90°∴∠B=∠BCD=∠CAH,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC=CH,∴CH:AC=1:,∴sinB=;(2)∵sinB=,∴AC:AB=1:,∴AC=2.∵∠CAH=∠B,∴sin∠CAH=sinB==,设CE=x(x>0),则AE=x,则x2+22=(x)2,∴CE=x=1,AC=2,在Rt△ABC中,AC2+BC2=AB2,∴BC=4,∴BE=BC﹣CE=3.点评:本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用,难度不大.23.(12分)(2018?上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定.专题:证明题.分析:(1)证△△BAD≌△CDA,推出∠ABD=∠ACD=∠CDE,推出AC∥DE即可;(2)根据平行得出比例式,再根据比例式的性质进行变形,即可得出答案.解答:证明:(1)∵梯形ABCD,AD∥BC,AB=CD,∴∠BAD=∠CDA,在△BAD和△CDA中∴△BAD≌△CDA(SAS),∴∠ABD=∠ACD,∵∠CDE=∠ABD,∴∠ACD=∠CDE,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵AD∥BC,∴=,=,∴=,∵平行四边形ACED,AD=CE,∴=,∴=,∴=,∴=.点评:本题考查了比例的性质,平行四边形的判定,平行线的判定的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.24.(12分)(2018?上海)在平面直角坐标系中(如图),已知抛物线y=x 2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)根据待定系数法可求抛物线的表达式,进一步得到对称轴;(2)因为AC与EF不平行,且四边形ACEF为梯形,所以CE∥AF.分别求出直线CE、AF的解析式,进而求出点F的坐标;(3)△BDP和△CDP的面积相等,可得DP∥BC,根据待定系数法得到直线BC的解析式,根据两条平行的直线k值相同可得直线DP的解析式,进一步即可得到t的值.解答:解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣2),∴,解得.故抛物线的表达式为:y=x2﹣x﹣2=(x﹣1)2﹣,对称轴为直线x=1;(2)设直线CE的解析式为:y=kx+b,将E(1,0),C(0,﹣2)坐标代入得:,解得,∴直线CE的解析式为:y=2x﹣2.∵AC与EF不平行,且四边形ACEF为梯形,∴CE∥AF.∴设直线AF的解析式为:y=2x+n.∵点A(﹣1,0)在直线AF上,∴﹣2+n=0,∴n=2.∴设直线AF的解析式为:y=2x+2.当x=1时,y=4,∴点F的坐标为(1,4).(3)点B(3,0),点D(1,﹣),若△BDP和△CDP的面积相等,则DP∥BC,则直线BC的解析式为y=x﹣2,∴直线DP的解析式为y=x﹣,当y=0时,x=5,∴t=5.点评:考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用,综合性较强,有一定的难度.25.(14分)(2018?上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.考点:圆的综合题.专题:压轴题.分析:(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)∠GAE≠∠BGC,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.解答:解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB?cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∴∠BGC>∠B=∠GAE,即∠BGC≠∠GAE,又∠AEG=∠BCG≥∠ACB=∠B=∠GAE,∴当∠AEG=∠GAE时,A、E、G重合,则△AGE不存在.即∠AEG≠∠GAE∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.点评:此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.。
2018年上海中考数学二模试卷

2018年上海市中考数学二模试卷一、选择题(每小题4分,共24分).B C D32.(4分)(2018•上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学24.(4分)(2018•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()5.(4分)(2018•上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据6.(4分)(2018•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()二、填空题(每小题4分,共48分)7.(4分)(2018•上海)计算:a(a+1)=_________.8.(4分)(2018•上海)函数y=的定义域是_________.9.(4分)(2018•上海)不等式组的解集是_________.10.(4分)(2018•上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔_________支.11.(4分)(2018•上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.(4分)(2018•上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.(4分)(2018•上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.(4分)(2018•上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.(4分)(2018•上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=_________(结果用、表示).16.(4分)(2018•上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是_________.17.(4分)(2018•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为_________.18.(4分)(2018•上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为_________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(10分)(2018•上海)计算:﹣﹣+||.20.(10分)(2018•上海)解方程:﹣=.21.(10分)(2018•上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.;(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(10分)(2018•上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.23.(12分)(2018•上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.24.(12分)(2018•上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(14分)(2018•上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.2018年上海市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共24分).B C D3•,2.(4分)(2018•上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学24.(4分)(2018•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()5.(4分)(2018•上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据6.(4分)(2018•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()=S、菱形的面积等于两条对角线之积的,故此选项错误;二、填空题(每小题4分,共48分)7.(4分)(2018•上海)计算:a(a+1)=a2+a.8.(4分)(2018•上海)函数y=的定义域是x≠1.9.(4分)(2018•上海)不等式组的解集是3<x<4.,10.(4分)(2018•上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.11.(4分)(2018•上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.12.(4分)(2018•上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.i=,=2613.(4分)(2018•上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.)班的概率是:故答案为:.14.(4分)(2018•上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是y=﹣(只需写一个).(,.,当15.(4分)(2018•上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=﹣(结果用、表示)..设=,可求得=,求得,.=,==,中,=,==,=﹣=﹣.故答案为:﹣.16.(4分)(2018•上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是乙.17.(4分)(2018•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.18.(4分)(2018•上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F 与BE交于点G.设AB=t,那么△EFG的周长为2t(用含t的代数式表示).((÷=×t=2三、解答题(本题共7题,满分78分)19.(10分)(2018•上海)计算:﹣﹣+||.﹣﹣20.(10分)(2018•上海)解方程:﹣=.21.(10分)(2018•上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.;(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.,x+29.75y=×22.(10分)(2018•上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.::AC=:;sinB=:=AE=(23.(12分)(2018•上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.=,=,=,=,=,=,=.24.(12分)(2018•上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.y=xx﹣(,对称轴为直线,解得,﹣)xy=x,25.(14分)(2018•上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.=5,CP=CE==EF=2;,=,即=,CE===。
