天津市天津一中高三数学上学期零月月考试题 文 新人教A版 替

合集下载

天津市第一中学2023届高三上学期第一次月考数学试题 Word版含答案

天津市第一中学2023届高三上学期第一次月考数学试题 Word版含答案
【13题答案】
【答案】
【14题答案】
【答案】
【15题答案】
【答案】
三、解答题(本大题共5小题,共75分)
【16题答案】
【答案】(1)
(2) , 或 ,
【17题答案】
【答案】(1)证明ቤተ መጻሕፍቲ ባይዱ解析
(2)
(3)正弦值为1
【18题答案】
【答案】(1)
(2)
(3)
【19题答案】
【答案】(1)答案见解析
(2)证明见解析(3)
C. D.
4.已知函数 是偶函数,则 的值是()
A. B. C.1D.2
5.已知函数 是 上的偶函数,且 ,当 时, ,则 的值为()
A.1B.2C. D.0
6 已知函数 ,则()
A. B.
C. D.
7.已知 且 ,则a的值为()
A. B. C. D.
8.设函数 ,不等式 对 恒成立,则实数a的最大值为()
【2题答案】
【答案】A
【3题答案】
【答案】B
【4题答案】
【答案】A
【5题答案】
【答案】A
【6题答案】
【答案】B
【7题答案】
【答案】C
【8题答案】
【答案】D
【9题答案】
【答案】B
二、填空题(本大题共6小题,每小题5分,共30分)
【10题答案】
【答案】
【11题答案】
【答案】
【12题答案】
【答案】 ##20立方米
每户每月用水量
水价
不超过 的部分
3元/
超过 但不超过 部分
6元/
超过 部分
9元/
若某户居民本月交纳的水费为90元,则此户居民本月用水量为___________.

天津市高三数学上学期第二次月考试题 文 新人教A版

天津市高三数学上学期第二次月考试题 文 新人教A版

天津一中2012-2013学年高三年级二月考数学试卷(文)一、选择题(每小题5分,共40分) 1.如果复数212aii++的实部和虚部互为相反数,那么实数a 等于( )A B .2C .-23D .232. 设,m n 是两条不同的直线,γβα、、是三个不同的平面.给出下列四个命题: ①若m ⊥α,//n α,则m n ⊥;②若γβγα⊥⊥,,则βα//;③若//,//m n αα,则//m n ; ④若//,//,m αββγα⊥,则m γ⊥. 其中正确命题的序号是( )A . ①和②B . ②和③C .③和④D .①和④3. 在正三棱锥P ABC -中,,D E 分别是,AB AC 的中点,有下列三个论断:①PB AC ⊥;②AC //平面PDE ;③AB ⊥平面PDE ,其中正确论断的个数为 ( ) A .3个 B .2个 C .1个 D .0个4. 数列{n a }中,12,111+==+n n a a a 且,则{n a }的通项为 ( )A .n 2-1B .n 2C .n 2+1D .12+n 5.在ABC∆中,若cos 4cos 3A bB a ==,则ABC∆是( )A .等腰或直角三角形B .等腰三角形C .直角三角形D .钝角三角6.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像 ( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位7.数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈ .若则32b =-,1012b =,则8a =( )A .0B .3C .8D .118.定义在(0,)+∞上的可导函数()f x 满足:()()x f x f x '⋅<且(1)0f =,则()0f x x<的解α•AB •β集为 ( ) A .(0,1) B .(0,1)(1,)+∞U C .(1,)+∞D .φ二、填空题(每小题5分,共30分)9. 若某空间几何体的三视图如下图所示,则该几何体的体积是______.10.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x -+=的两根,则20062007a a +=______.11. 设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=______. 12.O 是平面上一点,C B A ,,是平面上不共线三点,动点P 满足(),AC AB OA OP ++=λ,21=λ时, 则PC PB PA +⋅()的值为______. 13. 求函数2()sin 3sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值______.14. 如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是 .三、解答题:(15,16,17,18每题13分,19,20每题14分)15.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .已知32cos()cos22A B C ++=-,39c =,且9a b +=.(Ⅰ)求角C 的大小;(Ⅱ)求△ABC 的面积.16.在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .17.设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式;(Ⅱ)设nnn b a c =,求数列}{n c 前n 项和T n .18. 如图,四面体ABCD 中,O 、E 分别是BD 、BC2,CA CB CD BD AB AD ======(Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的余弦值; (III )求点E 到平面ACD 的距离.19.已知数列{}n a 的前n 项和n S 和通项n a 满足1(1)2n n S a =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 求证:12n S <;(Ⅲ)设函数13()log f x x =,12()()()n n b f a f a f a =+++L ,求1231111...n nT b b b b =++++.BE20.已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式;(II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (Ⅲ)当1->b 时,若212)(xbx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围.参考答案: 一、选择题:DDCACABC二、填空题(每小题5分,共30分)9. 2 10. 1811. 45 12. 013.3214.三、解答题:(15,16,17,18每题13分,19,20每题14分)15.解:(Ⅰ)由已知得232cos 2cos 12C C -+-=-, …………………………… 3分所以24cos 4cos 10C C -+=,解得1cos 2C =,所以60C =︒. ………… 6分 (Ⅱ)由余弦定理得2222cos c a b ab C =+-,即2239a b ab =+- ①,又9a b +=,所以22281a b ab ++=②,由①②得14ab =, …10分所以△ABC 的面积11sin 1422S ab C ==⨯. ………………13分 16.解:∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC , 又∵AD ⊂平面ABC ,∴1CC AD ⊥,又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E =I ,,∴AD ⊥平面11BCC B , 又∵AD ⊂平面ADE ,∴平面ADE ⊥(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥,又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥,又∵111 CC B C ⊂,平面11BCC B ,1111CC B C C =I ,∴1A F ⊥平面111A B C , 由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD ,又∵AD ⊂平面1, ADE A F ∉平面ADE ,∴直线1//A F 平面ADE . 17.【分析及解】(Ⅰ)当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设}{n b 的公比为,q 则()221111,4,.4b a a b qd b d q -===∴= 故111124n n n b b q--==⨯,即}{n b 的通项公式为12.4n n b -= (II ),4)12(422411---=-==n n nn n n n b a c Θ 1211223113454(21)4,4143454(23)4(21)4n n n n nn T c c c n T n n --∴=+++=+⨯+⨯++-=⨯+⨯+⨯++-+-L L L两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T Λ18.(I )证明:连结OC,,.BO DO AB AD AO BD ==∴⊥Q ,,.BO DO BC CD CO BD ==∴⊥Q在AOC ∆中,由已知可得1,AO CO == 而2,AC =222,AO CO AC ∴+=90,o AOC ∴∠=即.AO OC ⊥,BD OC O =Q IABMDEOCAO ∴⊥平面BCD …………4分(II )解:取AC 的中点M ,连结OM 、ME 、OE ,由E 为BC 的中点知ME ∥AB,OE ∥DC ∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角 在OME ∆中,111,222EM AB OE DC ==== OM Q 是直角AOC ∆斜边AC 上的中线,11,2OM AC ∴==cos 4OEM ∴∠=…………8分 (III )解:设点E 到平面ACD 的距离为.h,11....33E ACD A CDE ACD CDE V V h S AO S --∆∆=∴=Q 在ACD ∆中,2,CA CD AD ===12ACD S ∆∴==而211,2242CDE AO S ∆==⨯=1.7CDE ACDAO S h S ∆∆⨯∴===∴点E 到平面ACD的距离为7…………12分 19.解:(Ⅰ)当2n ≥时111111(1)(1)2222n n n n n a a a a a --=---=-+,12n n n a a a -=-+∴113n n a a -=,-------------------------------------------------3分 由1111(1)2S a a ==- 得113a = ∴数列{}n a 是首项113a =、公比为13的等比数列,∴1111()()333n n n a -=⨯=------5分(Ⅱ)证法1: 由1(1)2n n S a =-得11[1()]23n n S =---------------------------7分11()13n -<Q ,∴111[1()]232n -<∴12n S <----9分〔证法2:由(Ⅰ)知1()3n n a =,∴11[1()]1133[1()]12313n n n S -==-------7分 11()13n -<Q ,∴111[1()]232n -<----------------------8分即12n S < ------------------------------------9分(Ⅲ)13()log f x x =Q11121333log log log n n b a a a ∴=+++L =1123log ()n a a a L ----10分=12131(1)log ()1232nn n n ++++=+++=L L --------12分 ∵12112()(1)1n b n n n n ==-++ ∴n T 12111n b b b =+++=L 111112[(1)()()]2231n n -+-++-+L =21n n +---14分 20.解: (I ),2)(xax x f -='依题意]2,1(,0)(∈>'x x f ,即22x a <,]2,1(∈x . ∵上式恒成立,∴2≤a ① …………………………1分又xa x g 21)(-=',依题意)1,0(,0)(∈<'x x g ,即x a 2>,)1,0(∈x .∵上式恒成立,∴.2≥a ② …………………………2分 由①②得2=a .…………………………3分∴.2)(,ln 2)(2x x x g x x x f -=-= …………………………4分 (II )由(1)可知,方程2)()(+=x g x f ,.022ln 22=-+--x x x x 即 设22ln 2)(2-+--=x x x x x h ,,1122)(xx x x h +--='则 令0)(>'x h ,并由,0>x 得,0)222)(1(>+++-x x x x x 解知.1>x ………5分 令,0)(<'x h 由.10,0<<>x x 解得 …………………………6分列表分析:知)(x h 在7分当10≠>x x 且时,)(x h >0,∴0)(=x h 在(0,+∞)上只有一个解. 即当x >0时,方程2)()(+=x g x f 有唯一解. ……………………8分 (III )设2'23122()2ln 2()220x x x bx x x b x x xϕϕ=--+=---<则, ……9分 ()x ϕ∴在(0,1]为减函数min ()(1)1210x b ϕϕ∴==-+≥ 又1b >- …………11分所以:11≤<-b 为所求范围. ………………12分。

天津市第一中学2022-2023学年高三上学期第三次月考数学试题(解析版)

天津市第一中学2022-2023学年高三上学期第三次月考数学试题(解析版)

