2020年浙江省杭州市文澜中学 4月中考数学模拟试卷

合集下载

杭州2020中考数学综合模拟测试卷(含答案及解析)

杭州2020中考数学综合模拟测试卷(含答案及解析)

2020杭州市各类高中招生模拟考试数学试题(含答案全解全析)(满分:120分时间:100分钟)第Ⅰ卷(选择题,共30分)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.下列“表情图”中,属于轴对称图形的是()2.下列计算正确的是()A.m3+m2=m5B.m3·m2=m6C.(1-m)(1+m)=m2-1D.--=-3.在▱ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C4.若a+b=3,a-b=7,则ab=()A.-10B.-40C.10D.405.根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长6.如图,设k=甲图中阴影部分面积(a>b>0),则有()乙图中阴影部分面积A.k>2B.1<k<2C.<k<1D.0<k<7.在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径8.如图是某几何体的三视图,则该几何体的体积是()A.18B.54C.108D.2169.在Rt△ABC中,∠C=90°,若AB=4,sin A=,则斜边上的高等于()A. B.C. D.10.给出下列命题及函数y=x,y=x2和y=的图象.①如果>a>a2,那么0<a<1;②如果a2>a>,那么a>1;③如果>a2>a,那么-1<a<0;④如果a2>>a,那么a<-1.则()的命题是②③④A.正确的命题是①④B.错误..的命题只有③C.正确的命题是①②D.错误..第Ⅱ卷(非选择题,共90分)二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.32×3.14+3×(-9.42)=.12.把7的平方根和立方根按从小到大的顺序排列为.13.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A= ;④tan B=,其中正确的结论是(只需填上正确结论的序号).14.杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数分别为,,则-=分.杭州市某4所高中最低录取分数线统计表15.四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3.把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1-S2|=(平方单位).16.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上).请写出t可以取的一切值(单位:秒).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.18.(本小题满分8分)当x满足条件-时,求出方程x2-2x-4=0的根.--19.(本小题满分8分)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.20.(本小题满分10分)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.21.(本小题满分10分)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除张.卡片.序号不同外其他均相同)打乱顺序重新排列,从中任意抽取....1.(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.22.(本小题满分12分)(1)先求解下列两题:(i)如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;图①(ii)如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数y=(x>0)的图象经过点B,D,求k的值;图②(2)解题后,你发现以上两小题有什么共同点?请简单地写出.23.(本小题满分12分)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,y=.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.