虹口区中考二模数学

2019年虹口二模数学2019.04一、选择题:(本大题共6题,每题4分,满分24分) 1.32()a 的计算结果为( ) A .5a ;B .6a ;C .8a ;D .9a .2.方程3= 的解为 ( ) A .4x =;B .7x =;C .8x =;D .10x =.3.已知一次函数(3)3y a x =-+,如果y 随自变量x 的增大而增大,那么a 的取值范围为( )A .3a <;B .3a >;C .3a <-;D .3a >-.4.下列事件中,必然事件是( )A .在体育中考中,小明考了满分;B .经过有交通信号灯的路口,遇到红灯;C .抛掷两枚正方体骰子,点数和大于1;D .四边形的外角和为180度.5.正六边形的半径与边心距之比为( )A.1:B;C2; D.26.如图,在△ABC 中,AB =AC ,BC=4,tan B =2,以AB 的中点D 为圆心,r 为半径作⊙D ,如果点B 在⊙D 内,点C 在⊙D 外,那么rA .2;B .3;C .4;D .5.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:12-= .8. 在数轴上,表示实数2-的点在原点的 侧(填“左”或“右”). 9.不等式24x ->- 的正整数解为 .10.如果关于x 的方程2690kx x -+=有两个相等的实数根,那么k 的值为 . 11.如果反比例函数的图像经过(1,3),那么该反比例函数的解析式为 . 12.如果将抛物线22y x =向左平移3个单位,那么所得新抛物线的表达式为 .13. 一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,第6题图B① ②摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有 个.17.我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1cos α的值叫做这个平行四边形的变形度.如图,矩形ABCD 的面积为5,如果变形后的平行四边形A 1B 1C 1D 1的面积为3,那么这个平行四边形的变形度为 .18.如图,在矩形ABCD 中,AB =6,点E 在边AD 上且AE =4,点F 是边BC 上的一个动点,将四边形ABFE 沿EF 翻折,A 、B 的对应点A 1、B 1与点C 在同一直线上,A 1B 1与边AD 交于点G ,如果DG =3,那么BF 的长为 .78分) 19. 先化简,再求值:35(2)242m m m m -÷+---,其中3m =. 20.(本题满分10分)解方程组:22560,312.x xy y x y ⎧--=⎨-=⎩ 21.(本题满分10分,第(1)小题3分,第(2)小题7分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;第17题图 1B 11 C题BOE第23题图C ABDF②作直线PQ 分别交边AB 、BC 于点E 、D .(1)小明所求作的直线DE 是线段AB 的 ; (2)联结AD ,AD=7,sin ∠DAC 17=,BC =9,求AC 的长. 22.(本题满分10分,第(1)小题6分,第(2)小题4分) 甲、乙两组同时加工某种零件,甲组每小时加工80件,乙组加工的零件数量(件)与时间(小时)为一次函数关系,部分数据如下表所示.(1)求y 与x 之间的函数关系式;(2)甲、乙两组同时生产,加工的零件合在一起装箱,每满340件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在□ABCD 中,AC 与BD 相交于点O ,过点B 作BE ∥AC ,联结OE 交BC 于点F ,点F 为BC 的中点.(1)求证:四边形AOEB 是平行四边形;(2)如果∠OBC =∠E ,求证:=BO OC AB FC ⋅⋅.C题图DBAEPQ如图,在平面直角坐标系xOy 中,抛物线2+8y ax bx =+与x 轴相交于点A (-2,0)和点B (4,0),与y 轴相交于点C ,顶点为点P .点D (0,4)在OC 上,联结BC 、BD .(1)求抛物线的表达式并直接写出点P 的坐标;(2)点E 为第一象限内抛物线上一点,如果△COE 与△BCD 的面积相等,求点E 的坐标;(3)点Q 在抛物线对称轴上,如果△BCD ∽△CPQ ,求点Q 的坐标. 第24题图xB OCDA PE第25题图CA BDQFPG如图,AD∥BC,∠ABC=90°,AD=3,AB=4,点P为射线BC上一动点,以P 为圆心,BP长为半径作⊙P,交射线BC于点Q,联结BD、AQ相交于点G,⊙P 与线段BD、AQ分别相交于点E、F.(1)如果BE=FQ,求⊙P的半径;(2)设BP=x,FQ=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结PE、PF,如果四边形EGFP是梯形,求BE的长.虹口区2018学年度第二学期期中学生学习能力诊断测试初三数学评分参考建议2019.4说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.B 2.D 3.A 4.C 5.D 6.B 二、填空题本大题共12题,每题4分,满分48分) 7.128.左9.x =1 10.111.3y x= 12.22+3y x =() 13.6 14.92%15.416.2a b -17.5418.8三、解答题(本大题共7题,满分78分)19.解:原式=2345()222m m m m ---÷--()当3m =时, 原式=4-20.解:由①得,60x y -=或+0x y =将它们与方程②分别组成方程组,得: 分别解这两个方程组,得原方程组的解为1124,4;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=-⎩.(代入消元法参照给分)21.解:(1)垂直平分线(或中垂线) (2)过点D 作DF ⊥AC ,垂足为点F∵DE 是线段AB 的垂直平分线 ∴AD =BD =7 ∴2CD BC BD =-=在Rt △ADF 中,1sin 717DF AD DAC =⋅∠=⨯=在Rt △ADF 中,AF =同理,CF =∴AC =22.解:(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠ 把(2,50)(4,150)代入得50=2,1504.k b k b +⎧⎨=+⎩解得=50,=50.k b -⎧⎨⎩ ∴y 与x 之间的函数关系式为5050y x =-. (2)设经过x 小时恰好装满第1箱根据题意得805050340x x +-= ∴3x =答:经过3小时恰好装满第1箱.23.(1)证明:∵BE ∥AC ∴OC CF BEBF=∵点F 为BC 的中点 ∴CF=BF ∴OC=BE∵四边形ABCD 是平行四边形 ∴AO=CO ∴AO=BE∵BE ∥AC ∴四边形AOEB 是平行四边形(2)证明:∵四边形AOEB 是平行四边形 ∴∠BAO =∠E ∵∠OBC =∠E ∴∠BAO =∠OBC∵∠ACB =∠BCO ∴△COB ∽△CBA∴BO BC ABAC=∵四边形ABCD 是平行四边形 ∴AC =2OC ∵点F 为BC 的中点 ∴BC =2FC ∴BO FC AB OC=即=BO OC AB FC⋅⋅24.解:(1)把点A (-2,0)和点B (4,0)代入2+8y ax bx =+ 得0428,01648.a b a b =-+⎧⎨=++⎩ 解得1,2.a b =-⎧⎨=⎩ ∴228y x x =-++∴P (1,9)(2)可得点C (0,8)设E (2,28x x x -++)(x >0) 根据题意COE BCD S S =∴1144822x⨯⨯=⨯⋅解得2x =E (2,8)(3)设点M 为抛物线对称轴上点P 下方一点可得tan ∠CPM =tan ∠ODB =1 ∴∠CPM =∠ODB=45°∴点Q 在抛物线对称轴上且在点P 的上方 ∴∠CPQ =∠CDB =135° ∵△BCD ∽△CPQ ①CP PQ CD BD ==解得2PQ =∴点Q (1,11)②CP PQBDCD =4PQ= 解得1PQ =∴点Q (1,10)综上所述,点Q (1,11)或(1,10)25.(1)∵BE=FQ ∴∠BPE =∠FPQ∵PE=PB ∴∠EBP =12(180°-∠EPB )同理∠FQP =12(180°-∠FPQ ) ∴∠EBP=∠FQP ∵AD ∥BC ∴∠ADB =∠EBP ∴∠FQP =∠ADB ∴tan ∠FQP =tan ∠ADB =43设⊙P 的半径为r∴4432r =解得r =32∴⊙P 的半径为32(2)过点P 作PM ⊥FQ ,垂足为点M在Rt △ABQ 中,cos AQB ∠== 在Rt △PQM 中,2cos QM PQ AQB =∠∵PM ⊥FQ ∴FQ =2QM 2=∴y =2506x <≤) (3)设BP=x①EP ∥AQ∴∠EPB =∠AQB ∴tan ∠EPB =tan ∠AQB 可求得tan ∠EPB =247∴24472x =解得712x = ∴67510BE x ==②PF ∥BD∴∠DBC =∠FPQ ∴tan ∠DBC =tan ∠FPQ 过点F 作FN ⊥PQ ,垂足为点N 可得35PN x = ,45FN x =∴25QN x = F Q x =2=解得x =1 ∴6655BE x == 综上所述710BE =或65。
上海市虹口区2018-2019学年初三下学期二模考数学试卷(解析版)

2019年上海市虹口区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.(4分)计算(a3)2的结果是()A.a5B.a6C.a8D.a92.(4分)方程的解为()A.x=4B.x=7C.x=8D.x=10.3.(4分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.4.(4分)下列事件中,必然事件是()A.在体育中考中,小明考了满分B.经过有交通信号灯的路口,遇到红灯C.抛掷两枚正方体骰子,点数和大于1D.四边形的外角和为180度.5.(4分)正六边形的半径与边心距之比为()A.B.C.D.6.(4分)如图,在△ABC中,AB=AC,BC=4,tan B=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取()A.2B.3C.4D.5二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)计算:2﹣1=.8.(4分)在数轴上,实数2﹣对应的点在原点的侧.(填“左”、“右”)9.(4分)不等式﹣2x>﹣4的正整数解为.10.(4分)如果关于x 的方程kx 2﹣6x +9=0有两个相等的实数根,那么k 的值为 .11.(4分)已知反比例函数的图象经过点A (1,3),那么这个反比例函数的解析式是 .12.(4分)如果将抛物线y =2x 2向左平移3个单位,那么所得新抛物线的表达式为 .13.(4分)一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有 个.14.(4分)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为 .15.