天津一中2022-2023-1高三年级第三次月考数学试卷(答案)本试卷总分150分,考试用时120分钟。

考生务必将答案涂写在答题卡上,答在试卷上的无效。

一、选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合3{Z |Z}1A x x=∈∈-,2{Z |60}B x x x =∈--≤,则A B ⋃=( ) A .{2} B .}{2,0,2- C .{}2,1,0,1,2,3,4-- D .}{3,2,0,2,4--【详解】{A x =∈2Z |x x --{2,1,0,1,2,3,4--.,b ,c 为非零实数,则“A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【分析】根据不等式的基本性质可判定“a >b >c ”能推出“a +b >2c ”,然后利用列举法判定“a +b >2c ”不能推出“a >b >c ”,从而可得结论.【解答】解:∵a >b >c ,∴a >c ,b >c ,则a +b >2c , 即“a >b >c ”能推出“a +b >2c ”,但满足a +b >2c ,取a =4,b =﹣1,c =1,不满足a >b >c , 即“a +b >2c ”不能推出“a >b >c ”,所以“a >b >c ”是“a +b >2c ”的充分不必要条件, 故选:A .3、已知2log 0.8a =,0.12b =,sin 2.1c =,则( )A .a b c <<B .a c b <<C .c a b <<D .b<c<a 【答案】B【详解】因为22log 0.8log 10<=,0.10122>=,0sin 2.11<<, 所以a c b <<, 故选:B 4、函数2sin ()1x xf x x -=+的图象大致为 ( )A .B .C .D .【答案】A 【解析】【分析】根据函数的定义域、奇偶性以及2f π⎛⎫⎪⎝⎭的值来确定正确选项. 【详解】由题意,函数2sin ()1x xf x x -=+的定义域为R , 且22sin()sin ()()()11x x x xf x f x x x -----===--++,所以函数()f x 奇函数,其图象关于原点对称,所以排除C 、D 项,2120212f πππ-⎛⎫=> ⎪⎝⎭⎛⎫+ ⎪⎝⎭,所以排除B 项. 故选:A5、已知1F 、2F 分别为双曲线2222:1x y E a b-=的左、右焦点,点M 在E 上,1221::2:3:4F F F M F M =,则双曲线E 的渐近线方程为 ( ) A .2y x =± B .12y x =±C.y = D.y =【答案】C【解析】由题意,1F 、2F 分别为双曲线2222:1x y E a b-=的左、右焦点,点M 在E 上,且满足1221:||:2:3:4F F F M F M =,可得122F F c =,23F M c =,14F M c =, 由双曲线的定义可知21243a F M F M c c c =-=-=,即2c a =,又由b ==,所以双曲线的渐近线方程为y =.故选:C .6、设n S 是等比数列{}n a 的前n 项和,若34S =,4566a a a ++=,则96S S = ( )A .32B .1910 C .53D .196【答案】B【解析】设等比数列{}n a 的公比为q ,若1q =,则456133a a a a S ++==,矛盾. 所以,1q ≠,故()()33341345631111a q a q q a a a q S qq--++===--,则332q=, 所以,()()()63113631151112a q a q S q S qq--==+⋅=--, ()()()9311369311191114a q a q S q q S qq--==++=--, 因此,9363192194510S S S S =⋅=.故选:B . 7、直线1y kx =-被椭圆22:15x C y +=截得最长的弦为( ) A .3 B .52C .2D【答案】B【解析】联立直线1y kx =-和椭圆2215xy +=,可得22(15)100k x kx +-=,解得0x =或21015kx k =+,则弦长21015kl k =+,令215(1)k t t +=≥,则10l === 当83t =,即k =,l 取得最大值55242⨯=, 故选:B8、设函数()sin()(0)4f x x πωω=->,若12()()2f x f x -=时,12x x -的最小值为3π,则( )A .函数()f x 的周期为3πB .将函数()f x 的图像向左平移4π个单位,得到的函数为奇函数 C .当(,)63x ππ∈,()f x的值域为D .函数()f x 在区间[,]-ππ上的零点个数共有6个 【答案】D【解析】由题意,得23T π=,所以23T π=,则23T πω==,所以()sin(3)4f x x π=-选项A 不正确; 对于选项B :将函数()f x 的图像向左平移4π个单位,得到的函数是 ()sin[3()]cos344f x x x ππ=+-=为偶函数,所以选项B 错误;对于选项C :当时(,)63x ππ∈,则33444x πππ<-<,所以()f x的值域为,选项C 不正确;对于选项D :令()0,Z 123k f x x k ππ=⇒=+∈,所以当3,2,1,0,1,2k =---时,[,]x ππ∈-,所以函数()f x 在区间[,]-ππ上的零点个数共有6个,D 正确, 故选:D .9、设函数()(),01,,10,1xx mf x x x m x ⎧≤<⎪⎪=⎨-⎪-<<+⎪⎩,()()41g x f x x =--.若函数()g x 在区间()1,1-上有且仅有一个零点,则实数m 的取值范围是( )A .(]11,1,4⎡⎫--⋃+∞⎪⎢⎣⎭B .(]1,1,4⎡⎫-∞-+∞⎪⎢⎣⎭C .{}11,5⎡⎫-⋃+∞⎪⎢⎣⎭D .{}11,15⎛⎫-⋃ ⎪⎝⎭【答案】C 【详解】令()()410g x f x x =--=,则()41f x x =+,当01x ≤<时,41xx m=+,即4x mx m =+,即函数1y x =与24y mx m =+的交点问题,其中24y mx m =+恒过A 1,04⎛⎫- ⎪⎝⎭.当10x -<<时,()411x x m x -=++,即1114mx m x -+=++,即函数3111x y =-++与24y mx m =+的交点问题 分别画出函数1y ,2y ,3y 在各自区间上的图象: 当2y 与3y 相切时,有且仅有一个零点,此时()411xx m x -=++,化简得:()24510mx m x m +++=,由()2251160m m ∆=+-=得:11m =-,219m =-(舍去)当直线2y 的斜率,大于等于直线1y 的斜率时,有且仅有一个零点,把()1,1B 代入24y mx m =+中,解得:15m =,则15m ³综上,m 的取值范围是{}11,5⎡⎫-⋃+∞⎪⎢⎣⎭故选:C二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10、已知复数z 满足()2i i z -=,则5i z -=___________.【答案】3【解析】因为圆22:20(0)C x ax y a -+=>的标准方程为:()222x a y a -+=,所以圆必坐标为(,0)a ,半径为a ,由题意得:32a a += 解得:3a = ,故答案为:3.12、已知3π3sin 85α⎛⎫-= ⎪⎝⎭,则πcos 24α⎛⎫+= ⎪⎝⎭________. 【答案】725-【解析】2πcos 2cos 22cos 1488ππααα⎡⎤⎛⎫⎛⎫⎛⎫+=+=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦232cos 182ππα⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦223372sin 1218525πα⎛⎫⎛⎫=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭,故答案为:725- 13、直线l 与双曲线2222:1(0,0)x y E a b a b -=>>的一条渐近线平行,l 过抛物线2:4C y x =的焦点,交C 于A ,B 两点,若||5AB =,则E 的离心率为_______.【详解】依题意,点F 的坐标为(1,0),设直线l 的方程为1x my =+,联立方程组214x my y x=+⎧⎨=⎩,消去x 并整理得:2440y my --=,设1(A x ,1)y ,2(B x ,2)y ,则124y y m +=,124y y =-,则2212||()4(1)5AB y y m ++=,解得:12m =±,∴直线l 的方程为220x y +-=或220x y --=;直线的斜率为:2±.直线l 与双曲线2222:1(0,0)x y E a b a b -=>>的一条渐近线平行,可得2b a =,所以22224b a c a ==-,1e >,解得e =故14、已知1a >,1b >,且lg 12lg a b =-,则log 2log 4a b +的最小值为_______. 【答案】9lg2【解析】由已知,令lg 2log 2lg a m a ==,lg 4log 4lg b n b==, 所以lg 2lg a m =,lg 42lg 2lg b n n ==,代入lg 12lg a b =-得:lg 24lg 21m n+=, 因为1a >,1b >,所以lg 24lg 24log 2log 4()1()()5lg 2(lg 2lg 2)a b m nm n m n m n n m+=+⨯=++=++ 2lg 25lg 25lg 24lg 29lg 2n m≥+=+=.当且仅当4lg 2lg 2m n n m=时,即1310a b ==时等号成立. log 2log 4a b +的最小值为9lg2. 故答案为:9lg2.15、在Rt ABC 中,90C ∠=,若ABC 所在平面内的一点P 满足0PA PB PC λ++=,当1λ=时,222PA PB PC+的值为 ;当222PA PB PC+取得最小值时,λ的值为 .【答案】5;-1【解析】(1)如图5-26,以C 为坐标原点建立直角坐标系, 因为0PA PB PC λ++=,所以点P 为ABC 的重心,设BC a =,AC b =,所以(),0A b ,()0,B a ,易得,33a b P ⎛⎫⎪⎝⎭,所以222222222411499991199a b a b PA PBPC b a ++++=+5=. (2)设(,)P x y ,则(,),(,),(,)PA b x y PB x a y PC x y =--=--=--, 所以2,2,b x x a y y λλ-=⎧⎨-=⎩可得(2),(2),b x a y λλ=+⎧⎨=+⎩于是222222222||||()()||PA PB x b y x y a x y PC +-+++-=+()222222222x y bx ay a b x y +--++=+ 22222222(2)(2)2(2)2(2)2x y x y x y λλλλ+++-+-+=++()()222222222x y x y λλλλ+++=++ 2222(1)11λλλ=++=++…当1λ=-时取等号,所以222||||||PA PB PC +的最小值为1. 故答案为:5;-1.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16、如图,在平面四边形ABCD 中,对角线AC 平分BAD ∠,ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos cos cos 0B a C c A ++=. (1)求B ;(2)若2AB CD ==,ABC 的面积为2,求AD . 【答案】(1)34B π=;(2)4=AD .【分析】(1)利用正弦定理将边化角,再根据两角和的正弦公式及诱导公式即可得到cos B=出B;(2)由三角形面积公式求出a,再利用余弦定理求出AC,即可求出cos CAB∠,依题意cos cosCAB CAD∠=∠,最后利用余弦定理得到方程,解得即可;【详解】(1)cos cos cos0B aC c A++=,cos sin cos cos sin0B B AC A C++=,()cos sin0B B A C++=,cos sin0B B B+=,因为0Bπ<<,所以sin0B>,所以cos B=34Bπ=.(2)因为ABC的面积2S=,所以1sin22==ABCS ac B,2=,所以a=由余弦定理得AC==所以222cos2AB AC BCCABAB AC+-∠==⋅因为AC平分BAD∠,所以cos cosCAB CAD∠=∠,所以2222cosCD AC AD AC AD CAD=+-⋅⋅∠,所以24202AD AD=+-⨯28160AD AD-+=,所以4=AD.17、如图,在五面体ABCDEF中,四边形ABEF为正方形,DF⊥平面ABEF,//CD EF,2DF=,22EF CD==,2EN NC=,2BM MA=.(1)求证://MN平面ACF;(2)求直线AD与平面BCE所成角的正弦值;(3)求平面ACF与平面BCE夹角的正弦值.【答案】(1)见解析;(2;(3)45【详解】(1)证明:在EF上取点P,使2EP PF=,因为2EN NC=,所以//NP FC,于是//NP平面ACF,因为2BM MA=,四边形ABEF为正方形,所以//MP AF,所以//MP平面ACF,因为MP PN P =,所以平面//MNP 平面ACF ,因为MN ⊂平面MNP ,所以//MN 平面ACF ;(2)解:因为DF ⊥平面ABEF ,所以DF FA ⊥,DF EF ⊥, 又因为四边形ABEF 为正方形,所以AF EF ⊥,所以FA 、FE 、FD 两两垂直,建立如图所示的空间直角坐标系, (2AD =-,0,2),(2EB =,0,0),(0EC =,1-,2),设平面BCE 的法向量为(m x =,y ,)x , 2020EB m x EC m y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1z =,(0m =,2,1), 所以直线AD 与平面BCE所成角的正弦值为||2||||22AD m AD m ⋅=⋅⋅ (3)解:(2FA =,0,0),(0FC =,1,2), 设平面ACF 的法向量为(n u =,v ,)w ,2020FA n u FC n v w ⎧⋅==⎪⎨⋅=+=⎪⎩,令1w =-,(0n =,2,1)-, 由(1)知平面BCE 的法向量为(0m =,2,1), 设平面ACF 与平面BCE 所成二面角的大小为θ,||33cos ||||55m n m n θ⋅===⋅⋅,4sin 5θ==.所以平面ACF 与平面BCE 所成二面角的正弦值为45. 18、已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点为12,F F ,P 为椭圆上一点,且212PF F F ⊥,12tan PF F ∠=. (1)求椭圆C 的离心率;(2)已知直线l 交椭圆C 于,A B 两点,且线段AB 的中点为11,2Q ⎛⎫- ⎪⎝⎭,若椭圆C 上存在点M ,满足234OA OB OM +=,试求椭圆C 的方程.【答案】(1)e =(2)22551164x y +=.【分析】(1)由212tan 2b a PF F c ∠==222a c b -=,建立关于e 的方程,即可得到结果; (2)设()()()112200,,,,,A x y B x yM x y ,由(1)可知224a b =,可设椭圆方程为22244x y b +=,根据234OA OB OM +=,可得120120234234x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,设1:(1)2AB y k x =--将其与椭圆方程联立,由韦达定理和点M 满足椭圆方程,可求出2b ,进而求出结果.【详解】(1)解:因为2212tan 22b b a PF F c ac ∠==26b =,即()226a c -=, 则()261e -=,解得e =(2)设()()()112200,,,,,A x y B x y M x y ,由22234c e a ==,得2243a c =,所以222221134b a c c a =-==,所以224a b =设2222:14x y C b b+=,即22244x y b +=由于,A B 在椭圆上,则2221144x y b +=,2222244x y b +=,①由234OA OB OM +=,得120120234234x x x y y y +=⎧⎨+=⎩,即120120234234x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 由M 在椭圆上,则2220044x y b +=,即212222144232344x x y y b ⎛⎫+= ⎪++⎛⎫ ⎪⎝⎝⎭⎭, 即()()()222211121222441249464x y x x y y x y b +++++=,②将①代入②得:212124x x y y b +=,③线段AB 的中点为11,2Q ⎛⎫- ⎪⎝⎭,设1:(1)2AB y k x =--可知()22211244y k x x y b⎧=--⎪⎨⎪+=⎩ ()()22222148444410k x kk x k k b +-+++-+=212284121142k k x x k k ++==⨯⇒=+, 所以222220x x b -+-=,其中0∆>,解得212b >, 所以21222x x b ⋅=-,AB 方程为112y x =-又()2121212121111111122422b y y x x x x x x -⎛⎫⎛⎫=--=-++= ⎪⎪⎝⎭⎝⎭,④ 将④代入③得:22221422425b b b b --+⋅=⇒=, 经检验满足212b >, 所以椭圆C 的方程为22551164x y +=. 19、已知等差数列}{n a 的前n 项和为n S ,且455=S 455=S ,40342=+a a .数列}{n b 的前n 项和为n T ,满足n n b T 413=+)(*N n ∈.(1)求数列}{n a 、}{n b 的通项公式;(2)若1)23(+⋅-=n n n n n a a a b c ,求数列}{n c 的前n 项和n R ; (3)设n n n b S d =,求证:11248-=+-<∑n n k k n d . 【答案】(1)32+=n a n ,14-=n n b ;(2)51524-+=n R n n ;(2)证明见详解. 【详解】(2);(3)124n n n n n b c b b ++=, 112(3)44n n n n n n b n n c b b +-++∴==, 则12124)2(444--+=++<n n n n n n c ,122-+<n n . 设1122n n k k k S '-=+=∑, 11123422122nn k n k k n S '--=++∴==++⋯+∑ 213422222n n n S +'∴=++⋯+ 12111(1)121112422334122222221()2n n n n n n n n n S ---+++'∴=-+++⋯+=-+=--,1482n n n S -+'∴=- 综上,11248-=+-<∑n n k k n c . 20、已知函数()e cos x f x x =,()cos (0)g x a x x a =+<,曲线()y g x =在π6x =处的切线的斜率为32.(1)求实数a 的值;(2)对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦,()'()0f x g x -≥恒成立,求实数t 的取值范围; (3)设方程()'()f x g x =在区间()ππ2π,2π32n n n +⎛⎫++∈ ⎪⎝⎭N 内的根从小到大依次为1x 、2x 、…、n x 、…,求证:12n n x x +->π.【答案】(1)1a =-;(2)1t ≥;(2)证明见详解.【分析】(1)由'π362g ⎛⎫= ⎪⎝⎭来求得a 的值. (2)由()'()0f x g x -≥,对x 进行分类讨论,分离常数t 以及构造函数法,结合导数求得t 的取值范围.(3)由()'()f x g x =构造函数()e cos sin 1x x x x ϕ=--,利用导数以及零点存在性定理,结合函数的单调性证得12n n x x +->π.【详解】(1)因为()cos (0)g x a x x a =+<,则()'1sin g x a x =-, 由已知可得'π131622g a ⎛⎫=-= ⎪⎝⎭,解得1a =-. (2)由(1)可知()'1sin g x x =+,对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦,()'()0tf x g x -≥恒成立, 即e cos 1sin x t x x ≥+对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦恒成立, 当2x π=-时,则有00≥对任意的R t ∈恒成立; 当π02x -<≤时,cos 0x >,则1sin e cos x x t x+≥, 令1sin ()e cos x x h x x +=,其中π02x -<≤, ()()2'2e cos e (cos sin )(1sin )e cos x x x x x x x h x x --+=2(1cos )(1sin )0e cos x x x x-+=≥且()'h x 不恒为零, 故函数()h x 在π,02⎛⎤- ⎥⎝⎦上单调递增,则max ()(0)1h x h ==,故1t ≥. 综上所述,1t ≥.(3)由()'()f x g x =可得e cos 1sin x x x =+,e cos 1sin 0x x x --=,令()e cos sin 1x x x x ϕ=--,则()'e (cos sin )cos x x x x x ϕ=--, 因为()ππ2π,2π32x n n n +⎛⎫∈++∈ ⎪⎝⎭N ,则sin cos 0x x >>,所以,()'0x ϕ<,所以,函数()ϕx 在()ππ2π,2π32n n n +⎛⎫++∈ ⎪⎝⎭N 上单调递减,因为π2π3ππ2πe cos 2π33n n n ϕ+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭πsin 2π13n ⎛⎫-+- ⎪⎝⎭π2π31e 12n +=π2π3e 102+≥>,π2π202n ϕ⎛⎫+=-< ⎪⎝⎭, 所以,存在唯一的()ππ2π,2π32n x n n n +⎛⎫∈++∈ ⎪⎝⎭N ,使得()0n x ϕ=, 又1ππ2(1)π,2(1)π32n x n n +⎛⎫∈++++ ⎪⎝⎭()n +∈N ,则()1ππ2π2π,2π32n x n n n ++⎛⎫-∈++∈ ⎪⎝⎭N 且()10n x ϕ+=, 所以,()()12π112πe cos 2πn x n n x x ϕ+-++-=-()1sin 2π1n x +---12π11e cos sin 1n x n n x x +-++=--112π11e cos e cos n n x x n n x x ++-++=-()112π1e e cos 0n n x x n x ++-+=-<()n x ϕ=, 因为函数()ϕx 在()ππ2π,2π32n n n +⎛⎫++∈ ⎪⎝⎭N 上单调递减, 故12n n x x +-π>,即12n n x x +->π.。

