2018年上海市徐汇区中考数学二模试卷

合集下载

【精选3份合集】2017-2018学年上海市徐汇区某名校中考二模数学试题

【精选3份合集】2017-2018学年上海市徐汇区某名校中考二模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是() A .3y x = B .3y x=C .1y x=-D .2yx【答案】B【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误;y=3x 的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x的图象在二、四象限,故选项C 错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误; 故选B.2.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① a bc <0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0. ∴abc <0, ①正确; 2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0, 即4a-2b+c <0 ∵b=-2a , ∴4a+4a+c <0即8a+c <0,故⑤正确. 正确的结论有①②⑤, 故选:C 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.3.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A .∠NOQ =42°B .∠NOP =132°C .∠PON 比∠MOQ 大D .∠MOQ 与∠MOP 互补【答案】C【解析】试题分析:如图所示:∠NOQ=138°,选项A 错误;∠NOP=48°,选项B 错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON 比∠MOQ 大,选项C 正确;由以上可得,∠MOQ 与∠MOP 不互补,选项D 错误.故答案选C . 考点:角的度量.4.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤)近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18B .36C .41D .58【答案】C【解析】根据已知三点和近似满足函数关系y=ax 2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度x在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.5.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50°B.40°C.30°D.25°【答案】B【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.7.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚【答案】A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用8.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.72.510⨯C.6⨯D.52.5100.2510⨯B.7⨯2510【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.9.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A .28cm 2B .27cm 2C .21cm 2D .20cm 2【答案】B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC 中截取矩形ABFE , 则矩形ABDC ∽矩形FDCE , 则AB BDDF DC= 设DF=xcm ,得到:68=x 6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm 1. 【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.10.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】C【解析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程. 【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程. 二、填空题(本题包括8个小题) 11.如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.【答案】6.【解析】作辅助线,根据反比例函数关系式得:S △AOD =92, S △BOE =12,再证明△BOE ∽△AOD ,由性质得OB 与OA 的比,由同高两三角形面积的比等于对应底边的比可以得出结论. 【详解】如图,分别作BE ⊥x 轴,AD ⊥x 轴,垂足分别为点E 、D ,∴BE ∥AD , ∴△BOE ∽△AOD ,∴22BOE AODSOB SOA=, ∵OA=AC , ∴OD=DC ,∴S △AOD =S △ADC =12S △AOC , ∵点A 为函数y=9x(x >0)的图象上一点,∴S △AOD =92, 同理得:S △BOE =12, ∴112992BOE AOD S S ==, ∴13OB OA =,∴23AB OA=, ∴23ABC AOCS S=, ∴2963ABCS⨯==, 故答案为6.12.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为______.【答案】160°【解析】试题分析:先求出∠COA 和∠BOD 的度数,代入∠BOC=∠COA+∠AOD+∠BOD 求出即可. 解:∵∠AOD=20°,∠COD=∠AOB=90°, ∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°, 故答案为160°. 考点:余角和补角.13.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球. 【答案】1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x 个红球,列出方程30x=20%, 求得x=1. 故答案为1.点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.【答案】8【解析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影=1·AB CE=8,2故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).【答案】43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC 中,tan ∠ACB=ABBC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=tan 30x,∵两次测量的影长相差8米,∴00tan 30tan 60x x-=8,∴x=43, 故答案为43.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案. 16.计算:﹣1﹣2=_____. 【答案】-3【解析】-1-2=-1+(-2)=-(1+2)=-3, 故答案为-3.17.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.【答案】2.【解析】设第n 层有a n 个三角形(n 为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n =2n ﹣2”,再代入n =2029即可求出结论. 【详解】设第n 层有a n 个三角形(n 为正整数), ∵a 2=2,a 2=2+2=3,a 3=2×2+2=5,a 4=2×3+2=7,…, ∴a n =2(n ﹣2)+2=2n ﹣2.∴当n =2029时,a 2029=2×2029﹣2=2. 故答案为2. 【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n =2n ﹣2”是解题的关键.18.将一个含45°角的三角板ABC ,如图摆放在平面直角坐标系中,将其绕点C 顺时针旋转75°,点B 的对应点'B 恰好落在轴上,若点C 的坐标为(1,0),则点'B 的坐标为____________.【答案】()12,0+【解析】先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为2,从而求出B′的坐标.【详解】解:∵∠ACB=45°,∠BCB′=75°, ∴∠ACB′=120°, ∴∠ACO=60°, ∴∠OAC=30°, ∴AC=2OC ,∵点C 的坐标为(1,0), ∴OC=1, ∴AC=2OC=2,∵△ABC 是等腰直角三角形,2AB BC ∴== 2B C A B '''∴== 12OB '∴=+∴B′点的坐标为(12,0)+ 【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题. 三、解答题(本题包括8个小题)19.如图,小明的家在某住宅楼AB 的最顶层(AB ⊥BC ),他家的后面有一建筑物CD (CD ∥AB ),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C 的俯角是43°,顶部D 的仰角是25°,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(精确到1米).【答案】39米【解析】过点A 作AE ⊥CD ,垂足为点E , 在Rt △ADE 中,利用三角函数求出 DE 的长,在Rt △ACE 中,求出 C E 的长即可得.【详解】解:过点A 作AE ⊥CD ,垂足为点E ,由题意得,AE= BC=28,∠EAD =25°,∠EAC =43°,在Rt △ADE 中,∵tan DE EAD AE ∠=,∴tan25280.472813.2DE =︒⨯=⨯≈, 在Rt △ACE 中,∵tan CE EAC AE ∠=,∴tan43280.932826CE =︒⨯=⨯≈, ∴13.22639DC DE CE =+=+≈(米),答:建筑物CD 的高度约为39米.20.如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx+b 的图象和反比例函数y =m x的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;直接写出一次函数的值小于反比例函数值的x 的取值范围.【答案】(1)y =﹣x ﹣2;(2)C (﹣2,0),△AOB=6,,(3)﹣4<x <0或x >2.【解析】(1)先把B 点坐标代入代入y =m x,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和△AOB 的面积=S △AOC +S △BOC 进行计算;(3)观察函数图象得到当﹣4<x <0或x >2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B (2,﹣4)在反比例函数y =m x 的图象上, ∴m =2×(﹣4)=﹣8,∴反比例函数解析式为:y =﹣8x , 把A (﹣4,n )代入y =﹣8x,得﹣4n =﹣8,解得n =2,则A 点坐标为(﹣4,2).把A (﹣4,2),B (2,﹣4)分别代入y =kx+b ,得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为y =﹣x ﹣2;(2)∵y =﹣x ﹣2,∴当﹣x ﹣2=0时,x =﹣2,∴点C 的坐标为:(﹣2,0),△AOB 的面积=△AOC 的面积+△COB 的面积 =12×2×2+12×2×4 =6;(3)由图象可知,当﹣4<x <0或x >2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.21.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.22.有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A 组抽取一张,求抽到数字为2的概率;随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?【答案】(1)P (抽到数字为2)=13;(2)不公平,理由见解析. 【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=13; (2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=4263=, 乙获胜的情况有2种,P=2163=, 所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.23.如图,在直角坐标系xOy 中,直线y mx =与双曲线n y x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. 求m 、n 的值;求直线AC 的解析式.【答案】(1)m =-1,n =-1;(2)y =-12x +12 【解析】(1)由直线y mx =与双曲线n y x=相交于A(-1,a)、B 两点可得B 点横坐标为1,点C 的坐标为(1,0),再根据△AOC 的面积为1可求得点A 的坐标,从而求得结果;(2)设直线AC 的解析式为y =kx +b ,由图象过点A (-1,1)、C (1,0)根据待定系数法即可求的结果.【详解】(1)∵直线y mx =与双曲线n y x =相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0)∵△AOC 的面积为1,∴A(-1,1)将A(-1,1)代入y mx =,n y x=可得m =-1,n =-1; (2)设直线AC 的解析式为y =kx +b∵y =kx +b 经过点A (-1,1)、C (1,0)∴1,{0,k b k b -+=+=解得k =-12,b =12. ∴直线AC 的解析式为y =-12x +12. 【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.24.如图,直线y=12x+2与双曲线y=k x相交于点A (m ,3),与x 轴交于点C .求双曲线的解析式;点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.【答案】(1)6y x=(2)(-6,0)或(-2,0). 【解析】分析:(1)把A 点坐标代入直线解析式可求得m 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (t ,0),则可表示出PC 的长,进一步表示出△ACP 的面积,可得到关于t 的方程,则可求得P 点坐标.详解:(1)把A 点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A (2,3).∵A 点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x; (2)在y=12x+2中,令y=0可求得:x=﹣4,∴C (﹣4,0).∵点P 在x 轴上,∴可设P 点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.25.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【答案】(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.26.在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.【答案】这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b 2>4ac ;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A .4个B .3个C .2个D .1个【答案】B 【解析】试题解析:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,12b a,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点,240b ac ∴->,24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,12b a,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个.故选B.2.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C 【解析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点. 3.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5B .4C .3D .2【答案】D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可. 【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1【答案】C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C .考点:科学记数法—表示较小的数.5)A .9B .±9C .±3D .3【答案】D【解析】根据算术平方根的定义求解.【详解】∵81=9,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.即81的算术平方根是1.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.6.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .16【答案】C 【解析】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°.所以AFI BGC DHE GHI 、、、都是等边三角形.所以31AI AF BG BC ====,.3317GI GH AI AB BG ∴==++=++=,7232DE HE HI EF FI ==--=--=,7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15;故选C .。