(4分)已知两圆外切,圆心距为7,其中一个圆的半径为3,那么另一个圆的半径长为 .16.(4分)如图,AD ∥BC ,BC =2AD ,AC 与BD 相交于点O ,如果,,那么用、表示向量是 .17.(4分)我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.如图,矩形ABCD 的面积为5,如果变形后的平行四边形A 1B 1C 1D 1的面积为3,那么这个平行四边形的变形度为 .18.(4分)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.三、解答题(本大题共7题,满分78分)19.(10分)先化简,再求值:,m=﹣3.20.(10分)解方程组:21.(10分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的;(2)联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.22.(10分)甲、乙两组同时加工某种零件,甲组每小时加工80件,乙组加工的零件数量y(件)与时间x(小时)为一次函数关系,部分数据如下表所示.(1)求y与x之间的函数关系式;(2)甲、乙两组同时生产,加工的零件合在一起装箱,每满340件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?23.(12分)如图,在▱ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC于点F,点F为BC的中点.(1)求证:四边形AOEB是平行四边形;(2)如果∠OBC=∠E,求证:BO•OC=AB•FC.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+8与x轴相交于点A(﹣2,0)和点B(4,0),与y轴相交于点C,顶点为点P.点D(0,4)在OC上,联结BC、BD.(1)求抛物线的表达式并直接写出点P的坐标;(2)点E为第一象限内抛物线上一点,如果△COE与△BCD的面积相等,求点E的坐标;(3)点Q在抛物线对称轴上,如果△BCD∽△CPQ,求点Q的坐标.25.(14分)如图,AD∥BC,∠ABC=90°,AD=3,AB=4,点P为射线BC上一动点,以P为圆心,BP长为半径作⊙P,交射线BC于点Q,联结BD、AQ相交于点G,⊙P 与线段BD、AQ分别相交于点E、F.(1)如果BE=FQ,求⊙P的半径;(2)设BP=x,FQ=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结PE、PF,如果四边形EGFP是梯形,求BE的长.2019年上海市虹口区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.(4分)计算(a3)2的结果是()A.a5B.a6C.a8D.a9【分析】根据幂的乘方,底数不变,指数相乘即可求.【解答】解:(a3)2=a6,故选:B.【点评】本题考查了幂的乘方,解题的关键是熟练掌握幂的乘方公式.2.(4分)方程的解为()A.x=4B.x=7C.x=8D.x=10.【分析】将方程两边平方求解可得.【解答】解:将方程两边平方得x﹣1=9,解得:x=10,经检验:x=10是原无理方程的解,故选:D.【点评】本题考查解无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.3.(4分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.【分析】先根据一次函数的性质得出关于a的不等式,再解不等式即可求出a的取值范围.【解答】解:∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大,∴3﹣a>0,解得a<3.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.4.(4分)下列事件中,必然事件是()A.在体育中考中,小明考了满分B.经过有交通信号灯的路口,遇到红灯C.抛掷两枚正方体骰子,点数和大于1D.四边形的外角和为180度.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、在体育中考中,小明考了满分是随机事件;B、经过有交通信号灯的路口,遇到红灯是随机事件;C、抛掷两枚正方体骰子,点数和大于1是必然事件;D、四边形的外角和为180度是不可能事件,故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)正六边形的半径与边心距之比为()A.B.C.D.【分析】求出正六边形的边心距(用R表示),根据“接近度”的定义即可解决问题.【解答】解:∵正六边形的半径为R,∴边心距r=R,∴R:r=1:=2:,故选:D.【点评】本题考查正多边形与圆的知识,等边三角形高的计算,记住等边三角形的高h=a(a是等边三角形的边长),理解题意是解题的关键,属于中考常考题型.6.(4分)如图,在△ABC中,AB=AC,BC=4,tan B=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取()A.2B.3C.4D.5【分析】先求出DB和DC的长,根据点B在⊙D内,点C在⊙D外,确定r的取值范围,从而确定r可以取的值.【解答】解:如图,过点A作AF⊥BC于点F,连接CD交AF于点G,∵AB=AC,BC=4,∴BF=CF=2,∵tan B=2,∴,即AF=4,∴AB=,∵D为AB的中点,∴BD=,G是△ABC的重心,∴GF=AF=,∴CG=,∴CD=CG=,∵点B在⊙D内,点C在⊙D外,∴<r<,故选:B.【点评】本题考查点与圆的位置关系,锐角三角函数的定义,等腰三角形的性质,解题的关键是掌握点与圆的位置关系的判别方法.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)计算:2﹣1=.【分析】根据幂的负整数指数运算法则进行计算即可.【解答】解:2﹣1=.故答案为.【点评】本题考查负整数指数幂的运算.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.8.(4分)在数轴上,实数2﹣对应的点在原点的左侧.(填“左”、“右”)【分析】根据2<<3,可知2﹣<0,所以2﹣在原点的左侧.【解答】解:根据题意可知:2﹣<0,∴2﹣对应的点在原点的左侧.故填:左【点评】本题考查实数与数轴上点的对应关系,掌握了实数与数轴上的点的一一对应关系,很容易得出正确答案.9.(4分)不等式﹣2x>﹣4的正整数解为x=1.【分析】由题意可求一元一次不等式的解,即可得正整数解.【解答】解:∵﹣2x>﹣4∴x<2∴正整数解为:x=1故答案为:x=1【点评】本题考查了一元一次不等式的整数解,熟练运用解不等式的方法是本题的关键.10.(4分)如果关于x的方程kx2﹣6x+9=0有两个相等的实数根,那么k的值为1.【分析】根据根的判别式和已知得出△=(﹣6)2﹣4k×9=0且k≠0,求出即可.【解答】解:∵关于x的方程kx2﹣6x+9=0有两个相等的实数根,∴△=(﹣6)2﹣4k×9=0且k≠0,解得:k=1,故答案为:1.【点评】本题考查了一元二次方程的定义和根的判别式,能根据已知得出△=(﹣6)2﹣4k×9=0且k≠0是解此题的关键.11.(4分)已知反比例函数的图象经过点A(1,3),那么这个反比例函数的解析式是y=.【分析】把(1,3)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:由题意知,k=1×3=3.则反比例函数的解析式为:y=.故答案为:y=.【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.12.(4分)如果将抛物线y=2x2向左平移3个单位,那么所得新抛物线的表达式为y=2(x+3)2.【分析】根据“左加右减,上加下减”的规律解题.【解答】解:将抛物线y=2x2向左平移3个单位,所得新抛物线的表达式为y=2(x+3)2,故答案为:y=2(x+3)2.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.13.(4分)一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有6个.【分析】设红球有x个,根据摸到白球的概率为0.4列出方程,求出x的值即可.【解答】解:设红球有x个,根据题意得:=0.4,解得:x=6,答:红球有6个;故答案为:6.【点评】本题考查了概率公式,设出未知数,列出方程是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为 92% .【分析】根据抽取的学生一分钟跳绳的达标率,即可估计该校初三毕业生一分钟跳绳的达标率.【解答】解:∵样本容量为:3÷0.06=50, ∴该校初三毕业生一分钟跳绳次数的达标率约为×100%=92%,故答案为:92%【点评】本题考查的是频数分布表的知识,准确读表、从中获取准确的信息是解题的关键,注意用样本估计总体的运用.15.(4分)已知两圆外切,圆心距为7,其中一个圆的半径为3,那么另一个圆的半径长为 4 .【分析】根据两圆外切时圆心距等于两圆的半径的和,即可求解. 【解答】解:∵两圆外切,圆心距为7,若其中一个圆的半径为3, ∴另一个圆的半径=7﹣3=4. 故答案为:4.【点评】本题考查了圆与圆的位置关系与数量关系间的联系.此类题为中考热点,需重点掌握.16.(4分)如图,AD ∥BC ,BC =2AD ,AC 与BD 相交于点O ,如果,,那么用、表示向量是﹣2 .【分析】根据平面向量的线性运算法则即可求出答案.【解答】解:∵AD∥BC,∴△ADO∽△CBO,∴,∴=+=++3=+﹣3=﹣2,故答案为:.【点评】本题考查平面向量,解题的关键是熟练运用平面向量的运算法则,本题属于基础题型.17.(4分)我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.如图,矩形ABCD的面积为5,如果变形后的平行四边形A1B1C1D1的面积为3,那么这个平行四边形的变形度为.【分析】设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,根据平行四边形和矩形的面积公式即可得到结论.【解答】解:过A1作A1D⊥B1C1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,∴ab=5,3=ah,∴b=,h=,∴B1D==,∴==,故答案为:.【点评】本题考查了平行四边形的性质,矩形的性质,三角函数的定义,正确的理解题意是解题的关键.18.(4分)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【分析】由DG=3,CD=6可知△CDG的三角函数关系,由△CDG分别与△A'EG,△B'FC相似,可求得CG,CB',由勾股定理△CFB'可求得BF长度.【解答】解:∵△CDG∽△A'EG,A'E=4∴A'G=2∴B'G=4由勾股定理可知CG'=则CB'=由△CDG∽△CFB'设BF=x∴解得x=故答案为【点评】本题考查了翻折的性质与相似,通过寻找等角关系,确定相似关系是本题的关键.三、解答题(本大题共7题,满分78分)19.(10分)先化简,再求值:,m=﹣3.【分析】先把分式化简,再将m的值代入求解.【解答】解:原式=÷=×=﹣当m=﹣3时,原式=﹣.【点评】本题主要考查了分式的化简求值这一知识点,要求把式子化到最简,然后代值.20.(10分)解方程组:【分析】对于第1个方程利用因式分解法可得x﹣6y=0或x+y=0,再将它们与方程②分别组成方程组,分别求解可得.