天津市天津一中上学期高三零月月考语文试卷(Word版,含答案)

天津市天津一中上学期高三零月月考语文试卷(Word版,含答案)

天津一中高三年级零月考语文试卷本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间150分钟。

第Ⅰ卷一、(18分)1.下列词语中加点字的读音,全都正确的一组是A.作.(zuὸ)声纰.(pī)缪强.(qiáng)制性里应.(yìng)外合B.寒砧.(zhān)颓.(tuī)圮毛茸茸..(róng)紧挨.一起(āi)C.散.(sàn)满弄.(lὸng)堂攒.(cuáng)珠髻休戚.相关(qì)D.蘸.(zhàn)酒漪.沦(yǐ)飨.士卒(xiǎng)窸窣.(sū)飘零2.下列词语中没有错别字的一组是A.刺激推衍醉曛曛相形之下B.接壤消停暑气喧门衰祚薄C.妨碍料峭联系性安分耐劳D.攸远宫绦大爆炸缭草塞责3.下列横线处应填入的词语,最恰当的一组是______的品质生活不仅仅是吃喝玩乐,物质生活的提高最终要回到精神生活的升华,所以我们______去关注跟实际生活________的精神产品,倡导读书的生活方式无疑能带来丰厚的精神______。

A.优质必需息息相关回赠B.优越必须一脉相连回报C.优越必需一脉相连回赠D.优质必须息息相关回报4.下列各句没有语病且句意明确的一句是A.中国金花李娜克服开局慢热的不利,逆转战胜德国新星科贝尔,终于收获个人赛季第一个单打冠军。

B.面对不断上涨的人均工资,城市居民的幸福人数却似乎并没有随之水涨船高,年收入10万元仍是居民休闲的一道门槛。

C.灰色权力,是指借助公权力的影响力,通过子女、配偶、亲人或朋友等,在市场中或者暗地里,通过权力的运作对稀缺资源的倒卖、获取,进行资本运作等,以获得巨额利益的权力行为。

D.据美国《科学》杂志统计,现在有110种鲨鱼正处在濒临灭绝的边界,如果不控制市场对鱼翅的需求,在未来10年内,某些鲨鱼种群将彻底消失,进而导致某些鲨鱼物种整体灭绝。

5.下列句子中标点符号使用正确的一项是A.中国水产协会近日召开“鲨鱼可持续利用会议”,称“鱼翅消费是中国的传统文化”,食用鱼翅是“对废弃资源的有效利用,是中国节俭美德的体现”。

天津市一中高三数学上学期零月考试题 文(含解析)

天津市一中高三数学上学期零月考试题 文(含解析)