上海市各区2018届中考数学二模试卷精选汇编:计算题

上海市各区2018届中考数学二模试卷精选汇编:计算题

计算题专题宝山区、嘉定区 19.(本题满分10分)先化简,再求值:xx x x x --+++-2321422,其中32+=x .19.解:原式2321)2)(2(2-+++++-=x x x x x x …………2分 )2)(2()2(3)2)(1(2+-++-++=x x x x x x ………………………1分)2)(2(442+-++=x x x x …………………………………………2分)2)(2()2(2+-+=x x x ………………………2分22-+=x x …………………………………………1分 把32+=x 代入22-+x x 得: 原式232232-+++=………………1分 1334+=………………………………1分 长宁区19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 崇明区19.(本题满分10分)12022)9( 3.14)π+-+--19.(本题满分10分)解:原式731=-+-……………………………………………………8分9=- …………………………………………………………………2分 奉贤区19.(本题满分10分)计算:1212)33(8231)12(--+++-.19、3 黄浦区19.(本题满分10分)计算:())102322220183++--.19.解:原式()13-—————————————————————(6分)=13-————————————————————————(2分) =4—————————————————————————————(2分)金山区计算:21o o 21tan 452sin 60122-⎛⎫-+- ⎪⎝⎭.19.解:原式=124-……………………………………………(8分)14+……………………………………………(1分)=5.………………………………………………………(1分) 静安区19.(本题满分10分) 计算:102018)30(sin )3(32)45cot (18---+-+-+ π.19.(本题满分10分) 计算:102018)30(sin )3(32)45cot (18---+-+-+ π.解:原式=12018)21(1)23()1(23--+-+-+ …………………(5分)=2123123-+-++ …………………………(3分) =322+ …………………………………(2分) 闵行区19.(本题满分10分)120183(1)2cos 45+8-+--o .19.解:原式112+……………………………………(2分+2分+2分+2分)2=.……………………………………………………………………(2分)普陀区19.(本题满分10分)先化简,再求值:42442222---++÷+x x x x x x x ,其中2x =-. 19.解:原式()()22+22(2)22x x x x x x x -=-+-+ ················ (3分)122x x x =-++ ······················ (2分) 12x x -=+. ·························· (1分)当2x =时,原式=·················· (1分)= ··················· (1分)=青浦区19.(本题满分10分)计算:1012152(3)2---+().20.(本题满分10分)先化简,再求值:25+3222x x x x ⎛⎫--÷⎪++⎝⎭(),其中x =19.解:原式212-+. ····················· (8分)=1.20.解:原式=()2245223--+⨯++x x x x , ···················· (5分) =()()()233223+-+⨯++x x x x x , ·················· (1分)=33-+x x . ··························· (1分)当=x2. 松江区19.(本题满分10分)计算:031-19.(本题满分10分)计算:031-解:原式=11)-2分)=22分 徐汇区19. 101()( 3.14)|4|2π---+.杨浦区19、(本题满分10分)先化简,再求值:。

上海市徐汇区2018年中考二模数学试卷(含详细答案)

上海市徐汇区2018年中考二模数学试卷(含详细答案)

C. 8、 9
D. 8 、10
5. 如果一个正多边形内角和等于 1080°,那么这个正多边形的每一个外角等于(

A. 45 °
B. 60 °
C. 120°
D. 135 °
6. 下列说法中,正确的个数共有(

(1)一个三角形只有一个外接圆
(2)圆既是轴对称图形,又是中心对称图形
(3)在同圆中,相等的圆心角所对的弧相等
尺规作图的方法确定点 O 的位置并求出的⊙ O 半径 . (保留作图轨迹,不写作法)
22. “五一”期间小明和小丽相约到苏州乐园游玩,小丽乘私家车从上海出发
30 分钟后,
小明乘坐火车从上海出发, 先到苏州北站, 然后再乘出租车去游乐园 (换乘时间忽略不计) ,
两人恰好同时到达苏州乐园,他们离上海的距离
D. 第四象限
3. 如果关于 x 的方程 x2 kx 1 0 有实数根,那么 k 的取值范围是(

A. k 0
B. k 0
C. k 4
D. k 4
4. 某射击选手 10 次射击成绩统计结果如下表,这 10 次成绩的众数、中位数分别是(

成绩(环)
7
8
9
10
次数
8
B. 8 、 8.5
三 . 简答题
19. 计算: 12 ( 1) 1 2
1( 31
3.14)0 | 2 3 4 | .
x2
16
20. 解分式方程:
1 x2
x2
.
4
21. 如图, 在 Rt ABC 中, C 90 , AC 3 , BC 4 , AD 平分 BAC 交 BC 于点 D .
(1)求 tan DAB ;