【解答】解:由①得,x﹣6y=0或x+y=0,将它们与方程②分别组成方程组,得:或分别解这两个方程组,得原方程组的解为.【点评】本题是考查高次方程,高次方程的解法思想:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.21.(10分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的线段AB的垂直平分线(或中垂线);(2)联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.【分析】(1)利用基本作法进行判断;(2)过点D作DF⊥AC,垂足为点F,如图,根据线段垂直平分线的性质得到AD=BD =7,则CD=2,在Rt△ADF中先利用正弦的定义可计算出DF,再利用勾股定理可计算出AF,接着在Rt△CDF中利用勾股定理可计算出CF,然后计算AF+CF.【解答】解:(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC==,∴DF=1,在Rt△ADF中,AF==4,在Rt△CDF中,CF==,∴AC=AF+CF=4+=5.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了解直角三角形.22.(10分)甲、乙两组同时加工某种零件,甲组每小时加工80件,乙组加工的零件数量y(件)与时间x(小时)为一次函数关系,部分数据如下表所示.(1)求y与x之间的函数关系式;(2)甲、乙两组同时生产,加工的零件合在一起装箱,每满340件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?【分析】(1)运用待定系数法解答即可;(2)设经过x小时恰好装满第1箱,可得方程80x+50x﹣50=340,解方程即可解答.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0)把(2,50)(4,150)代入,得解得∴y与x之间的函数关系式为y=50x﹣50;(2)设经过x小时恰好装满第1箱,根据题意得80x+50x﹣50=340,∴x=3,答:经过3小时恰好装满第1箱.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,运用待定系数法求出y 与x之间的函数关系式.23.(12分)如图,在▱ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC于点F,点F为BC的中点.(1)求证:四边形AOEB是平行四边形;(2)如果∠OBC=∠E,求证:BO•OC=AB•FC.【分析】(1)根据平行四边形的性质和判定以及平行线分线段成比例解答即可;(2)根据平行四边形的性质和相似三角形的判定和性质解答即可.【解答】证明:(1)∵BE∥AC,∴∵点F为BC的中点,∴CF=BF,∴OC=BE∵四边形ABCD是平行四边形,∴AO=CO∴AO=BE∵BE∥AC,∴四边形AOEB是平行四边形(2)∵四边形AOEB是平行四边形,∴∠BAO=∠E∵∠OBC=∠E,∴∠BAO=∠OBC∵∠ACB=∠BCO,∴△COB∽△CBA∴∵四边形ABCD是平行四边形,∴AC=2OC∵点F为BC的中点,∴BC=2FC∴即BO•OC=AB•FC【点评】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+8与x轴相交于点A(﹣2,0)和点B(4,0),与y轴相交于点C,顶点为点P.点D(0,4)在OC上,联结BC、BD.(1)求抛物线的表达式并直接写出点P的坐标;(2)点E为第一象限内抛物线上一点,如果△COE与△BCD的面积相等,求点E的坐标;(3)点Q在抛物线对称轴上,如果△BCD∽△CPQ,求点Q的坐标.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的表达式,再利用配方法可求出抛物线顶点P的坐标;(2)利用二次函数图象上点的坐标特征可求出点C的坐标,设点E的坐标为(x,﹣x2+2x+8)(0<x<4),由三角形的面积公式结合S△COE =S△BCD可得出关于x的一元一次方程,解之即可得出x的值,再将其代入点E的坐标中即可求出结论;(3)过点C作CM∥x轴,交抛物线对称轴于点M,由点C,P,B,D的坐标可得出∠CPQ=∠CDB=135°及CP,BD,CD的长度,由△BCD∽△CPQ可得出=或=,代入CP,BD,CD的长可求出PQ的长,再结合点P的坐标即可得出点Q的坐标.【解答】解:(1)将点A(﹣2,0),B(4,0)代入y=ax2+bx+8,得:,解得:,∴抛物线的表达式为y=﹣x2+2x+8.∵y=﹣x2+2x+8=﹣(x﹣1)2+9,∴点P的坐标为(1,9).(2)当x=0时,y=﹣x2+2x+8=8,∴点C的坐标为(0,8).设点E的坐标为(x,﹣x2+2x+8)(0<x<4),∵S△COE =S△BCD,∴×8•x=×4×4,解得:x=2,∴点E的坐标为(2,8).(3)过点C作CM∥x轴,交抛物线对称轴于点M,如图所示.∵点B(4,0),点D(0,4),∴OB=OD=4,∴∠ODB=45°,BD=4,∴∠BDC=135°.∵点C(0,8),点P(1,9),∴点M的坐标为(1,8),∴CM=PM=1,∴∠CPM=45°,CP=,∴点Q在抛物线对称轴上且在点P的上方,∴∠CPQ=∠CDB=135°.∵△BCD∽△CPQ,∴=或=.①当=时,,解得:PQ=2,∴点Q的坐标为(1,11);②当=时,,解得:PQ=1,∴点Q的坐标为(1,10).综上所述,点Q的坐标为(1,11)或(1,10).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用三角形的面积公式,找出关于x的一元一次方程;(3)分=或=两种情况,求出PQ的长度.25.(14分)如图,AD∥BC,∠ABC=90°,AD=3,AB=4,点P为射线BC上一动点,以P为圆心,BP长为半径作⊙P,交射线BC于点Q,联结BD、AQ相交于点G,⊙P 与线段BD、AQ分别相交于点E、F.(1)如果BE=FQ,求⊙P的半径;(2)设BP=x,FQ=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结PE、PF,如果四边形EGFP是梯形,求BE的长.【分析】(1)证出∠FQP=∠ADB,由三角函数得出tan∠FQP==,得出=,即可得出结果;(2)过点P作PM⊥FQ,垂足为点M,在Rt△ABQ中,由三角函数得出cos∠AQB==,在Rt△PQM中,QM=PQ cos∠AQB=,进一步求出,当圆与D点相交时,x最大,作DH⊥BC于H,则PD=PB=x,DH =AB=4,BH=AD=3,则PH=BP﹣BH=x﹣3,在Rt△PDH中,由勾股定理得出方程,解方程求出x的值,即可得出x的取值范围;(3)设BP=x,分两种情况:①EP∥AQ时,求出QG=QB=2x,同理:AG=AD=3,在Rt△ABQ中,由勾股定理得出方程,解方程得出x=,QG=QB=2x=,由平行线得出=,求出BG=,即可得出结果;②PF∥BD时,同①得:BG=BQ=2x,DG=AD=3,在Rt△ABD中,由勾股定理得出方程,解方程求出BQ=2,BP=1,作PN⊥BG于N,由垂径定理得出BE=2BN,由三角函数得出cos∠PBN=cos∠ADB=,求出BN=,即可得出结果.【解答】解:(1)∵BE=FQ,∴∠BPE=∠FPQ,∵PE=PB,∴∠EBP=(180°﹣∠EPB),同理∠FQP=(180°﹣∠FPQ),∴∠EBP=∠FQP,∵AD∥BC,∴∠ADB=∠EBP,∴∠FQP=∠ADB,∴tan∠FQP=tan∠ADB=,设⊙P的半径为r,则tan∠FQP==,∴=,解得:r=,∴⊙P的半径为;(2)过点P作PM⊥FQ,垂足为点M,如图1所示:在Rt△ABQ中,cos∠AQB====,在Rt△PQM中,QM=PQ cos∠AQB=,∵PM⊥FQ,PF=PQ,∴FQ=2QM=,∴,当圆与D点相交时,x最大,作DH⊥BC于H,如图2所示:则PD=PB=x,DH=AB=4,BH=AD=3,则PH=BP﹣BH=x﹣3,在Rt△PDH中,由勾股定理得:42+(x﹣3)2=x2,解得:x=,∴x的取值范围为:;(3)设BP=x,分两种情况:①EP∥AQ时,∴∠BEP=∠BGQ,∵PB=PE,∴∠PBE=∠BEP,∴∠BGQ=∠PBE,∴QG=QB=2x,同理:AG=AD=3,在Rt△ABQ中,由勾股定理得:42+(2x)2=(3+2x)2,解得:x=,∴QG=QB=2x=,∵EP∥AQ,PB=PQ,∴BE=EG,∵AD∥BC,∴=,即=,解得:BG=,∴BE=BG=;②PF∥BD时,同①得:BG=BQ=2x,DG=AD=3,在Rt△ABD中,由勾股定理得:42+32=(3+2x)2,解得:x=1或x=﹣4(舍去),∴BQ=2,∴BP=1,作PN⊥BG于N,则BE=2BN,如图3所示:∵AD∥BC,∴∠PBN=∠ADB,∴cos∠PBN=cos∠ADB=,即=,∴BN=,∴BE=2BN=;综上所述,或.【点评】本题是圆的综合题目,考查了等腰三角形的判定与性质、平行线的性质、三角函数、垂径定理、勾股定理等知识;本题综合性强,熟练掌握等腰三角形的性质,由勾股定理得出方程是解题关键.。
{3套试卷汇总}2018-2019上海市虹口区中考二轮复习仿真数学冲刺卷

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【答案】C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=5,AB=10.∵(5)1+(5)1=(10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.2.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2【答案】A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.39153)A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】D 【解析】解:9153+÷=35+ ,∵2<5<3,∴35+在5到6之间.故选D .【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.4.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B 【解析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.5.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解【答案】C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+, ∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .6.﹣3的绝对值是( )A .﹣3B .3C .-13D .13【答案】B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.7.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒【答案】C 【解析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC ,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC ,因此∠B+∠D=∠AOC+12∠AOC=180°, 解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】 该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.8.