2015-2016学年天津一中高三(上)零月考数学试卷(文科)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z=1﹣i(i是虚数单位),则=()A.2 B.2i C.2+4i D.2﹣4i2.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.73.阅读下面的程序框图,则输出的S=()A.14 B.20 C.30 D.554.设函数f(x)定义在实数集上,f(2﹣x)=f(x),且当x≥1时,f(x)=lnx,则有()A.B.C.D.5.“0<a<1”是“ax2+2ax+1>0的解集是实数集R”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知等差数列{a n}的公差不为零,若a1、a2、a6成等比数列且和为21,则数列{a n}的通项公式为()A.a n=3n+1 B.a n=3n C.a n=3n﹣2 D.a n=3n﹣57.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30° B.60° C.120°D.150°8.若函数f(x)满足,当x∈时,f(x)=x,若在区间(﹣1,1]上,g(x)=f(x)﹣mx﹣m有两个零点,则实数m的取值范围是()A.B.C.D.二、填空题:(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)9.(文)已知集合M={a,0},N={x|2x2﹣5x<0,x∈Z},若M∩N≠∅,则a= .10.一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.11.已知cos(α+β)=,cos(α﹣β)=,则tanαtanβ的值为.12.如图,在边长为2的菱形ABCD中,∠BAD=60°,E为CD的中点,则= .13.若直线2ax﹣by+2=0(a>0,b>0)被圆x2+y2+2x﹣4y+1=0截得的弦长为4,则+的最小值是.14.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈时,,若x∈时,f(x)≥t2﹣2t﹣4恒成立,则实数t的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)(2009•天津)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂,(Ⅰ)求从A,B,C区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.16.(13分)(2014•黄冈模拟)已知函数f(x)=cos( 2x+)+sin2x.(Ⅰ)求函数f(x)的最小正周期和值域;(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2•=ab,c=2,f(A)=,求△ABC的面积S.17.(13分)(2009•天津)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E为PC的中点,AD=CD=1,,(Ⅰ)证明PA∥平面BDE;(Ⅱ)证明AC⊥平面PBD;(Ⅲ)求直线BC与平面PBD所成的角的正切值.18.(13分)(2015秋•天津校级月考)已知数列{a n}满足a1=1,a n+1﹣a n=2n(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=n•a n,求数列{b n}的前n项和S n.19.(14分)(2013•合肥二模)已知函数f(x)=xlnx.(I)若函数g(x)=f(x)+x2+ax+2有零点,求实数a的最大值;(II)若∀x>0,≤x﹣kx2﹣1恒成立,求实数k的取值范围.20.(14分)(2007•天津)设函数f(x)=﹣x(x﹣a)2(x∈R),其中a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值;(Ⅲ)当a>3时,证明存在k∈,使得不等式f(k﹣cosx)≥f(k2﹣cos2x)对任意的x∈R 恒成立.2015-2016学年天津一中高三(上)零月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z=1﹣i(i是虚数单位),则=()A.2 B.2i C.2+4i D.2﹣4i考点:复数代数形式的乘除运算.专题:计算题.分析:由题意可得=+(1﹣i)2,再利用两个复数代数形式的乘除法法则,求得结果.解答:解:由题意可得,=+(1﹣i)2=﹣2i=2,故选A.点评:本题主要考查两个复数代数形式的除法,虚数单位i的幂运算性质,利用了两个复数相除,分子和分母同时乘以分母的共轭复数,属于基础题.2.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.7考点:简单线性规划.专题:不等式的解法及应用.分析:先画出约束条件的可行域,再将可行域中各个角点的值依次代入目标函数z=x﹣y,不难求出目标函数z=x﹣y的最小值.解答:解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.点评:本题主要考查线性规划的基本知识,用图解法解决线性规划问题时,利用线性规划求函数的最值时,关键是将目标函数赋予几何意义.3.阅读下面的程序框图,则输出的S=()A.14 B.20 C.30 D.55考点:程序框图.专题:计算题.分析:经分析为直到型循环结构,按照循环结构进行执行,当满足跳出的条件时即可输出s 的值.解答:解:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故答案为C.点评:本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.4.设函数f(x)定义在实数集上,f(2﹣x)=f(x),且当x≥1时,f(x)=lnx,则有()A.B.C.D.考点:对数值大小的比较.分析:由f(2﹣x)=f(x)得到函数的对称轴为x=1,再由x≥1时,f(x)=lnx得到函数的图象,从而得到答案.解答:解:∵f(2﹣x)=f(x)∴函数的对称轴为x=1∵x≥1时,f(x)=lnx∴函数以x=1为对称轴且左减右增,故当x=1时函数有最小值,离x=1越远,函数值越大故选C.点评:本题考查的是由f(a﹣x)=f(b+x)求函数的对称轴的知识与对数函数的图象.5.“0<a<1”是“ax2+2ax+1>0的解集是实数集R”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:先解出不等式ax2+2ax+1>0的解集是实数集R的等价条件,然后利用充分条件和必要条件的定义进行判断.解答:解:要使不等式ax2+2ax+1>0的解集为R,①当a=0时,1>0恒成立,满足条件;②当a≠0时,满足,解得0<a<1,因此要不等式ax2+2ax+1>0的解集为R,必有0≤a<1,故“0<a<1”是“ax2+2ax+1>0的解集是实数集R”的充分不必要条件,故选:A.点评:本题主要考查充分条件和必要条件的判断以及一元二次不等式恒成立问题,要注意对a进行分类讨论.6.已知等差数列{a n}的公差不为零,若a1、a2、a6成等比数列且和为21,则数列{a n}的通项公式为()A.a n=3n+1 B.a n=3n C.a n=3n﹣2 D.a n=3n﹣5考点:等差数列的通项公式.专题:等差数列与等比数列.分析:等差数列{a n}的公差不为零,设为d,根据a1、a2、a6成等比数列,且和为21,求出a1与d的值,即可确定出通项公式.解答:解:∵等差数列{a n}的公差不为零,设为d,∴a2=a1+d,a6=a1+5d,∵a1、a2、a6成等比数列,且和为21,∴a22=a1•a6,a1+a2+a6=21,即(a1+d)2=a1(a1+5d),3a1+d+5d=21,解得:a1=1,d=3,则数列{a n}的通项公式为a n=3n﹣2,故选:C.点评:此题考查了等差数列的通项公式,熟练掌握等差数列的性质是解本题的关键.7.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30° B.60° C.120°D.150°考点:余弦定理的应用.专题:综合题.分析:先利用正弦定理,将角的关系转化为边的关系,再利用余弦定理,即可求得A.解答:解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.点评:本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.8.若函数f(x)满足,当x∈时,f(x)=x,若在区间(﹣1,1]上,g(x)=f(x)﹣mx﹣m有两个零点,则实数m的取值范围是()A.B.C.D.考点:函数零点的判定定理.专题:计算题;压轴题;数形结合.分析:根据,当x∈时,f(x)=x,求出x∈(﹣1,0)时,f(x)的解析式,由在区间(﹣1,1]上,g(x)=f(x)﹣mx﹣m有两个零点,转化为两函数图象的交点,利用图象直接的结论.解答:解:∵,当x∈时,f(x)=x,∴x∈(﹣1,0)时,,∴f(x)=,因为g(x)=f(x)﹣mx﹣m有两个零点,所以y=f(x)与y=mx+m的图象有两个交点,函数图象如图,由图得,当0<m时,两函数有两个交点故选 D.点评:此题是个中档题.本题考查了利用函数零点的存在性求变量的取值范围和代入法求函数解析式,体现了转化的思想,以及利用函数图象解决问题的能力,体现了数形结合的思想.也考查了学生创造性分析解决问题的能力.二、填空题:(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)9.(文)已知集合M={a,0},N={x|2x2﹣5x<0,x∈Z},若M∩N≠∅,则a= 1或2 .考点:交集及其运算;集合关系中的参数取值问题.专题:计算题.分析:题目中利用一元二次不等式的解法化简集合N,结合它与集合M有公共元素即可求得a 值.解答:解∵2x2﹣5x<0的解是0<x<2.5,又∵x∈Z,∴N={1,2}∵M∩N≠∅,∴a=1或2故答案为:1或2点评:本题考查集合与集合交集的运算,解答的关键是分清集合和元素的关系,注意不等式的解法,属于基础题.10.一个几何体的三视图如图所示(单位:m),则这个几何体的体积为 4 m3.考点:由三视图求面积、体积.专题:立体几何.分析:由题意可知,一个简单的组合体,上面是一个底面是边长为1的正方形,高是2的四棱柱,下面是一个长为2,高为1,宽为1的长方体,根据所给的长度,求出几何体的体积.解答:解:由三视图可知,这是一个简单的组合体,上面是一个底面是边长为1的正方形,高是2的四棱柱,体积是1×1×2下面是一个长为2,高为1,宽为1的长方体,体积是1×1×2∴几何体的体积是1×1×2+2×1×1=4m3,故答案为:4点评:本题考查由三视图还原直观图,根据图形中所给的数据,求出要求的体积,本题是一个考查简单几何体体积的简单题目.11.已知cos(α+β)=,cos(α﹣β)=,则tanαtanβ的值为.考点:两角和与差的余弦函数.专题:三角函数的求值.分析:由条件利用两角和差的余弦公式求得cosαcosβ、sinαsinβ的值,再利用同角三角函数的基本关系求得tanαtanβ的值.解答:解:∵cos(α+β)=cosαcosβ﹣sinαsinβ=,∵cos(α﹣β)=cosαcosβ+sinαsinβ=,两式相加可得2cosαcosβ=,相减可得2sinαsinβ=,则tanαtanβ==,故答案为:.点评:本题主要考查两角和差的余弦公式,同角三角函数的基本关系,属于基础题.12.如图,在边长为2的菱形ABCD中,∠BAD=60°,E为CD的中点,则= 1 .考点:平面向量数量积的运算.专题:计算题.分析:将表示为,再利用向量的运算法则,数量积的定义求解.解答:解:在菱形ABCD中,∠BAD=60,∴△ABD为正三角形,<>=60°,=180°﹣60°=120°∵=,∴=(+)•=•+•=2×2×cos60°+1×2×cos120°=2﹣1=1故答案为:1.点评:本题考查向量的数量积运算.关键是将将表示为.易错点在于将有关向量的夹角与三角形内角不加区别,导致结果出错.本题还可以以为基底,进行转化计算.13.若直线2ax﹣by+2=0(a>0,b>0)被圆x2+y2+2x﹣4y+1=0截得的弦长为4,则+的最小值是 4 .考点:基本不等式;直线与圆相交的性质.专题:计算题.分析:先求出圆心和半径,由弦长公式求得圆心到直线2ax﹣by+2=0的距离d=0,直线2ax ﹣by+2=0经过圆心,可得a+b=1,代入式子再利用基本不等式可求式子的最小值.解答:解:圆x2+y2+2x﹣4y+1=0 即(x+1)2+(y﹣2)2=4,圆心为(﹣1,2),半径为 2,设圆心到直线2ax﹣by+2=0的距离等于 d,则由弦长公式得 2=4,d=0,即直线2ax﹣by+2=0经过圆心,∴﹣2a﹣2b+2=0,a+b=1,则+=+=2++≥2+2=4,当且仅当a=b时等号成立,故式子的最小值为 4,故答案为 4.点评:本题考查直线和圆的位置关系,弦长公式以及基本不等式的应用.14.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈时,,若x∈时,f(x)≥t2﹣2t﹣4恒成立,则实数t的取值范围是﹣1≤t≤3.考点:函数恒成立问题.专题:综合题;函数的性质及应用.分析:先确定当x∈时,f(x)的最小值为﹣,利用函数f(x)满足f(x+2)=2f(x),可得x∈时,f(x)的最小值为﹣1,从而可得﹣1≥t2﹣2t﹣4,即可得出结论.解答:解:当x∈当x∈时,f(x)=(x﹣2)x∈∴当x∈时,f(x)的最小值为﹣,又∵函数f(x)满足f(x+2)=2f(x),当x∈时,f(x)的最小值为﹣,当x∈时,f(x)的最小值为﹣1,∵x∈时,f(x)≥t2﹣2t﹣4恒成立,∴﹣1≥t2﹣2t﹣4∴(t+1)(t﹣3)≤0,解得:﹣1≤t≤3,故答案为:﹣1≤t≤3.点评:本题考查的知识点是函数恒成立问题,考查函数的最值,是函数、不等式的综合应用,确定﹣1≥t2﹣2t﹣4是解题的关键.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)(2009•天津)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂,(Ⅰ)求从A,B,C区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.考点:分层抽样方法;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先计算A,B,C区中工厂数的比例,再根据比例计算各区应抽取的工厂数.(2)本题为古典概型,先将各区所抽取的工厂用字母表达,分别计算从抽取的7个工厂中随机抽取2个的个数和至少有1个来自A区的个数,再求比值即可.解答:(1)解:工厂总数为18+27+18=63,样本容量与总体中的个体数比为,所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2、(2)设A1,A2为在A区中抽得的2个工厂,B1,B2,B3为在B区中抽得的3个工厂,C1,C2为在C区中抽得的2个工厂,这7个工厂中随机的抽取2个,全部的可能结果有:C72种,随机抽取2个工厂至少有一个来自A区的结果有(A1,A2),(A1,B2)(A1,B1)(A1,B3)(A1,C2)(A1,C1),同理A2还能组合5种,一共有11种.所以所求的概率为点评:本小题主要考查分层抽样、用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查运用统计、概率知识解决实际问题的能力.16.(13分)(2014•黄冈模拟)已知函数f(x)=cos( 2x+)+sin2x.(Ⅰ)求函数f(x)的最小正周期和值域;(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2•=ab,c=2,f(A)=,求△ABC的面积S.考点:二倍角的余弦;平面向量数量积的运算;两角和与差的正弦函数;三角函数的周期性及其求法;正弦定理.专题:解三角形.分析:(Ⅰ)利用三角函数的恒等变化简函数f(x)的解析式为﹣sin2x,由此可得它的最小正周期和值域.(Ⅱ)由2•=ab,求得sin2A=,故A=,B=,再利用正弦定理求得a、b的值,根据 S=ab•sinC,运算求得结果.解答:解:(Ⅰ)因为函数f(x)=cos( 2x+)+sin2x=cos2x﹣sin2x+=﹣sin2x,所以,最小正周期T==π,值域为.…(6分)(Ⅱ)∵2•=ab,∴2ab•cos(π﹣C)=ab,cosC=﹣.∴C=.又f(A)=,∴sin2A=﹣,sin2A=,∴A=,∴B=.由正弦定理,有,即==,解得 a=﹣,b=2.∴S=ab•sinC=﹣1.…(12分)点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,正弦定理及两个向量的数量积的定义,属于中档题.17.(13分)(2009•天津)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E为PC的中点,AD=CD=1,,(Ⅰ)证明PA∥平面BDE;(Ⅱ)证明AC⊥平面PBD;(Ⅲ)求直线BC与平面PBD所成的角的正切值.考点:空间中直线与平面之间的位置关系;直线与平面所成的角.专题:空间位置关系与距离;空间角;立体几何.分析:(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE 内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件;(2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件;(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可.解答:解:(1)证明:设AC∩BD=H,连接EH,在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又有题设,E为PC的中点,故EH∥PA,又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线与平面PBD所成的角.由AD⊥CD,AD=CD=1,DB=2,可得DH=CH=在Rt△BHC中,tan∠CBH=,所以直线BC与平面PBD所成的角的正切值为.点评:本小题主要考查直线与平面平行.直线和平面垂直.直线和平面所成的角等基础知识,考查空间想象能力、运算能力和推理能力.18.(13分)(2015秋•天津校级月考)已知数列{a n}满足a1=1,a n+1﹣a n=2n(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=n•a n,求数列{b n}的前n项和S n.考点:数列递推式;数列的求和.专题:等差数列与等比数列.分析:(1)由a1=1,a n+1﹣a n=2n(n∈N*),利用累加法能求出数列{a n}的通项公式.(2)由b n=n•a n=n•2n﹣n,利用错位相减法能求出数列{b n}的前n项和S n.解答:解:(1)∵数列{a n}满足a1=1,a n+1﹣a n=2n(n∈N*),∴a n=a1+a2﹣a1+a3﹣a2+…+a n﹣a n﹣1=1+2+22+…+2n﹣1==2n﹣1.(2)∵b n=n•a n=n•2n﹣n,∴S n=1•2+2•22+3•23+…+n•2n﹣(1+2+3+…+n),①2S n=1•22+2•23+3•24+…+n•2n+1﹣2(1+2+3+…+n),②①﹣②,得:﹣S n=2+22+23+…+2n﹣n•2n+1+(1+2+3+…+n)=﹣n•2n+1+=(1﹣n)•2n+1﹣2+,∴T n=.点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意累加法和错位相减法的合理运用.19.(14分)(2013•合肥二模)已知函数f(x)=xlnx.(I)若函数g(x)=f(x)+x2+ax+2有零点,求实数a的最大值;(II)若∀x>0,≤x﹣kx2﹣1恒成立,求实数k的取值范围.考点:利用导数求闭区间上函数的最值;利用导数研究函数的极值.专题:导数的综合应用.分析:(I))由函数g(x)=f(x)+x2+ax+2有零点,即g(x)=xlnx+x2+ax+2在(0,+∞)上有实数根.即﹣a=lnx+x+在(0,+∞)上有实数根.令h(x)=,(x>0),利用导数求出h(x)的最小值,则﹣a≤h(x)min.(II))由已知∀x>0,≤x﹣kx2﹣1恒成立⇔.令g(x)=x﹣1﹣lnx,x>0.利用导数得出g(x)的最小值即可.解答:解:(I)∵函数g(x)=f(x)+x2+ax+2有零点,∴g(x)=xlnx+x2+ax+2在(0,+∞)上有实数根.即﹣a=lnx+x+在(0,+∞)上有实数根.令h(x)=,(x>0),则=.解h′(x)<0,得0<x<1;解h′(x)>0,得x>1.∴h(x)在(0,1)上单调递减;在(1,+∞)上单调递增.∴h(x)在x=1时取得极小值,即最小值h(1)=3.∴﹣a≥3,解得a≤﹣3.∴实数a的最大值为﹣3.(II)∵∀x>0,≤x﹣kx2﹣1恒成立,∴lnx≤x﹣1﹣kx2,即.令g(x)=x﹣1﹣lnx,x>0.=,令g′(x)>0,解得x>1,∴g(x)在区间(1,+∞)上单调递增;令g′(x)<0,解得0<x<1,∴g(x)在区间(0,1)上单调递减.∴当x=1时,g(x)取得极小值,即最小值,∴g(x)≥g(1)=0,∴k≤0,即实数k的取值范围是(﹣∞,0].点评:熟练掌握利用导数研究函数的单调性、极值与最值、等价转化的方法等是解题的关键.20.(14分)(2007•天津)设函数f(x)=﹣x(x﹣a)2(x∈R),其中a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值;(Ⅲ)当a>3时,证明存在k∈,使得不等式f(k﹣cosx)≥f(k2﹣cos2x)对任意的x∈R 恒成立.考点:函数单调性的性质.专题:压轴题.分析:(Ⅰ)求出f(2)和f′(2),利用点斜式写切线方程.(Ⅱ)求导,令f′(x)=0,再考虑f(x)的单调性,求极值即可.(Ⅲ)有(Ⅱ)可知当a>3时f(x)为单调函数,利用单调性直接转化为k﹣cosx≤k2﹣cos2x 恒成立,分离参数求解即可.解答:解:(Ⅰ)解:当a=1时,f(x)=﹣x(x﹣1)2=﹣x3+2x2﹣x,得f(2)=﹣2,且f'(x)=﹣3x2+4x﹣1,f'(2)=﹣5.所以,曲线y=﹣x(x﹣1)2在点(2,﹣2)处的切线方程是y+2=﹣5(x﹣2),整理得5x+y﹣8=0.(Ⅱ)解:f(x)=﹣x(x﹣a)2=﹣x3+2ax2﹣a2xf'(x)=﹣3x2+4ax﹣a2=﹣(3x﹣a)(x﹣a).令f'(x)=0,解得或x=a.由于a≠0,以下分两种情况讨论.(1)若a>0,当x变化时,f'(x)的正负如下表:x (﹣∞,)(,a) a (a,+∞)f′(x)﹣0 + 0 ﹣因此,函数f(x)在处取得极小值,且;函数f(x)在x=a处取得极大值f(a),且f(a)=0.(2)若a<0,当x变化时,f'(x)的正负如下表:x (﹣∞,a) a (a,)(,+∞)f′(x)﹣0 + 0 ﹣因此,函数f(x)在x=a处取得极小值f(a),且f(a)=0;函数f(x )在处取得极大值,且.(Ⅲ)证明:由a>3,得,当k∈时,k﹣cosx≤1,k2﹣cos2x≤1.由(Ⅱ)知,f(x)在(﹣∞,1]上是减函数,要使f(k﹣cosx)≥f(k2﹣cos2x),x∈R 只要k﹣cosx≤k2﹣cos2x(x∈R)即cos2x﹣cosx≤k2﹣k(x∈R)①设,则函数g(x)在R上的最大值为2.要使①式恒成立,必须k2﹣k≥2,即k≥2或k≤﹣1.所以,在区间上存在k=﹣1,使得f(k﹣cosx)≥f(k2﹣cos2x)对任意的x∈R恒成立.点评:本小题主要考查运用导数研究函数的性质、曲线的切线方程,函数的极值、解不等式等基础知识,考查综合分析和解决问题的能力及分类讨论的思想方法.- 21 -。