(完整版)2018年上海市中考数学二模试卷

(完整版)2018年上海市中考数学二模试卷

2018年上海市中考数学二模试卷一、选择题(每小题4分,共24分)1.(4分)(2018?上海)计算的结果是()A.B.C.D.32.(4分)(2018?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×10113.(4分)(2018?上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)24.(4分)(2018?上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠55.(4分)(2018?上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和406.(4分)(2018?上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍二、填空题(每小题4分,共48分)7.(4分)(2018?上海)计算:a(a+1)=_________.8.(4分)(2018?上海)函数y=的定义域是_________.9.(4分)(2018?上海)不等式组的解集是_________.10.(4分)(2018?上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔_________支.11.(4分)(2018?上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.(4分)(2018?上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.(4分)(2018?上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.(4分)(2018?上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.(4分)(2018?上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=_________(结果用、表示).16.(4分)(2018?上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是_________.17.(4分)(2018?上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为_________.18.(4分)(2018?上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为_________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(10分)(2018?上海)计算:﹣﹣+||.20.(10分)(2018?上海)解方程:﹣=.21.(10分)(2018?上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.22.(10分)(2018?上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.23.(12分)(2018?上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.24.(12分)(2018?上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(14分)(2018?上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.2018年上海市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.(4分)(2018?上海)计算的结果是()A.B.C.D.3考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的乘法运算法则进行运算即可.解答:解:?=,故选:B.点评:本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2.(4分)(2018?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:60 800 000 000=6.08×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2018?上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:C.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.(4分)(2018?上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.5.(4分)(2018?上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(4分)(2018?上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍考点:菱形的性质.专题:几何图形问题.分析:分别利用菱形的性质结合各选项进而求出即可.解答:解:A、∵四边形ABCD是菱形,∴AB=BC=AD,∵AC<BD,∴△ABD与△ABC的周长不相等,故此选项错误;B 、∵S △ABD =S 平行四边形ABCD ,S △ABC =S 平行四边形ABCD,∴△ABD 与△ABC 的面积相等,故此选项正确;C 、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D 、菱形的面积等于两条对角线之积的,故此选项错误;故选:B .点评:此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.二、填空题(每小题4分,共48分)7.(4分)(2018?上海)计算:a (a+1)=a 2+a.考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=a 2+a .故答案为:a 2+a点评:此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.8.(4分)(2018?上海)函数y=的定义域是x ≠1.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x ﹣1≠0,解得x ≠1.故答案为:x ≠1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(4分)(2018?上海)不等式组的解集是3<x <4.考点:解一元一次不等式组.专题:计算题.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x >3,解②得:x <4.则不等式组的解集是:3<x <4.故答案是:3<x <4点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x 介于两数之间.10.(4分)(2018?上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.考点:有理数的混合运算.专题:应用题.分析:三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.解答:解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.点评:此题考查有理数的混合运算,理解题意,列出算式解决问题.11.(4分)(2018?上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.考点:根的判别式.分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.解答:解:∵关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.(4分)(2018?上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.考点:解直角三角形的应用-坡度坡角问题.专题:应用题.分析:首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.解答:解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.点评:此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.13.(4分)(2018?上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.考点:概率公式.分析:由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.解答:解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,∴恰好抽到初三(1)班的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2018?上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是y=﹣(只需写一个).考点:反比例函数的性质.专题:开放型.分析:首先根据反比例函数的性质可得k<0,再写一个符合条件的数即可.解答:解:∵反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,∴k<0,∴y=﹣,故答案为:y=﹣.点评:此题主要考查了反比例函数的性质,关键是掌握对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.15.(4分)(2018?上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=﹣(结果用、表示).考点:*平面向量.分析:由点E在边AB上,且AB=3EB.设=,可求得,又由在平行四边形ABCD中,=,求得,再利用三角形法则求解即可求得答案.解答:解:∵AB=3EB.=,∴==,∵平行四边形ABCD中,=,∴==,∴=﹣=﹣.故答案为:﹣.点评:此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.16.(4分)(2018?上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是乙.考点:方差;折线统计图.专题:图表型.分析:根据方差的意义数据波动越小,数据越稳定即可得出答案.解答:解:根据图形可得:乙的成绩波动最小,数据最稳定,则三人中成绩最稳定的是乙;故答案为:乙.点评:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(4分)(2018?上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类.分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.18.(4分)(2018?上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F 与BE交于点G.设AB=t,那么△EFG的周长为2t(用含t的代数式表示).考点:翻折变换(折叠问题).专题:几何图形问题.分析:根据翻折的性质可得CE=C′E,再根据直角三角形30°角所对的直角边等于斜边的一半判断出∠EBC′=30°,然后求出∠BGD′=60°,根据对顶角相等可得∠FGE=∠∠BGD′=60°,根据两直线平行,内错角相等可得∠AFG=∠FGE,再求出∠EFG=60°,然后判断出△EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解.解答:解:由翻折的性质得,CE=C′E,∵BE=2CE,∴BE=2C′E,又∵∠C′=∠C=90°,∴∠EBC′=30°,∵∠FD′C′=∠D=90°,∴∠BGD′=60°,∴∠FGE=∠BGD′=60°,∵AD∥BC,∴∠AFG=∠FGE=60°,∴∠EFG=(180°﹣∠AFG)=(180°﹣60°)=60°,∴△EFG是等边三角形,∵AB=t,∴EF=t÷=t,∴△EFG的周长=3×t=2t.故答案为:2t.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半,等边三角形的判定与性质,熟记性质并判断出△EFG是等边三角形是解题的关键.三、解答题(本题共7题,满分78分)19.(10分)(2018?上海)计算:﹣﹣+||.考点:实数的运算;分数指数幂.专题:计算题.分析:本题涉及绝对值、二次根式化简两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣﹣2+2﹣=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(10分)(2018?上海)解方程:﹣=.考点:解分式方程.专题:计算题;转化思想.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:(x+1)2﹣2=x﹣1,整理得:x2+x=0,即x(x+1)=0,解得:x=0或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=0.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)(2018?上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.考点:一次函数的应用.专题:应用题;待定系数法.分析:(1)设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出其解即可;(2)当x=6.2时,代入(1)的解析式就可以求出y的值.解答:解:(1)设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29.75.∴y关于x的函数关系式为:y=+29.75;(2)当x=6.2时,y=×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.点评:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.22.(10分)(2018?上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.考点:解直角三角形;直角三角形斜边上的中线.专题:几何图形问题.分析:(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=2,得AC=2,则CE=1,从而得出BE.解答:解:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°∴∠BCD+∠ACH=90°∴∠B=∠BCD=∠CAH,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC=CH,∴CH:AC=1:,∴sinB=;(2)∵sinB=,∴AC:AB=1:,∴AC=2.∵∠CAH=∠B,∴sin∠CAH=sinB==,设CE=x(x>0),则AE=x,则x2+22=(x)2,∴CE=x=1,AC=2,在Rt△ABC中,AC2+BC2=AB2,∴BC=4,∴BE=BC﹣CE=3.点评:本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用,难度不大.23.(12分)(2018?上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定.专题:证明题.分析:(1)证△△BAD≌△CDA,推出∠ABD=∠ACD=∠CDE,推出AC∥DE即可;(2)根据平行得出比例式,再根据比例式的性质进行变形,即可得出答案.解答:证明:(1)∵梯形ABCD,AD∥BC,AB=CD,∴∠BAD=∠CDA,在△BAD和△CDA中∴△BAD≌△CDA(SAS),∴∠ABD=∠ACD,∵∠CDE=∠ABD,∴∠ACD=∠CDE,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵AD∥BC,∴=,=,∴=,∵平行四边形ACED,AD=CE,∴=,∴=,∴=,∴=.点评:本题考查了比例的性质,平行四边形的判定,平行线的判定的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.24.(12分)(2018?上海)在平面直角坐标系中(如图),已知抛物线y=x 2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)根据待定系数法可求抛物线的表达式,进一步得到对称轴;(2)因为AC与EF不平行,且四边形ACEF为梯形,所以CE∥AF.分别求出直线CE、AF的解析式,进而求出点F的坐标;(3)△BDP和△CDP的面积相等,可得DP∥BC,根据待定系数法得到直线BC的解析式,根据两条平行的直线k值相同可得直线DP的解析式,进一步即可得到t的值.解答:解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣2),∴,解得.故抛物线的表达式为:y=x2﹣x﹣2=(x﹣1)2﹣,对称轴为直线x=1;(2)设直线CE的解析式为:y=kx+b,将E(1,0),C(0,﹣2)坐标代入得:,解得,∴直线CE的解析式为:y=2x﹣2.∵AC与EF不平行,且四边形ACEF为梯形,∴CE∥AF.∴设直线AF的解析式为:y=2x+n.∵点A(﹣1,0)在直线AF上,∴﹣2+n=0,∴n=2.∴设直线AF的解析式为:y=2x+2.当x=1时,y=4,∴点F的坐标为(1,4).(3)点B(3,0),点D(1,﹣),若△BDP和△CDP的面积相等,则DP∥BC,则直线BC的解析式为y=x﹣2,∴直线DP的解析式为y=x﹣,当y=0时,x=5,∴t=5.点评:考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用,综合性较强,有一定的难度.25.(14分)(2018?上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.考点:圆的综合题.专题:压轴题.分析:(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)∠GAE≠∠BGC,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.解答:解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB?cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∴∠BGC>∠B=∠GAE,即∠BGC≠∠GAE,又∠AEG=∠BCG≥∠ACB=∠B=∠GAE,∴当∠AEG=∠GAE时,A、E、G重合,则△AGE不存在.即∠AEG≠∠GAE∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.点评:此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.。