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°【答案】C 【解析】首先求得AB 与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC =(90°﹣70°)+15°+90°=125°,故选:C .【点睛】本题考查了方向角,正确理解方向角的定义是关键.9.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=【答案】D【解析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:2230x x +-=223x x +=2214x x ++=()214x +=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.10.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =55,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =, ∴54DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D.二、填空题(本题包括8个小题)11.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.【答案】3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 12364-______________.【答案】-1364--1.故答案为:-1.13.如图所示,在长为10m 、宽为8m 的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.【答案】12【解析】由图形可看出:小矩形的2个长+一个宽=10m ,小矩形的2个宽+一个长=8m ,设出长和宽,列出方程组解之即可求得答案.【详解】解:设小长方形花圃的长为xm ,宽为ym ,由题意得28210x y x y +=⎧⎨+=⎩,解得42x y =⎧⎨=⎩,所以其中一个小长方形花圃的周长是2()2(42)12(m)x y +=⨯+=.【点睛】此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y )=18,于是x+y=6,所以周长即为2(x+y )=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.14.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67AB BC =,EF=4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm【答案】503【解析】试题分析:根据67AB BC =,EF=4可得:AB=和BC 的长度,根据阴影部分的面积为542cm 可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503. 考点:菱形的性质.15.如图,在Rt ABC 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.【答案】1【解析】根据题意,可以求得∠B 的度数,然后根据解直角三角形的知识可以求得NC 的长,从而可以求得BC的长.【详解】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【点睛】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.【答案】1【解析】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.17.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.【答案】1【解析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE ,∵四边形BCEK 是正方形,∴KF=CF=12CK ,BF=12BE ,CK=BE ,BE ⊥CK , ∴BF=CF ,根据题意得:AC ∥BK ,∴△ACO ∽△BKO ,∴KO :CO=BK :AC=1:3,∴KO :KF=1:1,∴KO=OF=12CF=12BF , 在Rt △PBF 中,tan ∠BOF=BF OF =1, ∵∠AOD=∠BOF ,∴tan ∠AOD=1.故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.18.已知整数k <5,若△ABC 的边长均满足关于x 的方程2x 3x 80k -+=,则△ABC 的周长是 .【答案】6或12或1.【解析】根据题意得k≥0且(k )2﹣4×8≥0,解得k≥329. ∵整数k <5,∴k=4.∴方程变形为x 2﹣6x+8=0,解得x 1=2,x 2=4.∵△ABC 的边长均满足关于x 的方程x 2﹣6x+8=0,∴△ABC 的边长为2、2、2或4、4、4或4、4、2.∴△ABC 的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.【详解】请在此输入详解!三、解答题(本题包括8个小题)19.计算:(()2122sin 303tan 45--+--+°°【答案】1【解析】试题分析:先计算绝对值,三角函数,零指数,负指数,平方再按照实数的运算计算即可. 试题解析:()()2122sin 303tan 45--+︒--+︒ =2+2×32-3+1 =2+3-3+1=3考点:三角函数,实数的运算.20.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (-3,m +8),B (n ,-6)两点.求一次函数与反比例函数的解析式;求△AOB 的面积.【答案】(1)y=-6x,y=-2x-1(2)1 【解析】试题分析:(1)将点A 坐标代入反比例函数求出m 的值,从而得到点A 的坐标以及反比例函数解析式,再将点B 坐标代入反比例函数求出n 的值,从而得到点B 的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB 与x 轴相交于点C ,根据一次函数解析式求出点C 的坐标,从而得到点OC 的长度,再根据S △AOB =S △AOC +S △BOC 列式计算即可得解.试题解析:(1)将A (﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣1;(2)设AB与x轴相交于点C,令﹣2x﹣1=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.21.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)【答案】3+3.5【解析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=43•tan37°可得答案.【详解】如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠DCF=i=1333,∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos∠DCF=4×32=23,∴BF=BC+CF=23+23=43,过点E作EG⊥AB于点G,则GE=BF=43,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=43•tan37°,则AB=AG+BG=43•tan37°+3.5=33+3.5,故旗杆AB的高度为(33+3.5)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.23.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.【答案】(1)①见解析;②见解析;(1)1π.【解析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C 1在旋转过程中所经过的路径长=9042180ππ⨯= 【点睛】 本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.24.如图,在平面直角坐标系中,抛物线y =x 2+mx +n 经过点A(3,0)、B(0,-3),点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t .分别求出直线AB 和这条抛物线的解析式.若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.【答案】 (1)抛物线的解析式是223y x x =--.直线AB 的解析式是3y x =-.(2) 278. (3)P 点的横坐标是3212+或3212-. 【解析】(1)分别利用待定系数法求两函数的解析式:把A (3,0)B (0,﹣3)分别代入y=x 2+mx+n 与y=kx+b ,得到关于m 、n 的两个方程组,解方程组即可;(2)设点P 的坐标是(t ,t ﹣3),则M (t ,t 2﹣2t ﹣3),用P 点的纵坐标减去M 的纵坐标得到PM 的长,即PM=(t ﹣3)﹣(t 2﹣2t ﹣3)=﹣t 2+3t ,然后根据二次函数的最值得到当t=﹣=时,PM 最长为=,再利用三角形的面积公式利用S △ABM =S △BPM +S △APM计算即可;(3)由PM ∥OB ,根据平行四边形的判定得到当PM=OB 时,点P 、M 、B 、O 为顶点的四边形为平行四边形,然后讨论:当P 在第四象限:PM=OB=3,PM 最长时只有,所以不可能;当P 在第一象限:PM=OB=3,(t 2﹣2t ﹣3)﹣(t ﹣3)=3;当P 在第三象限:PM=OB=3,t 2﹣3t=3,分别解一元二次方程即可得到满足条件的t 的值.【详解】解:(1)把A (3,0)B (0,-3)代入2y x mx n =++,得 093{3m n n =++-=解得2{3m n =-=- 所以抛物线的解析式是223y x x =--.设直线AB 的解析式是y kx b =+,把A (3,0)B (0,3-)代入y kx b =+,得 03{3k b b =+-=解得1{3k b ==- 所以直线AB 的解析式是3y x =-.(2)设点P 的坐标是(3p p -,),则M (p ,223p p --),因为p 在第四象限,所以PM=22(3)(23)3p p p p p ----=-+,当PM 最长时94PM =,此时3,2p = ABM BPM APM S S S =+=19324⨯⨯=278. (3)若存在,则可能是:①P 在第四象限:平行四边形OBMP ,PM=OB=3, PM 最长时94PM =,所以不可能. ②P 在第一象限平行四边形OBPM : PM=OB=3,233p p -=,解得1321p +=,2321p -=(舍去),所以P 点的横坐标是3212+. ③P 在第三象限平行四边形OBPM :PM=OB=3,233p p -=,解得13212p +=(舍去), ①2321p -=,所以P 点的横坐标是3212. 所以P 321+321-25.