天津市天津一中2021届高三上学期零月月考数学文试题 Word版含解析

天津市天津一中2021届高三上学期零月月考数学文试题 Word版含解析

天津一中2022-2021学年高三数学(文科)零月考考试试题一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)【题文】1.设i 为虚数单位,则51ii-+等于()A.-2-3iB.-2+3iC.2-3i D2+3i 【学问点】复数的运算. L4【答案解析】C 解析:5(5)(1)46231(1)(1)2i i i iii i i----===-++-,故选C.【思路点拨】利用复数乘法进行分母实数化.【题文】2.设变量x,y满足约束条件:3123x yx yx y+≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y=+的最小值为()A.6B.7C.8D.23 【学问点】线性规划. E5【答案解析】B 解析:画出可行域,平移直线23y x=-,可得最优解为两直线x+y=3与2x-y=3的交点A(2,1),所以目标函数23z x y=+的最小值为22317⨯+⨯=,故选B.【思路点拨】画出可行域,利用平移法确定最优解,进而求得目标函数的最小值.【题文】3.函数sin22y xπ⎛⎫=-⎪⎝⎭,x R∈是()A.最小正周期为π的奇函数B. 最小正周期为2π的奇函数C.最小正周期为π的偶函数D. 最小正周期为2π的偶函数【学问点】函数sin()y A xωϕ=+的图像与性质. C4【答案解析】C 解析:由于sin22y xπ⎛⎫=-⎪⎝⎭=cos2x ,此函数是最小正周期为π的偶函数,所以选C. 【思路点拨】利用诱导公式化简已知函数,从而得结论.【题文】4.阅读右面的程序框图,则输出的S=()A.14B.30C.20D.55【学问点】程序框图. L1【答案解析】B 解析:依据程序框图得:循环过程依次为①S=1,i=2,②S=1+4=5,i=3,③S=1+4+9=14,i=4, ④S=1+4+9+16=30,i=5,此时满足i>4了,所以输出S=30,故选B.【思路点拨】依据程序框图得每次循环的结果,从而确定输出结果.【题文】5.已知()f x是定义在(),-∞+∞上的偶函数,且在(],0-∞上是增函数,设()()0.6412log7,log3,0.2a fb fc f⎛⎫===⎪⎝⎭,则,,a b c的大小关系是()A.c<b<aB.b<c<aC.b<a<cD.a<b<c【学问点】函数的奇偶性与单调性. B3 B4【答案解析】C 解析:由()f x 是定义在(),-∞+∞上的偶函数得:()122log 3log 3b f f ⎛⎫== ⎪⎝⎭,又()f x 在(],0-∞上是增函数,所以()f x 在[)0,+∞上是减函数,由于42122log 7log 7,log 3log 3,==-且0.622log 3log 710.2>>>>0,所以b<a<c ,故选C.【思路点拨】由奇偶性得()122log 3log 3b f f ⎛⎫== ⎪⎝⎭,再由()f x 在(],0-∞上是增函数得()f x 在[)0,+∞上是减函数,由于42122log 7log 7,log 3log 3,==-且0.622log 3log 710.2>>>>0,所以b<a<c.【题文】6.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( ) A.5 B.5 C.52 D. 54【学问点】双曲线的几何性质. H6【答案解析】C 解析:可设双曲线方程为()2222104x y m m m -=>,则a=2m, 2245c m m m =+=,所以5522c m e a m ==,故选C. 【思路点拨】首先设出已知焦点位置及渐近线方程的双曲线的方程,由此得双曲线中的参数a,c 的值,从而求得双曲线的离心率.【题文】7.函数()244,143,1x x f x x x x -≤⎧=⎨-+>⎩的图像和函数()2log g x x =的图像的交点个数是( )A.1B.2C.3D.4 【学问点】函数及其表示. B1 【答案解析】C 解析:画出两函数图像得交点个数3,故选C.【思路点拨】在同一坐标系下画出两函数图像得交点个数.【题文】8.定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)()[)2 1.5,0,10.5,x 1,2x x x x f x -⎧-∈⎪=⎨-∈⎪⎩,若[)4,2x ∈--时,()142t f x t ≥-恒成立,则实数t 的取值范围是( ) A. [)()2,00,1- B. [)[)2,01,-+∞ C. []2,1- D. (](],20,1-∞-【学问点】函数的性质及应用. B1 B3 【答案解析】D 解析:(2)2(),f(x 4)2(2)4()f x f x f x f x +=∴+=+=∴当[4,2)x ∈--时,4[0,2)x +∈,24 1.5(4)(4),4[0,1)(4)4()(0,5),4[1,2)x x x x f x f x x +-⎧+-++∈⎪∴+==⎨-+∈⎪⎩ 即()22.51712,[4,3)4()1(0.5),[3,2)4x x x x f x x +⎧++∈--⎪⎪=⎨⎪-∈--⎪⎩,可得此时()f x 的最小值为1( 2.5)4f -=-.若[)4,2x ∈--时,()142t f x t ≥-恒成立,则min 11()( 2.5)424t f x f t -≤=-=-, 解得:t ∈(](],20,1-∞-,故选D.【思路点拨】依据条件,只要求出函数f (x )在x ∈[-4,-2)上的最小值即可得到结论.二、填空题:(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)【题文】9.如左下图所示,是某校高三班级文科60名同学参与谋科考试所得成果(分数均为整数)整理后得出的频率分布直方图,依据该图这次考试文科60分以上的同学的人数为 .【学问点】频率分布直方图中的数据读取. I2【答案解析】45 解析:这次考试文科60分以上的同学的人数 =(0.015+0.030+0.025+0.005106045⨯⨯=.【思路点拨】依据频率分布直方图得所求=(0.015+0.030+0.025+0.005106045⨯⨯=. 【题文】10.某几何体的三视图如图所示,则该几何体的体积为 .【学问点】三视图的意义. G2【答案解析】108+3π 解析:该几何体的体积=2266 1.5131083ππ⨯⨯⨯+⨯⨯=+.【思路点拨】由三视图可知该几何体是由两个底面边长是6,高是1.5的正四棱柱,和一个底面半径是1,高是3的圆柱组成的几何体.【题文】11.在ABC ∆中,AB=2,AC=3,D 是边BC 的中点,则AD BC ⋅= . 【学问点】平面对量的加减运算及数量积. F1 F3【答案解析】52 解析:()1,2AD AC AB BC AC AB =+=-, ()()()221122AD BC AC AB AC AB AC AB ∴⋅=+⋅-=-()22153222=-=.【思路点拨】由向量加法、减法的三角形法则得:,AD BC 用,AC AB 表示的表达式,然后再用向量数量积公式计算.【题文】12.已知圆C 的圆心与抛物线24y x =的焦点关于直线y=x 对称,直线4x-3y-2=0与圆C 相交于A,B 两点,且6AB =,则圆C 的标准方程为: . 【学问点】抛物线的性质;直线与圆的有关学问. H4 H7【答案解析】()22110x y +-= 解析:由已知条件得圆心C(0,1),C 到直线4x-3y-2=0的距离d=()223243--=+-1,所以圆的半径为221310+=,所以圆C 的标准方程为:()22110x y +-=.【思路点拨】依据已知条件求得圆心坐标及半径.【题文】13.如图,PC 切圆O 于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E. 已知圆O 的半径为3,PA=2,则CD= .【学问点】几何证明选讲. N1 【答案解析】245解析:连接OC 则90OCP ∠=,在OCP ∆中OC=3,OP=5从而PC=4由等面积法得:341255OC CP OC CP PO CE CE PO ⋅⨯⋅=⋅⇒===,所以CD=245. 【思路点拨】连接OC 则90OCP ∠=,在直角三角形OCP 中求得三边长后,再求斜边上的高即可. 【题文】14.函数()10,1x y a a a -=>≠的图像恒过定点A ,若点A 在直线mx+ny-1=0(mn>0)上,则11m n+的最小值为 . 【学问点】指数函数;基本不等式. B10 E6【答案解析】4 解析:由已知条件得A(1,1), 代入mx+ny-1=0得:m+n=1,由于m,n>0所以()111124m n m n m n m n n m ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当m=n=12时等号成立. 【思路点拨】由函数()10,1x y a a a -=>≠的图像恒过定点A 得A(1,1),代入mx+ny-1=0得:m+n=1,由于m,n>0所以()111124m n m n m n m n n m ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当m=n=12时等号成立. 二、解答题:(本大题共6小题,共80分。

天津市第一中学2023-2024学年高三第四次月考数学试卷(解析版)

天津市第一中学2023-2024学年高三第四次月考数学试卷(解析版)