上海市各区2018年中考二模数学试题_(2) 推荐

上海市各区2018年中考二模数学试题_(2) 推荐

九年级数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.A ;2.D ;3.B ;4.D ;5. B ;6.C . 二、填空题:(本大题共12题,每题4分,满分48分)7.x ≠1; 8.1.37×109; 9.x =1; 10.()()2121+---x x ;11. 4;12.m >3; 13. 0.3; 14.6180120+=x x ; 15.)(21b a-; 16.内切; 17.4 ; 18.750或150. 三、解答题:(本大题共7题,满分78分)19.解:原式=333334+-++-…………………………………………………(8分)=133-………………………………………………………………………(2分)AF N第一个观点第一个观点①②③④⑤①②③④⑤①②③④⑤①②③④⑤⑤④③②①20. 解:由①得 x <1. …………………………………………………………………(3分) 由②得 1-≥x .…………………………………………………………………(3分) ∴ 原不等式组的解集为11<≤-x . …………………………………………(2分) 画图略………………………………………………………………………………(2分) 21.解:(1)过点B 作BF ⊥AD 于F 。

…………………………………………………(1分)在Rt ABF △中,∵35==AF BF i ,且10BF m =。

∴6AF m =………………(2分)∴AB = …………………………………………………………(2分)(2)如图,延长EC 至点M ,AD 至点N ,连接MN ,过点E 作EG ⊥AD 于G 。

在Rt △AEG 中,∵65==AG EG i ,且10BF m =, ∴AG =12m ,BE=GF=AG - AF =6 m 。

……………………………………………(2分)∴ABE CMND S S =△梯形 ………………(1()1122BE EG MC ND ∙∙=+。

中考数学试题-徐汇10初三数学二模定稿 最新

中考数学试题-徐汇10初三数学二模定稿 最新

2018学年第二学期徐汇区初三年级数学学科学习能力诊断卷2018.4 (时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题,每题4分,满分24分) 1.下列运算结果为2m 的式子是( ▲ )A .63m m ÷B .42m m -⋅C .12()m -D .42m m -2.据上海世博会官方网统计,截至2018年3月29日为止,上海世博会门票已实现销售约22 170 000张.将22 170 000用科学记数法表示为( ▲ )A .610217.2⨯ B .6102217.0⨯ C .710217.2⨯ D .61017.22⨯ 3.把不等式组2020x x +>⎧⎨-≤⎩的解集表示在数轴上,正确的是( ▲ )4.已知反比例函数的图象经过点(21)P -,,则这个函数的图像位于( ▲ )A .第一、三象限B .第二、三象限C.第二、四象限D .第三、四象限5.如图,AB ∥DF , AC ⊥BC 于C ,CB 的延长线与DF 交于点E ,若∠A = 20°,则∠CEF等于( ▲ )A . 110°B . 100°C . 80°D . 70°6. 一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图像如图所示,下列结论错误..的是( ▲ ) A .轮船的速度为20千米/小时 B .快艇的速度为380千米/小时 ABCD第5题 第6题C .轮船比快艇先出发2小时D .快艇比轮船早到2小时 二、填空题(本大题共12题,每题4分,满分48分) 7.在实数范围内分解因式:a a 43- = __ ▲__. 8x =的解是 ▲ .9.方程062=++a x x 有两个不相等的实数根,则a 的取值范围是 ▲ . 10.抛物线422+-=x x y 的顶点坐标是 ▲ .11.函数b kx y +=的图像如图所示,下列结论正确..的有 ▲(填序号)①0>b ; ③当2<x 时,0>y ; ②0>k ; ④方程0=+b kx 的解是2=x .12.2018年上海城市绿化覆盖率达到了38%,人均公共绿地面积12.5米;到2018年年底绿化覆盖率将达到40%,人均公共绿地面积将达到15米2。