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【答案】(1)41(2)15%(3)1 6【解析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)=212=16.26.在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.【答案】(1)32;(2)1. 【解析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH =KD =x ,得出AK =12﹣x ,EF =32(12﹣x ),再根据S =32x (12﹣x )=﹣32(x ﹣6)2+1,可得当x =6时,S 有最大值为1.【详解】解:(1)∵△AEF ∽△ABC , ∴EF AK BC AD=, ∵边BC 长为18,高AD 长为12, ∴EF BC AK AD ==32; (2)∵EH =KD =x ,∴AK =12﹣x ,EF =32(12﹣x ), ∴S =32x (12﹣x )=﹣32(x ﹣6)2+1. 当x =6时,S 有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--【答案】B 【解析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B 符合.故选:B .【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).2.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,函数y=k x(k <0)的图象经过点B ,则k 的值为( )A .﹣12B .﹣32C .32D .﹣36【答案】B【解析】解: ∵O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,∴OA=5,AB ∥OC ,∴点B 的坐标为(8,﹣4),∵函数y=k x (k <0)的图象经过点B , ∴﹣4=k 8,得k=﹣32. 故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A 点坐标求得OA 的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.3.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【答案】C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=5,AB=10.∵(5)1+(5)1=(10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.4.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A 正确; 小明休息前爬山的平均速度为:28007040=(米/分),B 正确; 小明在上述过程中所走的路程为3800米,C 错误; 小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D 正确.故选C .考点:函数的图象、行程问题.5.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( ) A .﹣1或1B .1或﹣3C .﹣1或3D .3或﹣3【答案】A【解析】分析:详解:∵当a≤x≤a +2时,函数有最大值1,∴1=x 2-2x -2,解得:123,1x x ==- ,即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x 在整个取值范围内,函数值y 才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.6.如图所示,在长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 2【答案】B 【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC 中截取矩形ABFE ,则矩形ABDC ∽矩形FDCE ,则 AB BD DF DC =设DF=xcm ,得到:68=x 6 解得:x=4.5, 则剩下的矩形面积是:4.5×6=17cm 1.【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.7.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2【答案】A【解析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-2 0x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.8.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .1【答案】D【解析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m 、n 的值,代入计算可得.【详解】∵点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D .【点睛】本题考查了关于y 轴对称的点,熟练掌握关于y 轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.9.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.10.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似【答案】B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.二、填空题(本题包括8个小题)11.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=___________°.【答案】1【解析】∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=1°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=1°;故答案是1.12.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E ,则∠DAE =______.【答案】10°【解析】根据线段的垂直平分线得出AD=BD ,AE=CE ,推出∠B=∠BAD ,∠C=∠CAE ,求出∠BAD+∠CAE 的度数即可得到答案.【详解】∵点D 、E 分别是AB 、AC 边的垂直平分线与BC 的交点,∴AD=BD ,AE=CE ,∴∠B=∠BAD ,∠C=∠CAE ,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE )=180°-85°-85°=10°,故答案为10°【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.13.如图所示,点C 在反比例函数k y (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB 的面积为1,则k 的值为______.【答案】1【解析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB 的面积为1,即可求得k 的值. 【详解】解:设点A 的坐标为()a,0-,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB 的面积为1,∴点k C a,a ⎛⎫ ⎪⎝⎭,∴点B的坐标为k0,2a⎛⎫ ⎪⎝⎭,1ka122a∴⋅⋅=,解得,k4=,故答案为:1.【点睛】本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.【答案】5或1.【解析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【详解】∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=5.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如图5所示:当∠B′ED=90°时,C 与点E 重合.∵AB′=5,AC=6,∴B′E=5.设BD=DB′=x ,则CD=8-x .在Rt △′BDE 中,DB′5=DE 5+B′E 5,即x 5=(8-x )5+55.解得:x=1.∴BD=1.综上所述,BD 的长为5或1.15.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.【答案】25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.16.已知抛物线y=ax 2+bx+c=0(a≠0) 与 x 轴交于 A ,B 两点,若点 A 的坐标为 ()2,0-,线段 AB 的长为8,则抛物线的对称轴为直线 ________________.【答案】2x =或x=-1【解析】由点A 的坐标及AB 的长度可得出点B 的坐标,由抛物线的对称性可求出抛物线的对称轴.【详解】∵点A 的坐标为(-2,0),线段AB 的长为8,∴点B 的坐标为(1,0)或(-10,0).∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于A 、B 两点,∴抛物线的对称轴为直线x=262-+=2或x=2102--=-1.故答案为x=2或x=-1.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.17.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.【答案】2【解析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案为2.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.18.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为__________步.【答案】2000 3【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,。
2018-2019学年第二学期上海市虹口区期中学生学习能力诊断测试初三数学试卷(含答案)