天津一中2023—2024-2高三年级第四次月考数学试卷本试卷总分150分,考试用时120分钟.考生务必将答案涂写在答题卡上,答在试卷上的无效.一、选择题(本大题共9小题,每小题5分,共45分)1. 已知集合,则( )A. B. C. D. 【答案】C 【解析】【分析】根据题意,求得集合,结合集合交集的运算,即可求解.【详解】由不等式,解得,所以,又由,所以.故选:C.2. 将收集到的天津一中2021年高考数学成绩绘制出频率分布直方图,如图所示,则下列说法中不正确的是( )A. B. 高三年级取得130分以上的学生约占总数的65%C. 高三年级的平均分约为133.2D. 高三年级成绩的中位数约为125【答案】D 【解析】【分析】对于A ,由各个矩形面积之和为1即可列式求解;对于B ,求最右边两个矩形面积之和即可验算;对于C ,D 分别由平均数计算公式、中位数计算方法即可判断.{}{}2|3100,33A x x x B x x =--<=-≤≤A B = (2,3]-[)3,5-{1,0,1,2,3}-{3,2,1,0,1,2,3,4}---{}1,0,1,2,3,4A =-23100x x --<25x -<<{}1,0,1,2,3,4A =-{}33B x x =-≤≤{}1,0,1,2,3A B ⋂=-0.028a =【详解】对于A ,,故A 正确;对于B ,高三年级取得130分以上的学生约占总数的,故B 正确;对于C ,高三年级的平均分约为,故C 正确;对于D ,设高三年级成绩的中位数为,由于,所以,故D 不正确.故选;D.3. 已知,条件,条件,则是的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】结合绝对值的性质,根据不等式的性质及充分条件、必要条件的定义分析判断即可.【详解】因为,所以由得,故由能推出;反之,当时,满足,但是;所以是的充分不必要条件.故选:A .4. 函数的图象大致为( )A. B.C. D.【答案】B 【解析】.()1100.0010.0090.0250.037100.028a =-⨯+++÷=⎡⎤⎣⎦()0.0280.03710100%65%+⨯⨯=()1050.0011150.0091250.0251450.0281350.03710133.2⨯+⨯+⨯+⨯+⨯⨯=x 0.010.090.250.350.500.350.370.72++=<<+=130140x <<0a >:p a b >2:q a ab >p q 0a >a b >2a ab ab >≥:p a b >2:q a ab >10,2a b =>=-212a ab =>=-122a =<-=p q ()21cos 31x f x x ⎛⎫=-⋅ ⎪+⎝⎭【分析】根据函数奇偶性即可排除CD ,由特殊点的函数值即可排除A.【详解】,则的定义域为R ,又,所以为奇函数,图象关于原点对称,故排除CD ,当时,,故排除A .故选:B.5. 已知函数是上的偶函数,且在上单调递增,设,,,则a ,b ,c 的大小关系是( )A. B. C. D. 【答案】B 【解析】【分析】结合偶函数的性质,函数单调性,只需比较对数、分数指数幂的大小即可得解.【详解】因为函数是上的偶函数,且在上单调递增,所以,即.故选:B.6. 多项式展开式中的系数为( )A. 985B. 750C. 940D. 680【答案】A 【解析】分析】由二项式定理即可列式运算,进而即可得解.【详解】多项式展开式中的系数为.故选:A.7. 已知斜三棱柱中,为四边形对角线的交点,设三棱柱的体积【2()(1)cos 31xf x x =-⋅+()f x ()()()22321cos 1cos 1cos 313131x x x xf x x x x f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭()f x πx =()ππ22π1cos π103131f ⎛⎫-=< ⎪++⎝⎭=-+()f x R ()f x [0,)+∞12e a f ⎛⎫= ⎪⎝⎭12b f ⎛⎫= ⎪⎝⎭1ln 2c f ⎛⎫= ⎪⎝⎭a b c <<b<c<ac<a<bb a c<<()f x R ()f x [0,)+∞()()1211ln 2ln 1e 22b f f f c f ff a ⎛⎫⎛⎫⎛⎫=<==<<== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b<c<a ()52(71)52x x++2x ()52(71)52x x++2x 32350555C 712C 7159805985⋅⋅⋅+⋅⋅⋅=+=111ABC A B C -O 11ACC A 111ABC A B C -为,四棱锥的体积为,则( )A. B. C. D. 【答案】A 【解析】【分析】如图,延长,连接,则、,进而得,即可求解.【详解】如图,延长,连接,则,所以,又O 为的中点,所以点到平面的距离是点到平面的距离的2倍,则,所以,即故选:A8. 已知函数(为常数,且)的一个最大值点为,则关于函数的性质,下列说法错误的有( )个.1V 11O BCC B -2V 21:V V =1:31:41:62:31OA 11,,OB OB A B 111123A BCC B V -=11122A BCC B V V -=12223V V =1OA 11,,OB OB A B 11111111,3A ABC A BCCB A ABC V V V V V ---=+=111123A BCCB V -=1AC 1A 11BCC B O 11BCC B 11111222A BCC B O BCC B V V V --==12223V V =2113V V =()sin cos f x a x b x =+,a b 0,0a b >>π3x =()sin 2cos 2g x a x b x =+①的最小正周期为;②的一个最大值点为;③在上单调递增;④的图像关于中心对称.A. 0个 B. 1个C. 2个D. 3个【答案】B 【解析】【分析】根据三角函数的性质,求的关系,再根据辅助角公式化简函数,再利用代入的方法,判断函数的性质.【详解】函数,,平方后整理为,所以,,函数的最小正周期为,故①正确;当时,,此时函数取得最大值,故②正确;当时,,位于单调递增区间,故③正确;,故④错误,所以错误的只有1个.故选:B9. 已知双曲线的左焦点为,过作渐近线的垂线,垂足为,且与抛物线交于点,若,则双曲线的离心率为( )A.B.C.D.【答案】B 【解析】()g x π()g x π6()g x 2π,π3⎛⎫⎪⎝⎭()gx 7π,012⎛⎫⎪⎝⎭,a b ()g x ()sin cos f x a x b x =+12b +=()20a =a π()sin 2cos 22sin 26g x x b x b x ⎛⎫=+=+ ⎪⎝⎭0b >()g x 2ππ2=π6x =πππ2662⨯+=()g x 2π,π3x ⎛⎫∈⎪⎝⎭π3π13π2,626x ⎛⎫+∈ ⎪⎝⎭77ππ4π2sin 22sin 0121263g b b π⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭22221(0,0)x y a b a b-=>>1(,0)F c -1F P 212y cx =M 13PM F P =【分析】首先利用等面积法求出点坐标,再根据,求出坐标,再将坐标带入抛物线化简即可求解出双曲线离心率.【详解】据题意,不妨取双曲线的渐近线方程为,此时,,∴,且是直角三角形,设,则,,代入中,得,即;设,则,,由,则,,∴,则;又在抛物线上,,即,化简得,分子分母同时除以,,且,,.故选:B二、填空题(本大题共6小题,每小题5分,共30分)10. 已知,且满足(其中为虚数单位),则_________.【答案】2【解析】【分析】根据复数相等得到关于的方程组,解该方程组即可.【详解】由题意,可得,P 13PM F P =M M 212y cx =by x a=-1F P b =1OF c =OP a =1OPF (,)p p P x y 11122OPF p S ab cy== p aby c ∴=b y xa =-2p a x c =-2(,a ab P c c-(,)M xy 2,a ab PM x y c c ⎛⎫=+- ⎪⎝⎭ 221,,a ab b ab F P c cc c c ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭ 13PM F P = 223a b x c c+=⋅3ab ab y c c -=⋅2234,b a ab x y c c -==2234(,)b a abM c c -M 212y cx =22243()12ab b a cc c-∴=()()()2222222222221612316123a b b aca c a c a a c ⎡⎤=-⇔-=--⎣⎦422491640c a c a -+=4a 4291640e e ∴-+=1e >2e ∴===e ∴=,R a b ∈(12i)(i)3i a b ++=-i 22a b +=,a b (12i)(i)3i a b ++=-(2)(2)i 3i a b a b -++=-所以,解得,所以.故答案为:211. 著名的“全错位排列”问题(也称“装错信封问题”是指“将n 个不同的元素重新排成一行,每个元素都不在自己原来的位置上,求不同的排法总数.”,若将个不同元素全错位排列的总数记为,则数列满足,.已知有7名同学坐成一排,现让他们重新坐,恰有两位同学坐到自己原来的位置,则不同的坐法有_________种【答案】【解析】【分析】根据数列递推公式求出项,再结合分步计数原理求解.【详解】第一步,先选出两位同学位置不变,则有种,第二步,剩下5名同学都不在原位,则有种,由数列满足,,则,,,则不同的做法有种.故答案为:.12. 已知在处的切线与圆相切,则_________.【答案】或【解析】【分析】根据导数的几何意义,求得切线方程,再由直线与圆相切,列出方程,即可求解.【详解】由函数,可得,则且,所以函数在处的切线方程为,即,又由圆,可得圆心,半径为,2321a b a b -=⎧⎨+=-⎩1575a b ⎧=⎪⎪⎨⎪=-⎪⎩222a b +=n n a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥9242776C 2121⨯==⨯5a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥()()321312a a a =-+=()()432419a a a =-+=()()5435144a a a =-+=2144924⨯=9242()ln f x x x =-1x =22:()4C x a y -+==a -0x y -=2()ln f x x x =-1()2f x x x=-'(1)1f '=(1)1f =()f x 1x =11y x -=-0x y -=22:()4C x a y -+=(,0)C a 2r =因为与圆,解得.故答案为:.13. 元旦前夕天津-中图书馆举办一年一度“猜灯谜”活动,灯谜题目中逻辑推理占,传统灯谜占,一中文化占,小伟同学答对逻辑推理,传统灯谜,一中文化的概率分别为,,,若小伟同学任意抽取一道题目作答,则答对题目的概率为______,若小伟同学运用“超能力”,抽到的5道题都是逻辑推理题,则这5道题目中答对题目个数的数学期望为______.【答案】 ①. ##②. 【解析】【分析】根据全概率公式求解概率,根据二项分布列的期望公式求解即可.【详解】设事件“小伟同学任意抽取一道题目作答,答对题目”,则.由题意小伟同学任意抽取一道逻辑推理题作答,则答对题目的概率为,根据二项式分布知,所以,即的数学期望为.故答案为:,14. 在中,设,,其夹角设为,平面上点满足,,交于点,则用表示为_________.若,则的最小值为_________.【答案】 ①. ②.【解析】【分析】由和三点共线,得到和,得出方程组,求得的值,得到,再由,化简得到,得出,结合基本不等式,即可求解.0x y -=C 2a =±±20%50%30%0.20.60.7X 0.5511201A =()0.20.20.50.60.30.70.55P A =⨯+⨯+⨯=0.2()5,0.2X B ~()50.21E X =⨯=X 10.551ABC ,AB a AC b ==u u u r r u u u r r θ,D E 2AD AB = 3AE AC =,BE DC O AO ,a b65AO DE DC BE ⋅=⋅ cos θ4355AO a b =+ ,,D O C ,,B O E 2(1)AO ta t b =+- ()33AO ua u b =+-2133t ut u =⎧⎨-=-⎩,t u 4355AO a b =+ 65AO DE DC BE ⋅=⋅ 2248209a b a b ⋅=+ 22209cos 48a b a bθ+=【详解】因为三点共线,则存在实数使得,又因为三点共线,则存在实数使得,可得,解得,所以,由,因为,可得,整理得,可得,所以又因为所以,当且仅当时,即时,等号成立,所以.故答案为:15. 设函数,若函数与直线有两个不同的公共点,则的取值范围是______.【答案】或或【解析】【分析】对于,当可直接去绝对值求解,当时,分和,,D O C t (1)2(1)AO t AD t AC ta t b =+-=+-,,B O E u ()()133AO u AB u AE ua u b =+-=+-2133t u t u =⎧⎨-=-⎩24,55t u ==4355AO a b =+ 32,2,3DE AE AD b a DC AC AD b a BE AE AB b a =-=-=-=-=-=- 65AO DE DC BE ⋅=⋅ 436()(32)(2)(3)555a b b a b a b a +⋅-=-⋅-2248209a b a b ⋅=+ 2248cos 209a b a b θ=+ 22209cos 48a b a bθ+=22209a b+≥ 22209cos 48a b a b θ+=≥ 22209a b = 3b cos θ4355AO a b =+ 22()21f x x ax ax =-++()y f x =y ax =a 2a <-21a -<<-2a >221y x ax =-+0∆≤0∆>a <-a >论,通过和图像交点情况来求解.详解】由已知,即,则必过点,必过,对于,当时,,此时恒成立,所以,令,即,要有两个不同的公共点,则,解得或或,当时,或当时,和图象如下:此时夹在其两零点之间的部分为,令,得无解,则有两个根有两个根,即有两个解,,符合要求;当和图象如下:【221y x ax =-+()1y ax x =-22()21f x x ax ax ax =-++=()2211x ax ax x -+=-()1y ax x =-()()0,0,1,0221y x ax =-+()0,1221y x ax =-+280a ∆=-≤a -≤≤2210x ax -+≥()222()2121f x x ax ax a x ax =-++=+-+()221a x ax ax +-+=()22210a x ax +-+=()21Δ442020a a a ⎧=-+>⎨+≠⎩2a -≤<-21a -<<-2a <≤280a ∆=->a <-a >a <-221y x ax =-+()1y ax x =-221y x ax =-+-2221x ax ax ax -+-=-+()221a x -=()2211x ax ax x -+=-()2211x ax ax x ⇔-+=-()22210a x ax +-+=()2Δ4420a a =-+>a <-a >221y x ax =-+()1y ax x =-或令,根据韦达定理可得其两根均为正数,对于①,则,解得,对于②,则,解得,综上所述,的取值范围是或或.【点睛】方法点睛:对于方程的根或者函数零点问题,可以转化为函数图象的交点个数问题,图象直观方便,对解题可以带来很大的方便.三、解答题(本大发共5小题,共75分)16. 已知中,角A ,B ,C 的对边分别为a ,b ,c ,且,.(1)求;(2)若,求的面积.【答案】(1(2【解析】【分析】(1)利用正弦定理求关系,再利用余弦定理求出,再利用两角和的正弦定理计算即可;(2)利用三角形的面积公式求解即可.