上海市各区2018届中考数学二模试卷精选汇编:计算题

上海市各区2018届中考数学二模试卷精选汇编:计算题

计算题专题宝山区、嘉定区 19.(本题满分10分)先化简,再求值:xx x x x --+++-2321422,其中32+=x .19.解:原式2321)2)(2(2-+++++-=x x x x x x …………2分)2)(2()2(3)2)(1(2+-++-++=x x x x x x ………………………1分)2)(2(442+-++=x x x x …………………………………………2分)2)(2()2(2+-+=x x x ………………………2分22-+=x x …………………………………………1分 把32+=x 代入22-+x x 得: 原式232232-+++=………………1分 1334+=………………………………1分 长宁区19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 崇明区19.(本题满分10分)12022)9( 3.14)π+-+--19.(本题满分10分)解:原式731=-+-……………………………………………………8分9=- …………………………………………………………………2分 奉贤区19.(本题满分10分)计算:1212)33(8231)12(--+++-.19、3- 黄浦区19.(本题满分10分)计算:())102322220183++--.19.解:原式()13-—————————————————————(6分)=13-————————————————————————(2分) =4—————————————————————————————(2分)金山区计算:21o o 21tan 452sin 60122-⎛⎫-+- ⎪⎝⎭.19.解:原式=124-+……………………………………………(8分)14+……………………………………………(1分)=5.………………………………………………………(1分) 静安区19.(本题满分10分) 计算:102018)30(sin )3(32)45cot (18---+-+-+ π.19.(本题满分10分) 计算:102018)30(sin )3(32)45cot (18---+-+-+ π.解:原式=12018)21(1)23()1(23--+-+-+ …………………(5分)=2123123-+-++ …………………………(3分) =322+ …………………………………(2分) 闵行区19.(本题满分10分)120183(1)2cos 45+8---o .19.解:原式112+……………………………………(2分+2分+2分+2分)2=.……………………………………………………………………(2分)普陀区19.(本题满分10分)先化简,再求值:42442222---++÷+x x x x x x x ,其中2x =-. 19.解:原式()()22+22(2)22x x x x x x x -=-+-+ ················ (3分)122x x x =-++ ······················ (2分) 12x x -=+. ························· (1分)当2x =时,原式221--=·················· (1分)= ··················· (1分)=青浦区19.(本题满分10分)计算:1012152(3)2-+--+().20.(本题满分10分)先化简,再求值:25+3222x x x x ⎛⎫--÷⎪++⎝⎭(),其中x =19.解:原式212-+. ····················· (8分)=1.20.解:原式=()2245223--+⨯++x x x x , ···················· (5分) =()()()233223+-+⨯++x x x x x , ·················· (1分)=33-+x x . ··························· (1分)当=x2. 松江区19.(本题满分10分)计算:03132-+19.(本题满分10分)计算:031--解:原式=11)-2分)=2+2分 徐汇区19. 101()( 3.14)|4|2π---+.杨浦区19、(本题满分10分)先化简,再求值:。