虹口区2018学年度第二学期期中学生学习能力诊断测试初三数学 试卷(满分150分,考试时间100分钟) 2019.04考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.] 1.32()a 的计算结果为 A .5a ;B .6a ;C .8a ;D .9a . 23= 的解为 A .4x =;B .7x =;C .8x =;D .10x =.3.已知一次函数(3)3y a x =-+,如果y 随自变量x 的增大而增大,那么a 的取值范围为 A .3a <;B .3a >;C .3a <-;D .3a >-.4.下列事件中,必然事件是A .在体育中考中,小明考了满分;B .经过有交通信号灯的路口,遇到红灯;C .抛掷两枚正方体骰子,点数和大于1;D .四边形的外角和为180度.5.正六边形的半径与边心距之比为A.B;C2;D.6.如图,在△ABC 中,AB =AC ,BC=4,tan B =2,以AB 的中点D 为圆心,r 为半径作⊙D ,如果点B 在⊙D 内,点C 在⊙D 外,那么r 可以取 A .2; B .3;C .4;D .5.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:12-= ▲ .8.在数轴上,表示实数2-的点在原点的 ▲ 侧(填“左”或“右”). 9.不等式24x ->- 的正整数解为 ▲ .10.如果关于x 的方程2690kx x -+=有两个相等的实数根,那么k 的值为 ▲ . 11.如果反比例函数的图像经过(1,3),那么该反比例函数的解析式为 ▲ . 12.如果将抛物线22y x =向左平移3个单位,那么所得新抛物线的表达式为 ▲ .第6题图①② 13. 一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有 ▲ 个.那么另一个圆的半径长为 ▲ . 16.如图,AD ∥BC ,BC =2AD ,AC 与BD 相交于点O ,如果AO a =,OD b =,那么用a 、b表示向量AB 是 ▲ .17.我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1cos α的值叫做这个平行四边形的变形度.如图,矩形ABCD 的面积为5,如果变形后的平行四边形A 1B 1C 1D 1的面积为3,那么这个平行四边形的变形度为 ▲ .18.如图,在矩形ABCD 中,AB =6,点E 在边AD 上且AE =4,点F 是边BC 上的一个动点,将四边形ABFE 沿EF 翻折,A 、B 的对应点A 1、B 1与点C 在同一直线上,A 1B 1与边AD 交于点G ,如果DG =3,那么BF 的长为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:35(2)242m m m m -÷+---,其中3m =.20.(本题满分10分)解方程组:22560,312.x xy y x y ⎧--=⎨-=⎩第17题图1B 第18题图OE第23题图 C A B D F21.(本题满分10分,第(1)小题3分,第(2)小题7分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D . (1)小明所求作的直线DE 是线段AB 的 ▲ ; (2)联结AD ,AD=7,sin ∠DAC 17=,BC =9,求AC 的长.22.(本题满分10分,第(1)小题6分,第(2)小题4分) 甲、乙两组同时加工某种零件,甲组每小时加工80件,乙组加工的零件数量(件)与时间(小时)为一次函数关系,部分数据如下表所示.(1)求y 与x 之间的函数关系式;(2)甲、乙两组同时生产,加工的零件合在一起装箱,每满340件装一箱,零件装箱的 时间忽略不计,求经过多长时间恰好装满第1箱? 23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在□ABCD 中,AC 与BD 相交于点O ,过点B 作BE ∥AC ,联结OE 交BC 于点F ,点F 为BC 的中点.(1)求证:四边形AOEB 是平行四边形;(2)如果∠OBC =∠E ,求证:=BO OC AB FC ⋅⋅.C第21题图DB AE P Q第25题图24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,抛物线2+8y ax bx =+与x 轴相交于点A (-2,0)和点B (4,0),与y 轴相交于点C ,顶点为点P .点D (0,4)在OC 上,联结BC 、BD . (1)求抛物线的表达式并直接写出点P 的坐标; (2)点E 为第一象限内抛物线上一点,如果△COE 与△BCD 的面积相等,求点E 的坐标; (3)点Q 在抛物线对称轴上,如果△BCD ∽△CPQ ,求点Q 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,AD ∥BC ,∠ABC =90°,AD =3,AB =4,点P 为射线BC 上一动点,以P 为圆心,BP 长为半径作⊙P ,交射线BC 于点Q ,联结BD 、AQ 相交于点G ,⊙P 与线段BD 、AQ 分别相交于点E 、F .(1)如果BE=FQ ,求⊙P 的半径;(2)设BP=x ,FQ=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)联结PE 、PF ,如果四边形EGFP 是梯形,求BE 的长.第24题图 x B O C D A P虹口区2018学年度第二学期期中学生学习能力诊断测试初三数学评分参考建议2019.4说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.B 2.D 3.A 4.C 5.D 6.B二、填空题本大题共12题,每题4分,满分48分) 7.128.左9.x =1 10.111.3y x=12.22+3y x =() 13.6 14.92% 15.4 16.2a b - 17.54 18.8三、解答题(本大题共7题,满分78分)19.解:原式=2345()222m m m m ---÷--()3222(3)(3)m m m m m --=⋅-+-()12(+3)m =-当3m =时, 原式=4-20.解:由①得,60x y -=或+0x y =将它们与方程②分别组成方程组,得: 60,312.x y x y -=⎧⎨-=⎩ +0,312.x y x y =⎧⎨-=⎩分别解这两个方程组,得原方程组的解为1124,4;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=-⎩.(代入消元法参照给分)21.解:(1)垂直平分线(或中垂线) (2)过点D 作DF ⊥AC ,垂足为点F∵DE 是线段AB 的垂直平分线 ∴AD =BD =7 ∴2CD BC BD =-=在Rt △ADF 中,1sin 717DF AD DAC =⋅∠=⨯=在Rt △ADF中,AF ==同理,CF =∴AC =22.解:(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠把(2,50)(4,150)代入 得50=2,1504.k b k b +⎧⎨=+⎩解得=50,=50.k b -⎧⎨⎩ ∴y 与x 之间的函数关系式为5050y x =-. (2)设经过x 小时恰好装满第1箱根据题意得805050340x x +-= ∴3x = 答:经过3小时恰好装满第1箱.23.(1)证明:∵BE ∥AC ∴OC CFBE BF=∵点F 为BC 的中点 ∴CF=BF ∴OC=BE ∵四边形ABCD 是平行四边形 ∴AO=CO ∴AO=BE∵BE ∥AC ∴四边形AOEB 是平行四边形(2)证明:∵四边形AOEB 是平行四边形 ∴∠BAO =∠E ∵∠OBC =∠E ∴∠BAO =∠OBC∵∠ACB =∠BCO ∴△COB ∽△CBA ∴BO BC AB AC =∵四边形ABCD 是平行四边形 ∴AC =2OC ∵点F 为BC 的中点 ∴BC =2FC ∴BO FC AB OC= 即=BO OC AB FC⋅⋅24.解:(1)把点A (-2,0)和点B (4,0)代入2+8y ax bx =+ 得0428,01648.a b a b =-+⎧⎨=++⎩ 解得1,2.a b =-⎧⎨=⎩∴228y x x =-++ ∴P (1,9)(2)可得点C (0,8)设E (2,28x x x -++)(x >0) 根据题意COE BCD S S =∴1144822x ⨯⨯=⨯⋅解得2x =E (2,8) (3)设点M 为抛物线对称轴上点P 下方一点可得tan ∠CPM =tan ∠ODB =1 ∴∠CPM =∠ODB=45°∴点Q 在抛物线对称轴上且在点P 的上方 ∴∠CPQ =∠CDB =135° ∵△BCD ∽△CPQ ①CP PQ CD BD =解得2PQ =∴点Q (1,11)②CP PQ BD CD =4PQ = 解得1PQ =∴点Q (1,10)综上所述,点Q (1,11)或(1,10)25.(1)∵BE=FQ ∴∠BPE =∠FPQ∵PE=PB ∴∠EBP =12(180°-∠EPB ) 同理∠FQP =12(180°-∠FPQ ) ∴∠EBP=∠FQP ∵AD ∥BC ∴∠ADB =∠EBP ∴∠FQP =∠ADB ∴tan ∠FQP =tan ∠ADB =43设⊙P 的半径为r∴4432r = 解得r =32∴⊙P 的半径为32(2)过点P 作PM ⊥FQ ,垂足为点M在Rt △ABQ 中,cos AQB ∠=在Rt△PQM中,2cosQM PQ AQB=∠=∵PM⊥FQ∴FQ=2QM2=∴y=256x<≤)(3)设BP=x①EP∥AQ∴∠EPB=∠AQB∴tan∠EPB=tan∠AQB可求得tan∠EPB=24 7∴24472x=解得712x=∴67510 BE x==②PF∥BD∴∠DBC=∠FPQ ∴tan∠DBC=tan∠FPQ 过点F作FN⊥PQ,垂足为点N可得35PN x=,45FN x=∴25QN x=F Q x=2=解得x=1∴655 BE x==综上所述710BE=或65。
2018年上海市虹口区中考数学二模试卷含答案解析

2018年上海市虹口区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.(4分)下列实数中,有理数是()A.B.C.πD.02.(4分)如果关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k<1且k≠0 C.k>1 D.k>1且k≠0.3.(4分)如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2D.y=(x﹣1)2.4.(4分)如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为()A.0.4 B.0.36 C.0.3 D.0.245.(4分)数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定6.(4分)如图,在矩形ABCD中,点E是CD的中点,联结B E,如果AB=6,BC=4,那么分别以AD、BE为直径的⊙M与⊙N的位置关系是()A.外离B.外切C.相交D.内切二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)a6÷a2=.8.(4分)某病毒的直径是0.000 068毫米,这个数据用科学记数法表示为毫米.9.(4分)不等式组的解集是.10.(4分)方程的解为.11.(4分)已知反比例函数,如果当x>0时,y随自变量x的增大而增大,那么a的取值范围为.12.(4分)请写出一个图象的对称轴为y轴,开口向下,且经过点(1,﹣2)的二次函数解析式,这个二次函数的解析式可以是.13.(4分)掷一枚材质均匀的骰子,掷得的点数为素数的概率是.14.(4分)在植树节当天,某校一个班的学生分成10个小组参加植树造林活动,如果10个小组植树的株数情况见下表,那么这10个小组植树株数的平均数是株.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…………………………………………(4 分)
(代入消元法参照给分)
21.解:过点 A 作 AD⊥CB,垂足为点 D
∵ sin B 4 5
∴ cos B 3 ……………………………………………………(1 分) 5
在 Rt△ABD 中, BD AB cos B 5 3 3 …………………………………(2 分) 5
将它们与方程②分别组成方程组,得:
x 2 y 2, x 2 y 2,
x 2 y 6;
x
2
y
6.