【小问1详解】2210x ax -+=011⎧<<⎪⎪>3a >011⎧<<⎪⎪<3a <<a 2a <-21a -<<-2a >ABC sin cos sin 22C CB =2223a c b -=πsin 3B ⎛⎫+⎪⎝⎭1b =ABC ,,a b c cos B因为,所以,由正弦定理得,所以,即,所以,在中,,所以【小问2详解】由(1)得当时,,所以17. 已知四棱台,下底面为正方形,,,侧棱平面,且为CD 中点.(1)求证:平面;(2)求平面与平面所成角的余弦值;(3)求到平面的距离.【答案】(1)证明见详解 (2)sincos sin 22C CB =sin 2sinC B =2c b =2222223347b a b c b b +=+===a 222cos 2a cb B ac +-===ABC sin B ==π11sin sin 322B B B ⎛⎫+=== ⎪⎝⎭1b =2a c ==122ABC S =´´=1111ABCD A B C D -ABCD 2AB =111A B =1AA ⊥ABCD 12,AA E =1//A E 11BCC B 11ABC D 11BCC B E 11ABC D 15(3【解析】【分析】(1)直接使用线面平行的判定定理即可证明;(2)构造空间直角坐标系,然后分别求出两个平面的法向量,再计算两个法向量的夹角余弦值的绝对值即可;(3)使用等体积法,从两个不同的方面计算四面体的体积即可求出距离.【小问1详解】由于,,故,而,故四边形是平行四边形,所以,而在平面内,不在平面内,所以平面;【小问2详解】如上图所示,以为原点,为轴正方向,建立空间直角坐标系.则,,,,,,设平面与平面的法向量分别是和,则有和,1EAD B 11∥A B AB CE AB ∥11CEA B 1111122CE CD AB A B ====11CEA B 11A E B C ∥1B C 11BCC B 1A E 11BCC B 1//A E 11BCC B 1A 11111,,A A A D A B,,x y z ()2,0,0A ()10,1,0D ()2,0,2B ()10,0,1B ()10,1,1C ()()()()11110,0,2,2,1,0,2,0,1,0,1,0AB AD BB B C ==-=--=11ABC D 11BCC B ()1,,n p q r = ()2,,n u v w =11100n AB n AD ⎧⋅=⎪⎨⋅=⎪⎩ 212110n BB n B C ⎧⋅=⎪⎨⋅=⎪⎩即,,从而,,.故我们可取,,而,故平面与平面所成角的余弦值是.【小问3详解】设到平面的距离为,由于,而,所以.所以到平面18. 已知椭圆的左右顶点为A ,B ,上顶点与两焦点构成等边三角形,右焦点(1)求椭圆的标准方程;(2)过作斜率为的直线与椭圆交于点,过作l 的平行线与椭圆交于P ,Q 两点,与线段BM 交于点,若,求.【答案】(1)(2)【解析】【分析】(1)根据上顶点与两焦点构成等边三角形求出即可;(2)设出直线方程,利用弦长公式求出求出,,利用点到直线的距离求出点到直线的距离和点到直线的距离,再根据列式计算即可.【小问1详解】2020r p q =⎧⎨-+=⎩200u w v --=⎧⎨=⎩0r v ==2p q =20u w +=()11,2,0n = ()21,0,2n =-11cos ,5n 11ABC D 11BCC B 15E 11ABC D L 111111332E AD B AD B V LS L AD AB L -==⋅⋅⋅= 111142333E AD B B AD E AEB ABCD V V S S --==⋅⋅=⋅= 43=L =E 11ABC D 22221(0)x y a b a b +=>>(1,0)F A (0)k k >l M F N 2AMN BPQ S S =△△k 22143x y +=k =,a b AM PQ N AM B PQ 2AMN BPQ S S =△△由已知在等边三角形中可得,则椭圆的标准方程为为;【小问2详解】设直线的方程为:,联立消去得,则,得,,设直线的方程为:,设,联立,消去得,易知,则,所以,由得,所以直线的方程为,即,联立得,所以点到直线的22,a c b ====22143x y +=l ()2y k x =+()222143y k x x y ⎧=+⎪⎨+=⎪⎩y ()2222341616120k x k x k +++-=221612234M k x k --=+226834M k x k-=+226834Mk AM x k -=-=-=+PQ ()1y k x =-()()1122,,,P x y Q x y ()221143y k x x y ⎧=-⎪⎨+=⎪⎩y ()22223484120k x k x k +-+-=0∆>221212228412,3434k k x x x x k k-+==++PQ ==()2212134k k +=+226834M k x k -=+222681223434M k k y k k k ⎛⎫-=⋅+= ⎪++⎝⎭BM ()2221234268234kk y x k k +=---+()324y x k=--()()3241y x k y k x ⎧=--⎪⎨⎪=-⎩222463,4343k k N k k ⎛⎫+ ⎪++⎝⎭N AM点到直线,因为,所以,解得.【点睛】方法点睛:直线与椭圆联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可由点斜式设出直线方程.第二步:联立方程:把所设直线方程与椭圆方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根的判别式.第四步:写出根之间的关系,由根与系数的关系可写出.第五步:根据题设条件求解问题中的结论.19. 已知数列满足对任意的,均有,且,,数列为等差数列,且满足,.(1)求,的通项公式;(2)设集合,记为集合中的元素个数.①设,求的前项和;②求证:,.【答案】(1),B PQ 2AMN BPQ S S =△△()221211122234k k +=⨯+k =∆0∆>{}n a *N n ∈212n n n a a a ++=12a =24a ={}n b 11b =2105b b a +={}n a {}n b {}*1N n n k n A k a b a +=∈<≤n c n A ()2n n n p b c =+{}n p 2n 2n P *N n ∀∈122121111176n n c c c c -++++< 2n n a =32n b n =-(2)①;②证明过程见解析【解析】【分析】(1)根据等比中项的性质,结合等差数列的通项公式、等比数列的通项公式进行求解即可;(2)①根据不等式的解集特征,结合累和法、等比数列的前项和公式分类讨论求出的表达式,最后根据错位相减法进行求解即可;②运用放缩法,结合等比数列前项和公式进行运算证明即可.【小问1详解】因为数列满足对任意的,均有,所以数列是等比数列,又因为,,所以等比数列的公比为,因此;设等差数列的公差为,由;【小问2详解】因为,,所以由,因此有,即有,,当时,有于是有当为大于2的奇数时,()2122122n n P n n +=-⋅+-12322,n n k k +*<-≤∈N n n c n {}n a *N n ∈212n n n a a a ++={}n a 12a =24a ={}n a 212a a =1222n n n a -=⨯={}n b d ()210511932313132n b d d d b b n n a ⇒+++=⇒=⇒=+-=+-=2n n a =32n b n =-11,2322,nn n k n a b a k k k *+*+<≤∈⇒<-≤∈N N {}{}{}{}{}123452,3,4,5,6,7,8,9,10,11,12,13,,22A A A A A ===== {}623,24,,43,A =1234561,1,3,5,11,21,c c c c c c ======234512233445562,42,82,162,322,c c c c c c c c c c +=+==+==+==+== 12,n n n c c ++= 2,N n n *≥∈112,n n n c c --+=1112,n n n c c -+--=n ()()()243122431122221n n n n n n n c c c c c c c c -----=-+-+-+=+++++,显然也适合,当为大于2的偶数时,,显然也适合.①,,,设,则有,两式相减,得,,;②设,显然,,当时,有,因此,12214211143n n -⎛⎫- ⎪+⎝⎭=+=-11c =n ()()()244222442222221n n n n n n n c c c c c c c c -----=-+-++-+=+++++ 122214211143nn ⎛⎫- ⎪-⎝⎭=+=-21c =()()()21,21,N 221,2,Nn n n n n n n k k p b c n n k k **⎧+=-∈⎪=+=⎨-=∈⎪⎩()()212342121321242n n n n n P P P P P P P P P P P P P --=++++++=+++++++ ()()132124212132321221222424222n nn n n n -⎡⎤⎡⎤=⨯++⨯+++-⋅+-+⨯-+⨯-++⋅-⎣⎦⎣⎦()()()123212122232212221234212n n n n n n -⎡⎤=⨯+⨯+⨯++-⋅+⋅+-+-+--⎣⎦ ()()12321212223221222n n S n n -=⨯+⨯+⨯++-⋅+⋅ ()()234221212223221222nn S n n +=⨯+⨯+⨯++-⋅+⋅ 123212212222222n n n S n -+-=+++++-⋅ ()()2212121222212212n n n S n S n ++-⇒-=-⋅⇒=-⋅+-()2122122n n P n n +=-⋅+-()()11321k k k k c *+=∈+-N ()11332121k k k k c +=≤-+-()4213224k k k --⨯=-4,N k k *≥∈()()344213224042132212kk kkkk k--⨯=->⇒->⨯⇒<-()1133421221k k k k k c +=≤<-+-所以当时,,即,显然当时,有成立.【点睛】关键点点睛:本题的关键由可以确定从第几项开始放缩,根据数列的通项公式的形式,得到,这样可以进行放缩证明.20. 已知函数.(1)讨论的单调区间;(2)已知,设的两个极值点为,且存在,使得的图象与有三个公共点;①求证:;②求证:.【答案】(1)答案见解析 (2)证明见解析【解析】【分析】(1)首先求函数的导数,再讨论,结合函数的定义域,即可求函数的单调区间;(2)①要证,即证,只需证,构造函数,,借助导数即可得证;②同①中证法,先证,则可得,利用、是方程的两根所得韦达定理,结合即可得证.【小问1详解】,,N k *∈4512321111111111143222k k k c c c c c -⎛⎫+++++<++++++ ⎪⎝⎭ 43123211111111122114312k k k c c c c c --⎛⎫- ⎪⎝⎭⇒+++++<+++⨯- 312321111171171171322326k k k c c c c c --⎛⎫+++++<+-<+= ⎪⎝⎭ 2k n =122121111176n n c c c c -++++< 171111632=+++()1133421221k k k k k c +=≤<-+-2()24ln f x x ax x =-+()f x [4,6]a ∈()f x ()1212,λλλλ<b ∈R ()y f x =y b =()123123,,x x x x x x <<1212x x λ+>31x x -<∆1212x x λ+>2112x x λ>-()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈2232x x λ+<()()2312123122x x x x x x λλ=++<---1λ2λ220x ax -+=[4,6]a ∈()()222422x ax f x x a x x-+'=-+=0x >其中,,当时,即,此时恒成立,函数在区间单调递增,当时,即或当时,在区间上恒成立,即函数在区间上单调递增,当,得或当时,,时,,所以函数的单调递增区间是和,单调递减区间是,综上可知,当的单调递增区间是;当的单调递增区间是和,单调递减区间是;【小问2详解】①由(1)知,当时,函数的单调递增区间是和,单调递减区间是,、是方程的两根,有,,又的图象与有三个公共点,故,则,()22tx x ax =-+28a ∆=-0∆≤a -≤≤()0f x '≥()f x ()0,∞+0∆>a <-a >a <-()0f x ¢>()0,∞+()f x ()0,∞+a >()0t x =1x =1x =0x <<x >()0f x ¢>x <<()0f x '<()f x ⎛ ⎝⎫+∞⎪⎪⎭a ≤()f x ()0,∞+a >()f x ⎛ ⎝⎫+∞⎪⎪⎭[4,6]a ∈()f x ()10,λ()2,λ+∞()12,λλ1λ2λ220x ax -+=122λλ=12a λλ+=()y f x =y b =()123123,,x x x x x x <<112230x x x λλ<<<<<1112x λλ->要证,即证,又,且函数在上单调递减,即可证,又,即可证,令,,由,则恒成立,故在上单调递增,即,即恒成立,即得证;②由,则,令,,则,故在上单调递增,即,1212x x λ+>2112x x λ>-1112x λλ->()f x ()12,λλ()()1122f x f x λ<-()()12f x f x b ==()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈()()()()212222422x ax x x f x x a x x xλλ-+--'=-+==()()()()()112211122222x x xx x g x x λλλλλλλ------'=+-()()()()()1221112222x x x x x x x λλλλλλ+--+-=-⋅-()()222211*********x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()12221111222420x x x x x x x λλλλλλλ--=-⋅=>--()g x '()10,λ()()()()111102g x g f f λλλλ<=--=()()1112f x f x λ<-112230x x x λλ<<<<<2322x λλ-<()()()22x h x f x f λ=--()2,x λ∈+∞()()()()()122221222222x x xx x h x x λλλλλλλ------'=+-()()()()()2112222222x x x x x x x λλλλλλ+--+-=-⋅-()()221122212222222x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()22112222222420x x x x x x x λλλλλλλ--=-⋅=>--()h x '()2,λ+∞()()()()222202h x h ff λλλλ>=--=即当时,,由,故,又,故,由,,函数在上单调递减,故,即,又由①知,故,又,故.【点睛】关键点点睛:最后一问关键点在于先证,从而借助①中所得,得到.()2,x λ∈+∞()()22x f x f λ>-32x λ>()()3232f x f x λ>-()()32f x f x =()()3222f x f x λ>-2322x λλ-<122x λλ<<()f x ()12,λλ2322x x λ<-2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---2122λλ-==≤=31x x -<2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---。