2018年上海市中考数学二模试卷

2018年上海市中考数学二模试卷

2018年上海市中考数学二模试卷(总21页)-本页仅作为预览文档封面,使用时请删除本页-2018年上海市中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B. xy2C.2xy D.(﹣)22.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3 C.a3•a2=a5D.2a﹣1=(a≠0)3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABC D是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=.8.(4分)在实数范围内分解因式:4a2﹣3=.9.(4分)方程=1的根是.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是,则第六组的频数为.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=, =,那么=(用、的式子表示).15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈,≈)18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)2018﹣2cos45°+8.20.(10分)解方程组:21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使得2S△ABM=S△ABC,求点M的坐标.22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x 轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B. xy2C.2xy D.(﹣)2【解答】解:由题意可知:2xy是二次单项式,故选:C.2.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5D.2a﹣1=(a≠0)【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)2a2+a中没有同类项,不能合并,故B错误;(D)原式=,故D错误;故选:C.3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,∴k>0,∴它的图象的两个分支分别在第一、三象限.故选:A.4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离【解答】解:∵点A在圆O上,已知圆O的半径是4,点A到直线a的距离是8,∴圆O与直线a的位置关系可能是相切或相离,故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=5.【解答】解:原式=1+4=5,故答案为:58.(4分)在实数范围内分解因式:4a2﹣3=.【解答】解:4a2﹣3=.故答案为:.9.(4分)方程=1的根是1.【解答】解:两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是m.【解答】解:∵关于x的方程x2﹣3x﹣m=0没有实数根,∴△<0,即(﹣3)2﹣4(﹣m)<0,解得m<﹣,故答案为:m<﹣.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为y=﹣x+5.【解答】解:∵直线y=kx+b平行于直线y=﹣x,∴k=﹣.又∵截距为5,∴b=5,∴这条直线的解析式是y=﹣x+5.故答案是:y=﹣x+5.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是,则第六组的频数为8.【解答】解:根据题意,得:第一组到第四组的频率和是=,又∵第五组的频率是,∴第六组的频率为1﹣(+)=,∴第六组的频数为:40×=8.故答案为:8.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=, =,那么=﹣(用、的式子表示).【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD=BC,AD∥BC,∴==, ==,∵AE=2DE,∴=,∵=+.∴=﹣,故答案为﹣.15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.【解答】解:∵y=﹣x2+3x﹣2中a=﹣1,b=3,c=﹣2,且﹣1的相反数是1,与b相等的数是3,﹣2的倒数是﹣,∴y=﹣x2+3x﹣2的“亚旋转函数”为 y=x2+3x﹣.故答案是:y=x2+3x﹣.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为cotα(或).(用锐角α的三角比表示)【解答】解:如图所示:∵正n边形的中心角为2α,边长为5,∵边心距OD=(或),故答案为:(或),17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈,≈)【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为: ==10≈(米/秒).故答案为:.18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=12﹣12.【解答】解:过点C作CF⊥AB于点F,则四边形AFC D为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又∵cos∠ABC=,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE沿BE翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为:12﹣12.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)2018﹣2cos45°+8.【解答】解:原式=﹣1+1﹣2×+2=﹣+2=2.20.(10分)解方程组:【解答】解:由②得:(x﹣2y)(x+y)=0x﹣2y=0或x+y=0…………………………………………(2分)原方程组可化为,………………………………(2分)解得原方程组的解为,…………………………………(5分)∴原方程组的解是为,……………………………………(6分)21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使得2S△ABM=S△ABC,求点M的坐标.【解答】解:(1)令y=0,则﹣2x+4=0,解得x=2,∴点A坐标是(2,0).令x=0,则y=4,∴点B坐标是(0,4).∴AB===2.∵∠BAC=90°,tan∠ABC==,∴AC=AB=.如图1,过C点作CD⊥x轴于点D,∠BAO+∠ABO=90°,∠BAO+∠CAD=90°,∵∴∠ABO=∠CAD,,∴△OAB∽△DAC.∴===,∵OB=4,OA=2,∴AD=2,CD=1,∴点C坐标是(4,1).(2)S△ABC=AB•AC=×2×=5.∵2S△ABM=S△ABC,∴S△ABM=.∵M(1,m),∴点M在直线x=1上;令直线x=1与线段AB交于点E,ME=m﹣2;如图2,分别过点A、B作直线x=1的垂线,垂足分别是点F、G,∴AF+BG=OA=2;∴S△ABM=S△BME+S△AME=ME•BG+ME•AF=ME(BG+AF)=ME•OA=×2×ME=,∴ME=,m﹣2=,m=,∴M(1,).22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?【解答】解:设自行车的平均速度是x千米/时.根据题意,列方程得﹣=,解得:x1=15,x2=﹣30.经检验,x1=15是原方程的根,且符合题意,x2=﹣30不符合题意舍去.答:自行车的平均速度是15千米/时.23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.【解答】证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.又∵BD平分∠ABC,∴∠ABD=∠DBC.∵∠ABF=∠C,∠ABD=∠DBC,∴△ABF∽△CBD.…………………………………………………(1分)∴.………………………………………………………(1分)∴BF•BC=AB•B D.………………………………………………(1分)(2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,∴△ABF≌△GBF.∴AF=FG,BA=BG.…………………………(1分)∵BA=BG,∠ABD=∠GBD,BD=BD,∴△ABD≌△GBD.∴∠BAD=∠BGD.……………………………(1分)∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分)又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分)∴AF=FG.……………………………………………………………(1分)∴四边形ADGF是菱形.……………………………………………(1分)24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x 轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.【解答】解:(1)把B(1,0)和C(0,3)代入y=ax2﹣2x+c中,得,解得,∴抛物线的解析式是:y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标D(﹣1,4);(2)令y=0,则﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∴A(﹣3,0),∴OA=OC=3,∴∠CAO=∠OCA,在Rt△BOC中,tan∠OCB==,∵AC==3,DC==,AD==2,∴AC2+DC2=20=AD2;∴△ACD是直角三角形且∠ACD=90°,∴tan∠DAC===,又∵∠DAC和∠OCB都是锐角,∴∠DAC=∠OCB,∴∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,A(﹣3,0),D(﹣1,4),∵△ADQ是以AD为底的等腰三角形,∴QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得:x﹣2+2y=0,由,解得,.∴点Q的坐标是(,),(,).25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°∴AB=10,如图1,过E作EH⊥AB于H,在Rt△ABC中,sinB=,cosB=在Rt△BEH中,BE=BF=x,∴EH=x,EH=x,∴FH=x,在Rt△EHF中,EF2=EH2+FH2=(x)2+(x)2=x2,∴y=x(0<x<8)(2)如图2,取的中点P,联结BP交ED于点G∵=2,P是的中点,EP=EF=PD.∴∠FBE=∠EBP=∠PBD.∵EP=EF,BP过圆心,∴BG⊥ED,ED=2EG=2DG,又∵∠CEA=∠DEB,∴∠CAE=∠EBP=∠ABC,又∵BE是公共边,∴△BEH≌△BEG.∴EH=EG=GD=x.在Rt△CEA中,∵AC=6,BC=8,tan∠CAE=tan∠ABC=,∴CE=AC•tan∠CAE==∴BE=8﹣=∴ED=2EG=x=,(3)四边形ABDC不可能为直角梯形,①当CD∥AB时,如图3,如果四边形ABDC是直角梯形,只可能∠ABD=∠CDB=90°.在Rt△CBD中,∵BC=8.∴CD=BC•cos∠BCD=,BD=BC•sin∠BCD==BE.∴=,;∴.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形,②当AC∥BD时,如图4,如果四边形ABDC是直角梯形,只可能∠ACD=∠CDB=90°.∵AC∥BD,∠ACB=90°,∴∠ACB=∠CBD=90°.∴∠ABD=∠ACB+∠BCD>90o.与∠ACD=∠CDB=90°矛盾.∴四边形ABDC不可能为直角梯形.即:四边形ABDC不可能是直角梯形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年上海市徐汇区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)下列算式的运算结果正确的是()A.m3•m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m22.