……………………………………………………(4 分)
分别解这两个方程组,
得原方程组的解为
x1 y1
4, 1;
x2 y2
2, 2.
.
如图,四边形 ABCD 是矩形,E 是对角线 AC 上的一点,EB=ED 且∠ABE=∠ADE.
(1)求证:四边形 ABCD 是正方形;
(2)延长 DE 交 BC 于点 F,交 AB 的延长线于点 G,求证: EF AG BC BE .
D
C
E F
y = g(x)
A
B
G
第 23 题图
24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 4 分,第(3)小题 4 分)
3
17.如图,在 Rt△ABC 中,∠ACB=90°,AB=10,sinA= ,CD 为 AB 边上的中线,以点 B 为圆心,r
5
为半径作⊙B.如果⊙B 与中线 CD 有且只有一个公共点,那么⊙B 的半径 r 的取值范围为
▲
.
2
18.如图,在△ABC 中,AB=AC,BC=8,tanB 3 ,点 D 是 AB 的中点,如果把△BCD 沿直 2
一、选择题(本大题共 6 题,每题 4 分,满分 24 分)
1.D
2.A
3.C
4.B
5.C
6.B
二、填空题本大题共 12 题,每题 4 分,满分 48 分)
7. a4
8. 6.8105
9. x 1
11. a 3
15.2
12.
y x2 1
等(答案不唯一)
1
13.
2
16.
1
a
∵AB=AF AD⊥CB
∴BF=2BD=6 ………………………………………(1 分)
∵EF⊥CB AD⊥CB
∴EF∥AD
∴ DF AE …………………(2 分) CF EC
∵ AE : EC 3 : 5 DF=BD=3 ∴CF=5 ∴CD=8………………………(1 分)
在 Rt△ABD 中, AD AB sin B 5 4 4 ……………………………………(1 分) 5
7
解得 x1 50 x2 60 经检验, x1 50 x2 60 都是原方程的解,但 x1 50 不符合题意,舍去 ∴ x 60 ……………………………………………………………………………(2 分) 答:甲车原计划的速度为 60 千米/小时.………………………………………(1 分) (2)(4,240) (12,600) …………………………………………………(1 分,1 分) y 45x 60 …………………………………………………………………………(2 分)
线 CD 翻折,使得点 B 落在同一平面内的 B′处,联结 A B′,那么 A B′的长为 ▲ . A
B
A
D
O
D
D
B
C
第 16 题图
CAΒιβλιοθήκη 第 17 题图BC
第 18 题图
三、解答题(本大题共 7 题,满分 78 分) 19.(本题满分 10 分)
先化简,再求值: (a 1 3 ) a2 4a 4 ,其中 a 3 . a 1 a 1
1
A.一条中线;
B.一条高;
C.一条角平分线; D.不确定.
6.如图,在矩形 ABCD 中,点 E 是 CD 的中点,联结 BE,如果 AB=6,BC=4,那么分别以 AD、BE 为直径的⊙M 与⊙N 的位置关系是
A.外离;
B.外切;
C.相交;
D.内切.
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
………………………………………………………(3 分)
a2 ……………………………………………………………………………
(2 分)
a2
当 a 3 时, 原式= 3 2 7 4 3 …………………………………………… (2 分) 32
.
20.解:由①得, x 2 y 2 或 x 2 y 2 ……………………………………………(2 分)
4.如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方
图.如果乘车的频率是 0.4,那么步行的频率为
A.0.4;
B.0.36;
C.0.3;
人数
A
20
P
12
D
C
0 乘车 步行 骑车 出行方式
O
E
B
第 4 题图
第 5 题图
D.0.24.
A
D
E
B
C
第 6 题图
5.数学课上,小明进行了如下的尺规作图(如图所示): (1)在△AOB(OA<OB)边 OA、OB 上分别截取 OD、OE,使得 OD=OE; 1 (2)分别以点 D、E 为圆心,以大于 DE 为半径作弧,两弧交于△AOB 内的一点 C; 2 (3)作射线 OC 交 AB 边于点 P. 那么小明所求作的线段 OP 是△AOB 的
20.(本题满分 10 分)
x2 4xy 4 y2 4, ①
解方程组:
x
2
y
6.
②
21.(本题满分 10 分)
如 图 , 在 △ ABC中 , sin B 4 , 点 F在 BC上 , AB=AF=5, 过 点 F作 EF⊥ CB交 AC于 点 E, 且 5 A
AE : EC 3 : 5 ,求BF的长与sinC的值. E
A. k 1 ;
B. k 1且k 0 ; C. k 1 ;
D. k 1且k 0 .
3.如果将抛物线 y x2 向左平移 1 个单位,那么所得新抛物线的表达式是
A. y x2 1;
B. y x2 1;
C. y (x 1)2 ; D. y (x 1)2 .
2018.4
说明: 1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相 应评分; 2.第一、二大题若无特别说明,每题评分只有满分或零分; 3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的 解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的 给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以 1 分为基本单位.
如图,在平面直角坐标系 xOy 中,抛物线 y ax2 2x c 与直线 y 1 x 3分别交于 x 轴、 2
y 轴上的 B、C 两点,抛物线的顶点为点 D,联结 CD 交 x 轴于点 E. (1)求抛物线的解析式以及点 D 的坐标; (2)求 tan∠BCD; (3)点 P 在直线 BC 上,若∠PEB=∠BCD,求点 P 的坐标.
[请将结果直接填入答题纸的相应位置]
7.计算: a 6 a 2 = ▲
.
8. 某病毒的直径是 0.000 068 毫米,这个数据用科学记数法表示为 ▲ 毫米.
x 1,
9.不等式组 2x 4. 的解集是 ▲
.
10.方程 x 2 x 的解为
▲
.
11.已知反比例函数 y 3 a ,如果当 x 0 时,y 随自变量 x 的增大而增大,那么 a 的取值范围为 x
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相
应位置上.]
1.下列实数中,有理数是
A. 3 ;
B. 3 9 ;
C. ;
D.0.
2.如果关于 x 的一元二次方程 x2 2x k 0 有两个不相等的实数根,那么 k 的取值范围是
1
b
22
17. 5 r 6 或 r 24 5
10. x 1
14.6
2
18.
5
5
三、解答题(本大题共 7 题,满分 78 分)
6
19.解:原式= a2 1 3 a 1 ………………………………………………………(3 分) a 1 a2 4a 4
(a 2)(a 2) a 1 a 1 (a 2)2
C
F
B
第 21 题图
22.(本题满分 10 分,第(1)小题 6 分,第(2)小题 4 分) 3
甲、乙两车需运输一批货物到 600 公里外的某地,原计划甲车的速度比乙车每小时多 10 千米,
这样甲车将比乙车早到 2 小时.实际甲车以原计划的速度行驶了 4 小时后,以较低速度继续行驶,
结果甲、乙两车同时到达.
上海市虹口区 2018 年中考数学二模试题
考生注意:
(满分 150 分,考试时间 100 分钟)
1.本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草
稿纸、本试卷上答题一律无效.