天津市天津一中高三数学上学期第一次月考 文 新人教A版

天津市天津一中高三数学上学期第一次月考 文 新人教A版

天津一中2013—2014学年高三数学(文科)一月考考试试卷一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的1.设U =R ,集合{}|1,1A y y x x ==->,}{2,1,1,2B =--,则下列结论正确的是( )A .}{2,1A B =--I B . )0,()(-∞=B A C U Y C .(0,)A B =+∞U D . {}1,2)(--=B A C U I 2.函数3()=2+2xf x x -在区间(0,1)内的零点个数是( )A .0B .1C .2D .33.设11:|1|2;:()12x p x q -+<>,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.已知3sin ,sin()cos ,tan()5ββαβααβ=+=+=为锐角,且则( )A .1B .258C . 2-D . 2 5.数列{}n a 中32a =, 71a =,如果数列1{}1n a +是等差数列,那么11a =( ) A .0 B .12C .23D . 1 6.已知向量a ()sin ,cos x x =,向量b (3=,则+a b 的最大值为( ) A . 3 B .3. 1 D .97.已知{n a }是首项为1的等比数列,n S 是{n a }的前n 项和,且369S S =。

则数列n 1a ⎧⎫⎨⎬⎩⎭的前5项和为( )A.158或5 B.3116或5 C.3116 D.1588.函数()321122132f x ax ax ax a =+-++的图象经过四个象限,则实数a 的取值范围是( )A .63516a -<< B .83516a -<<- C .63516a -<<- D .81516a -<<-二、填空题:本大题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津一中2014-2015学年高三零月考考试数学(文科)试题一、 选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设i 为虚数单位,则51ii-+等于( ) A.-2-3i B.-2+3i C.2-3i D2+3i2.设变量x,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+的最小值为( )A.6B.7C.8D.23 3.函数sin 22y x π⎛⎫=-⎪⎝⎭,x R ∈是( ) A.最小正周期为π的奇函数 B. 最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D. 最小正周期为2π的偶函数4.阅读右面的程序框图,则输出的S=( ) A.14 B.30 C.20 D.555.已知()f x 是定义在(),-∞+∞上的偶函数,且在(],0-∞上是增函数,设()()0.6412log 7,log 3,0.2a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是( )A.c<b<aB.b<c<aC.b<a<cD.a<b<c 6.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )547.函数()244,143,1x x f x x x x -≤⎧=⎨-+>⎩的图像和函数()2log g x x =的图像的交点个数是( )A.1B.2C.3D.48.定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)()[)21.5,0,10.5,x 1,2x x x x f x -⎧-∈⎪=⎨-∈⎪⎩,若[)4,2x ∈--时,()142t f x t ≥-恒成立,则实数t 的取值范围是( )A. [)()2,00,1-B. [)[)2,01,-+∞C. []2,1-D. (](],20,1-∞-二、填空题:(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)9.如左下图所示,是某校高三年级文科60名同学参加谋科考试所得成绩(分数均为整数)整理后得出的频率分布直方图,根据该图这次考试文科60分以上的同学的人数为 .10.某几何体的三视图如图所示,则该几何体的体积为 .11.在ABC ∆中,AB=2,AC=3,D 是边BC 的中点,则AD BC ⋅= . 12.已知圆C 的圆心与抛物线24y x =的焦点关于直线y=x 对称,直线4x-3y-2=0与圆C 相交于A,B 两点,且6AB =,则圆C 的标准方程为: .13.如图,PC 切圆O 于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E. 已知圆O 的半径为3,PA=2,则CD= .14.函数()10,1xy aa a -=>≠的图像恒过定点A ,若点A 在直线mx+ny-1=0(mn>0)上,则11m n+的最小值为 .二、解答题:(本大题共6小题,共80分。

解答应写出文字说明、证明过程或演算步骤. 15.(本小题13分)对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统计数据如下:(Ⅰ)求该校教师在教学中不经常使用信息技术实施教学的概率.(Ⅱ)在教龄10年以下,且经常使用信息技术教学的教师中任选2人,其中恰有一人教龄在5年以下的概率是多少?16.(本小题13分)在ABC ∆中,内角A,B,C 的对边分别为a,b,c ,已知. (Ⅰ)求cos A 得值. (Ⅱ)求cos 24A π⎛⎫+ ⎪⎝⎭的值.17. (本小题13分)已知在四棱锥P-ABCD 中,AD//BC, ,AD CD ⊥PA=PD=AD=2BC=2CD,E,F 分别为AD,PC 的中点. (Ⅰ)求证AD ⊥平面PBE; (Ⅱ)求证PA//平面BEF; (Ⅲ)若PB=AD,求二面角F-BE-C 的大小.18. (本小题13分)设数列{}n a 的前n 项和为22n S n =,{}n b 为等比数列,且()112211,a b b a a b =-=. (1) 求数列{}n a 和{}n b 的通项公式;(2)设nn na cb =,求数列{}nc 的前n 项和n T 。

19. (本小题14分)已知椭圆C 的中心在原点,焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离(Ⅰ)求椭圆C 的方程; (Ⅱ)过椭圆C 的右焦点F 作直线l 交椭圆C 于A ,B 两点,交y 轴于M 点,若12,MA AF MB BF λλ==, 求证12λλ+为定值.20. (本小题14分)已知函数()3292f x ax bx x =-++,若()f x 在x=1处的切线方程是3x+y-6=0 (Ⅰ)求函数()f x 的解析式;(Ⅱ)若对任意的1,24x ⎡⎤∈⎢⎥⎣⎦,都有()221f x t t ≥--成立,求函数()22g t t t =+-的最值.15.(Ⅰ)2333;(Ⅱ)815 解析:(Ⅰ)该校教师总人数为66人,其中经常使用信息技术教学的教师有20人,不经常使用信息技术实施教学的有46人,所以该校教师在教学中不经常使用信息技术实施教学的概率46236633p ==;(Ⅱ)在教龄10年以下的教师中,教龄在5年以下的有2人分别记为1,2A A ;教龄5年至10年的有4人分别记为1234,,,B B B B , 从这6人中任选2人的情况有:()()()12111213(A ),A ,A ,A ,A B B B ()14A B ,()()()()()2122232412,,,,A B A B A B A B B B , ()()()()()1314232434,,,,B B B B B B B B B B 共15种.其中恰有一人教龄在5年以下的有8种,所以在教龄10年以下,且经常使用信息技术教学的教师中任选2人,其中恰有一人教龄在5年以下的概率是:815.16.(Ⅰ)13;(Ⅱ)818+-. 解析:(Ⅰ)因为B=C ,所以b=c ,又因为2b =,所以cosA=2222123b c a bc +-==; (Ⅱ)由(Ⅰ)知cosA=13,所以,所以cos2A=79-, 所以cos (2A+4π)=. 17. 解析:(Ⅰ)证明:因为PA=PD=AD ,E 为AD 中点,所以AD PE ⊥,又AD//BC, ,AD CD ⊥得AD BE ⊥,因为PE,BE 都在平面PBE 内,且PE BE E =,所以AD ⊥平面PBE;(Ⅱ)证明:连接AC 交BE 于点G ,连接FG,因为BC 平行且等于AE ,所以G 为BE 中点,又F 为PC 中点,所以PA FG , 因为PA ⊄平面BEF ,FG ⊂平面BEF, 所以PA//平面BEF; (Ⅲ)取CD 中点H,连接GH,FH,FG BE GH BE ⊥⊥,FGH ∴∠即为所求二面角的平面角, ,GH ED GF AP ,而60PAD ∠=,∴60FGH PAD ∠=∠=.18.(1)1242,4n n n a n b -=-=;(2)()65459n n -⋅+. 解析:(1)212,2,n s n a =∴=()22222142n n n n n ≥=--=-时,a ,又14122a =⨯-=,*42,n a n n N ∴=-∈.()112211,,b a b a a b =-1212,2b b ∴==,又{}n b 为等比数列,∴公比q=14,111112244n n n n b b q ---⎛⎫∴===⎪⎝⎭. (2)由(1)得()114221424n n n n c n ---==-⋅, 则()()01221143454234214n n n T n n --=⋅+⋅+⋅++-⋅+-⋅,从而()()12314143454234214n n n T n n -=⋅+⋅+⋅++-⋅+-⋅.所以:()1231131244442142n n n T n -⎡⎤-=+++++--⋅⎢⎥⎣⎦()()1414112214142n nn -⎡⎤-⎢⎥=+---⎢⎥⎣⎦()()8246346545133n n n n n -⋅+----=-= 所以:n T =()65459n n -⋅+.19. (Ⅰ)2215x y +=;(Ⅱ)略. 解析:(Ⅰ)根据题意得:15b c e a =⎧⎪⎨==⎪⎩, 解得225,1a b ==,所以椭圆C 的方程为:2215x y +=. (Ⅱ)椭圆C 的右焦点F(2,0),根据题意可设l :()2y k x =-,则M(0,-2k),令()()1122,,,A x y B x y ,由22(2)15y k x x y =-⎧⎪⎨+=⎪⎩得:()222251202050k x k x k +-+-= 所以21222122201520515k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩且0∆>,由12,MA AF MB BF λλ==得()()11111,22,,x y k x y λ+=--()()22222,22,,x y k x y λ+=--所以121212,22x xx x λλ==--,所以()()1212121212221042x x x x x x x x λλ+-+==--++ 20.(Ⅰ)()3241292f x x x x =-++;(Ⅱ)12t =-时有最小值94-,3t =时有最大值10. 解析:(Ⅰ)()2329f x ax bx '=-+,根据题意得()()1313f f =⎧⎪⎨'=-⎪⎩即9233293a b a b -++=⎧⎨-+=-⎩,解得412a b =⎧⎨=⎩,所以()3241292f x x x x =-++.(Ⅱ)由(Ⅰ)得()212249,f x x x '=-+解()0f x '=得1213,22x x == 列表得:所以()2min 221f x t t =≥--,解得13t -≤≤, 所以函数()22g t t t =+-在13t -≤≤上,当12t =-时有最小值94-,当3t =时有最大值10.。

相关文档
最新文档