(4分)直线y=3x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(4分)如果关于x的方程x2﹣x+1=0有实数根,那么k的取值范围是()A.k>0B.k≥0C.k>4D.k≥44.(4分)某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)78910次数1432A.8、8B.8、8.5C.8、9D.8、105.(4分)如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45°B.60°C.120°D.135°6.(4分)下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个二.填空题(本大题共12题,每题4分,满分48分)7.(4分)函数y=的定义域是.8.(4分)在实数范围内分解因式:x2y﹣2y=.9.(4分)方程的解是.10.(4分)不等式组的解集是;11.(4分)已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1y2;12.(4分)抛物线y=2x2+4x﹣2的顶点坐标是.13.(4分)四张背面完全相同的卡片上分别写有0.、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为.14.(4分)在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=,=,那么等于(结果用、的线性组合表示).15.(4分)如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有人.16.(4分)已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是.17.(4分)从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为.18.(4分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为.三.简答题19.(10分)计算:﹣()﹣1+﹣(π﹣3.14)0+|2﹣4|.20.(10分)解分式方程:+1=.21.(10分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AD平分∠BAC交BC 于点D.(1)求tan∠DAB;(2)若⊙O过A、D两点,且点O在边AB上,用尺规作图的方法确定点O的位置并求出的⊙O半径.(保留作图轨迹,不写作法)22.(10分)“五一”期间小明和小丽相约到苏州乐园游玩,小丽乘私家车从上海出发30分钟后,小明乘坐火车从上海出发,先到苏州北站,然后再乘出租车去游乐园(换乘时间忽略不计),两人恰好同时到达苏州乐园,他们离上海的距离y(千米)与乘车时间t(小时)的关系如图所示,请结合图象信息解决下面问题:(1)本次火车的平均速度千米/小时?(2)当小明到达苏州北站时,小丽离苏州乐园的距离还有多少千米?23.(12分)在梯形ABCD中,AD∥BC,AB=CD,BD=BC,点E在对角线BD上,且∠DCE=∠DBC.(1)求证:AD=BE;(2)延长CE交AB于点F,如果CF⊥AB,求证:4EF•FC=DE•BD.24.(12分)如图,已知直线y=﹣x+2与x轴、y轴分别交于点B、C,抛物线y=﹣+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)点M是线段BC上一点,过点M作直线l∥y轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=∠CAO,求点D的坐标.25.(14分)已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点C作CF∥DB交AB延长线于点F,联结EF交BC于点H.(1)如图1,当EF⊥BC时,求AE的长;(2)如图2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH的长为y;①求y关于x的函数关系式,并写出定义域;②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.2018年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)下列算式的运算结果正确的是()A.m3•m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m2【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法;6F:负整数指数幂.【专题】1:常规题型.【分析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.【解答】解:A、m3•m2=m5,故此选项错误;B、m5÷m3=m2(m≠0),故此选项正确;C、(m﹣2)3=m﹣6,故此选项错误;D、m4﹣m2,无法计算,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.2.(4分)直线y=3x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【专题】1:常规题型;533:一次函数及其应用.【分析】利用两点法可画出函数图象,则可求得答案.【解答】解:在y=3x+1中,令y=0可得x=﹣,令x=0可得y=1,∴直线与x轴交于点(﹣,0),与y轴交于点(0,1),其函数图象如图所示,∴函数图象不过第四象限,故选:D.【点评】本题主要考查一次函数的性质,正确画出函数图象是解题的关键.3.(4分)如果关于x的方程x2﹣x+1=0有实数根,那么k的取值范围是()A.k>0B.k≥0C.k>4D.k≥4【考点】AA:根的判别式.【专题】45:判别式法.【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【解答】解:∵关于x的方程x2﹣x+1=0有实数根,∴,解得:k≥4.故选:D.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.4.(4分)某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)78910次数1432A.8、8B.8、8.5C.8、9D.8、10【考点】W4:中位数;W5:众数.【专题】1:常规题型;542:统计的应用.【分析】根据众数和中位数的概念求解.【解答】解:由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为=8.5(环),故选:B.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(4分)如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45°B.60°C.120°D.135°【考点】L3:多边形内角与外角.【专题】1:常规题型;555:多边形与平行四边形.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选:A.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.6.(4分)下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个【考点】M1:圆的认识;MA:三角形的外接圆与外心;MI:三角形的内切圆与内心;P3:轴对称图形;R5:中心对称图形.【专题】55:几何图形.【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【解答】解:(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点评】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.二.填空题(本大题共12题,每题4分,满分48分)7.(4分)函数y=的定义域是x≠2.【考点】E4:函数自变量的取值范围.【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母x﹣2≠0,解得x的范围.【解答】解:根据题意得:x﹣2≠0解得:x≠2,故答案为:x≠2.【点评】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于0.8.(4分)在实数范围内分解因式:x2y﹣2y=y(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】先提取公因式y后,再把剩下的式子写成x2﹣,符合平方差公式的特点,可以继续分解.【解答】解:x2y﹣2y=y(x2﹣2)=y(x+)(x﹣).故答案为:y(x+)(x﹣).【点评】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.9.(4分)方程的解是x=7.【考点】AG:无理方程.【分析】将方程两边平方后求解,注意检验.【解答】解:将方程两边平方得x﹣3=4,移项得:x=7,代入原方程得=2,原方程成立,故方程的解是x=7.故本题答案为:x=7.【点评】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.10.(4分)不等式组的解集是﹣9<x≤﹣3;【考点】CB:解一元一次不等式组.【专题】1:常规题型.【分析】分别求出两个不等式的解集,再求其公共解集.【解答】解:解不等式①,得:x≤﹣3,解不等式②,得:x>﹣9,所以不等式组的解集为:﹣9<x≤﹣3,故答案为:﹣9<x≤﹣3.【点评】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(4分)已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a <b<0,那么y1与y2的大小关系是:y1>y2;【考点】G6:反比例函数图象上点的坐标特征.【专题】53:函数及其图象.【分析】根据反比例函数的性质求解.【解答】解:反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而a<b<0,所以y1>y2故答案为:>【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.12.(4分)抛物线y=2x2+4x﹣2的顶点坐标是(﹣1,﹣4).【考点】H3:二次函数的性质.【分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【解答】解:x=﹣=﹣1,把x=﹣1代入得:y=2﹣4﹣2=﹣4.则顶点的坐标是(﹣1,﹣4).故答案是:(﹣1,﹣4).【点评】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.13.(4分)四张背面完全相同的卡片上分别写有0.、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为.【考点】X4:概率公式.【专题】11:计算题.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵在0.、、、这四个实数种,有理数有0.、、这3个,∴抽到有理数的概率为,故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=,=,那么等于(结果用、的线性组合表示).【考点】LM:*平面向量.【专题】5:特定专题.【分析】根据三角形法则求出即可解决问题;【解答】解:如图,∵=,=,∴=+=﹣,∵BD=BC,∴=.故答案为.【点评】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.15.(4分)如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有72人.【考点】V5:用样本估计总体;V8:频数(率)分布直方图.【专题】1:常规题型;542:统计的应用.【分析】用总人数300乘以样本中身高在170cm﹣175cm之间的人数占被调查人数的比例.【解答】解:估计该校男生的身高在170cm﹣175cm之间的人数约为300×=72(人),故答案为:72.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.(4分)已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是1或7.【考点】MJ:圆与圆的位置关系.【专题】55:几何图形.【分析】由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.【解答】解:∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4﹣3=1,若小圆的半径为4,则另一个圆的半径为:4+3=7.故答案为:1或7【点评】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.17.(4分)从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为.【考点】KH:等腰三角形的性质;KQ:勾股定理;S7:相似三角形的性质.【专题】55:几何图形.【分析】设AB=x,利用△BCD∽△BAC,得,列出方程即可解决问题.【解答】解:∵△BCD∽△BAC,∴,设AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4﹣1=3,∵△BCD∽△BAC,∴,∴CD=.故答案为:【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD∽△BAC解答.18.(4分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为2.【考点】JA:平行线的性质;R2:旋转的性质.【专题】552:三角形.【分析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;【解答】解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=4﹣4x,∴4﹣4x=2x,解得x=,∴CP=3x=2;故答案为2.【点评】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.三.简答题19.(10分)计算:﹣()﹣1+﹣(π﹣3.14)0+|2﹣4|.【考点】6E:零指数幂;6F:负整数指数幂;79:二次根式的混合运算.【专题】11:计算题.【分析】根据零指数幂的意义、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣2+﹣1+4﹣2=.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.20.(10分)解分式方程:+1=.【考点】B3:解分式方程.【专题】52:方程与不等式.【分析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:化为整式方程得:x2﹣4x+4+x2﹣4=16,x2﹣2x﹣8=0,解得:x1=﹣2,x2=4,经检验x=﹣2时,x+2=0,所以x=4是原方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AD平分∠BAC交BC 于点D.(1)求tan∠DAB;(2)若⊙O过A、D两点,且点O在边AB上,用尺规作图的方法确定点O的位置并求出的⊙O半径.(保留作图轨迹,不写作法)【考点】N3:作图—复杂作图;O4:轨迹;T7:解直角三角形.【专题】13:作图题.【分析】(1)过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AE=AC,再利用勾股定理列式求出AB,然后求出BE,设CD=DE=x,表示出BD,然后利用勾股定理列出方程求解即可得到CD的长,进而得出结论.(2)要使⊙O过A、D两点,即OA=OD,所以点O在线段AD的垂直平分线上,且圆心O在AC边上,所以作出AD的垂直平分线与AC的交点即为点O;利用相似三角形的性质,即可得到⊙O的半径.【解答】解:(1)过点D作DE⊥AB于E,∵AD平分∠BAC,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=3,由勾股定理得,AB==5,∴BE=AB﹣AE=5﹣3=2,设CD=DE=x,则BD=4﹣x,在Rt△BDE中,DE2+BE2=BD2,x2+22=(4﹣x)2,解得x=,即CD的长为,∴Rt△ACD中,tan∠DAC==,∴tan∠DAB=;(2)如图,点O即为所求,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴OD∥AC,∴△BDO∽△BCA,∴,设OD=AO=r,则BO=5﹣r,∴,∴r=,即⊙O半径为.【点评】本题主要考查了复杂作图以及相似三角形的判定与性质、勾股定理的综合运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.(10分)“五一”期间小明和小丽相约到苏州乐园游玩,小丽乘私家车从上海出发30分钟后,小明乘坐火车从上海出发,先到苏州北站,然后再乘出租车去游乐园(换乘时间忽略不计),两人恰好同时到达苏州乐园,他们离上海的距离y(千米)与乘车时间t(小时)的关系如图所示,请结合图象信息解决下面问题:(1)本次火车的平均速度180千米/小时?(2)当小明到达苏州北站时,小丽离苏州乐园的距离还有多少千米?【考点】FH:一次函数的应用.【专题】1:常规题型.【分析】(1)由图象可知,火车0.5小时行驶90千米,利用路程除以时间得出速度即可;(2)首先分别求出两函数解析式,进而求出小时小丽行驶的距离,进而得出离苏州乐园的距离.【解答】解:(1)v==180.故本次火车的平均速度是每小时180千米.故答案为180;(2)设l2的解析式为y=kt+b,∵当t=0.5时,y=0,当t=1时,y=90,∴,解得:,∴l2的解析式为y=180t﹣90,把t=代入,得y=180×﹣90=60,∵(,60)在直线l1上,∴直线l1的解析式为y=72t,∴当t=1时,y=72,120﹣72=48(千米),故当小明到达苏州北站时,小丽离苏州乐园的距离还有48千米.【点评】此题主要考查了一次函数的应用,根据题意结合函数图象得出一次函数解析式是解题关键.23.(12分)在梯形ABCD中,AD∥BC,AB=CD,BD=BC,点E在对角线BD上,且∠DCE=∠DBC.(1)求证:AD=BE;(2)延长CE交AB于点F,如果CF⊥AB,求证:4EF•FC=DE•BD.【考点】LH:梯形;S9:相似三角形的判定与性质.【专题】14:证明题.【分析】(1)证明△ABD≌△ECB,可得结论;(2)连接AC,根据四边形ABCD是等腰梯形,得AC=BD,则BD=BC,由等腰三角形三线合一得:BF=AB,证明△DCE∽△DBC,得CD2=DB•DE,再证明△BFE ∽△CFB,得BF2=CF•EF,由BF2==代入可得结论.【解答】证明:(1)∵AB=CD,AD∥BC,∴∠ABC=∠DCB,∠ADB=∠EBC.∵∠DCE=∠DBC,∠ABC=∠ABD+∠DBC,∠DCB=∠DCE+∠ECB,∴∠ABD=∠ECB.在△ABD和△ECB中,,∴△ABD≌△ECB(ASA),∴AD=BE.(2)连接AC,∵AD∥BC,AB=CD,∴四边形ABCD是等腰梯形,∴AC=BD,∵BD=BC,∴AC=BC,∵CF⊥AB,∴BF=AF,∴BF=AB,∵∠DCE=∠DBC,∴△DCE∽△DBC,∴,∴CD2=DB•DE,∵∠DCE=∠DBC,∴∠FBE=∠FCB,∴△BFE∽△CFB,∴,∴BF2=CF•EF,∵BF2==,∴=CF•EF,∴DE•DB=CF•EF,∴4EF•FC=DE•BD.【点评】本题考查了全等、相似三角形的性质和判定、等腰梯形的性质,第二问有难度,证明△BFE∽△CFB和△DCE∽△DBC是关键.24.(12分)如图,已知直线y=﹣x+2与x轴、y轴分别交于点B、C,抛物线y=﹣+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)点M是线段BC上一点,过点M作直线l∥y轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=∠CAO,求点D的坐标.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)根据直线解析式求出点B、C的坐标,然后利用待定系数法求二次函数解析式列式求解即可;(2)设M(m,﹣m+2),则N(m,﹣+2),则MN=(﹣+2)﹣(﹣m+2)=﹣m2+2m,根据MN=OC=2列方程可得M的横坐标,根据平行四边形的面积公式可得结论;(3)分两种情况:①当D在x轴的下方:根据AC∥BD,直线解析式k相等可设直线BD的解析式为:y=2x+b,把B(4,0)代入得直线BD的解析式为:y=2x﹣8,联立方程可得D的坐标;②当D在x轴的上方,根据对称可得M的坐标,利用待定系数法求直线BM的解析式,与二次函数的交点,联立方程可得D的坐标.【解答】解:(1)当x=0时,y=2,∴C(0,2),当y=0时,﹣x+2=0,x=4,∴B(4,0),把C(0,2)和B(4,0)代入抛物线y=﹣+bx+c中得:,解得:,∴该抛物线的表达式:;(2)如图1,∵C(0,2),∴OC=2,设M(m,﹣m+2),则N(m,﹣+2),∴MN=(﹣+2)﹣(﹣m+2)=﹣m2+2m,∵MN∥y轴,当四边形OMNC是平行四边形时,MN=OC,即﹣m2+2m=2,解得:m1=m2=2,∴S▱OCMN=OC×2=2×2=4;(3)分两种情况:当y=0时,﹣x+2=0,解得:x1=4,x2=﹣1,∴A(﹣1,0),易得直线AC的解析式为:y=2x+2,①当D在x轴的下方时,如图2,AC∥BD,∴设直线BD的解析式为:y=2x+b,把B(4,0)代入得:0=2×4+b,b=﹣8,∴直线BD的解析式为:y=2x﹣8,则2x﹣8=﹣x+2,解得:x1=﹣5,x2=4(舍),∴D(﹣5,﹣18);②当D在x轴的上方时,如图3,作抛物线的对称轴交直线BD于M,将BE(图2中的点D)于N,对称轴是:x=﹣=,∵∠CAO=∠ABE=∠DAB,∴M与N关于x轴对称,直线BE的解析式:y=2x﹣8,当x=时,y=﹣5,∴N(,﹣5),M(,5),直线BM的解析式为:y=﹣2x+8,﹣2x+8=﹣x+2,解得:x1=3,x2=4(舍),∴D(3,2),综上所述,点D的坐标为:(﹣5,﹣18)或(3,2).【点评】本题是对二次函数的综合考查,主要有直线与坐标轴的交点的求解,待定系数法求二次函数和一次函数解析式,两直线平行的关系,对称性等知识,(3)题有难度,采用分类讨论的思想解决问题.25.(14分)已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点C作CF∥DB交AB延长线于点F,联结EF交BC于点H.(1)如图1,当EF⊥BC时,求AE的长;(2)如图2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH的长为y;①求y关于x的函数关系式,并写出定义域;②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.【考点】MR:圆的综合题.【专题】15:综合题;556:矩形菱形正方形;559:圆的有关概念及性质.【分析】(1)由菱形性质知DC∥AB、AB=DC、DB和AC互相垂直平分,证平行四边形DBFC得BF=DC=AB=10及∠CAB=∠BCA,由EF⊥BC知∠CAB=∠BCA=∠CFE,据此知△AFC∽△FEC,从而得出FC2=CE•AC,即FC2=2AE2,据此可得答案;(2)①连接OB,由AB=BF、OE=OF知OB∥AC、OB=AE=EC=x,据此得==及EH=EO,根据EO2=BE2+OB2=﹣x2+100可得答案;②分GD=GE和DE=DG 两种情况分别求解可得.【解答】解:(1)∵四边形ABCD是菱形,∴DC∥AB、AB=DC、DB和AC互相垂直平分,∵CF∥DB,∴四边形DBFC是平行四边形,∴BF=DC=AB=10,∴∠CAB=∠BCA,当EF⊥BC时,∠CAB=∠BCA=∠CFE,∴Rt△AFC∽Rt△FEC,∴FC2=CE•AC,即FC2=2AE2,Rt△ACF中,CF2+AC2=AF2,2AE2+4AE2=400,解得:AE=;(2)①如图,连接OB,则AB=BF、OE=OF,∴OB∥AC,且OB=AE=EC=x,∴==,∴EH=EO,在Rt△EBO中,EO2=BE2+OB2=()2+(x)2=﹣x2+100,∴y=EO=(<x<10);②当GD=GE时,有∠GDE=∠GED,∵AC⊥DB,∠DEC=90°,∴∠GCE=∠GEC,∴GE=GC,∴GD=GC,即G为DC的中点,又∵EO=FO,∴GO是梯形EFCD的中位线,∴GO==DE,∴y=,∴=,解得:x=;如图2,当DE=DG时,连接OD、OC、GO,在△GDO和△EDO中,∵,∴△GDO≌△EDO(SSS),∴∠DEO=∠DGO,∴∠CGO=∠BEO=∠OFC,∴∠CGO=∠OCG=∠OFC=∠OCF,∴GC=CF,∴DC=DG+GC=DE+2DE=10,即3=10,解得:x=,综上,AE的长为或.【点评】本题主要考查圆的综合问题,解题的关键是掌握掌握菱形的性质、平行四边形的判定与性质、相似三角形和全等三角形的判定与性质等知识点.。

相关文档
最新文档