答案全解全析:1.D 由轴对称图形的性质可知选D.2.D 因为m2与m2不是同类项,不能合并,m3·m2=m5,(1-m)(1+m)=1-m2,--=-=-,故选D.3.B 因为▱ABCD中,AD平行于BC,所以∠A+∠B=180°,故选B.4.A 由a+b=3,a-b=7可解得a=5,b=-2,所以ab=-10.5.D 由题图得,A:2010年到2011年的GDP增长略大于1 000亿元,但2011年到2012年的GDP增长小于1 000亿元,故两次增长率必不相同.B:2012年的GDP小于8 000亿元,而2008年的GDP大于4 000亿元,所以没有翻一番.C:2010年的GDP接近6 000亿元,很显然超过5 500亿元.评析此题只要完全读一遍,就能得到正确的答案,并不需要逐个计算.6.B 由题意可知k=--=--==1+,因为a>b>0,所以0<<1,则1<k<2,故选B.7.C 因为A、B、D都可以画出反例,如下图,而C可以找到满足条件的图形,故选C. A:如图,则A不正确;B:如图,则B不正确;C:如图,则C正确;D:如图,则D不正确.8.C 由三视图可知该几何体是一个直六棱柱,体积=底面积×高=6××62×2=108,故选C.9.B 由sin A=,AB=4,可得sin B=,BC=,如图,过点C作AB的垂线交AB于点D,则根据sin B==,BC=,可得CD=,故选B.10.A 由题中图象可知③错误,满足②的还有-1<a<0,①,④正确.故选A.评析此题是数形结合的题目,求出交点坐标,再用平行于y轴的直线去寻找答案会很方便,要注意的是不要丢解.11.答案0解析32×3.14+3× -9.42 =9× 3.14-3.14)=0.12.答案-<<解析7的平方根有正负,需注意.13.答案②③④解析因为∠C=90°,AB=2BC,则该直角三角形是含30°角的直角三角形,则BC∶AB∶AC=1∶2∶,令BC=1,AB=2,AC=,作出图形.①sin A==,②cos B==,③tan A==,④tan B==,则答案为②③④.14.答案 4.75解析-=440.5-435.75=4.75(分).15.答案4π解析由题意可知,S1与S2的差即为以AB为轴旋转图形的侧面积与以CD为轴旋转图形的侧面积的差,所以|S1-S2|=(AB-CD ·2π·BC=4π.评析此题虽然是中等难度的题目,但是学生找不好方法会使计算繁琐.分析出AD和BC这两条线段两次旋转一周后所形成的面积是不变的,问题就比较好解决.16.答案 t=2或3≤t≤7或t=8解析因为该圆的半径为,圆心P从Q点开始运动时会与圆3次相切,而AM=MB,AC∥QN,所以MN为正三角形ABC的中位线,MN=2.(1)当圆与正三角形AB边相切时,如图1,则PD=,易得DM=1,PM=2,QP=2,则t=2.图1(2)当圆与正三角形AC边相切时,如图2,事实上圆的半径刚好等于AC与射线QN之间的距离,所以AP=,则PM=1,QP=3,同理,NP=1,QP=7,而在此期间圆始终与AC边相切,所以3≤t≤7.图2(3)当圆与正三角形BC边相切时,如图3,则PD=,易得DN=1,PN=2,则QP=8,则t=8.图3三、全面答一答17.解析作图如图.点Q即为所求作的点.发现:AQ⊥DQ △AQD是等腰直角三角形等).18.解析原不等式组可化为, .得2<x<4.由方程x2-2x-4=0,解得x1=1+,x2=1-.因为2=<<=3,所以3<x1<4,-2<x2<-1.所以,所求的根为x=1+.19.证明因为四边形ABCD是等腰梯形,AB∥DC,所以AD=BC,∠ADE=∠BCF,又因为DE=CF,所以△ADE≌△BCF,所以∠AED=∠BFC,又因为AB∥DC,所以∠AED=∠GAB,∠BFC=∠GBA,所以∠GAB=∠GBA,所以AG=BG,即△GAB是等腰三角形.20.解析分两种情况:(1)当点C在y轴正半轴时,n=c=8,则y2=x+8.令y2=0,得x=-6;令x=0,得y2=8.所以A(-6,0),C(0,8).因为抛物线在x轴上截得的线段AB长为16,点A与点B在原点两侧,所以点B的坐标为(10,0).设y1=a(x+6)(x-10),把C(0,8)代入得a=-,得y1=-x2+x+8.对称轴方程x=-=-=2.-因为函数y1随着x的增大而减小,所以所求自变量的取值范围是x>2.(2)当点C在y轴负半轴时,因为此时函数图象即为情况(1)的函数图象绕原点旋转180°,所以所求自变量的取值范围是x<-2.21.解析(1)因为是20的倍数或能整除20的序号共有2+5=7个,序号共有50个, 所以,所求的概率为P=.(2)不公平.如:序号为2的同学能参加活动的概率是=,而序号为47的同学能参加活动的概率是=≠,因为某些同学能参加活动的概率不相等,所以这一规定不公平.(3)开放题:如规定:把50位同学的卡片分成五组.第一组序号1至10,第二组序号11到20,第三组序号21到30,第四组序号31到40,第五组序号41到50,若抽出序号属于哪组,则哪组学生参加活动.在这一规定下,每位同学能参加活动的概率都是.即能公平地选出10位学生参加某项活动.又如规定:抽到的序号被5除,得五种可能,分别是余数为0,1,2,3,4,若抽到的序号被5除,余数为r(r=0,1,2,3,4),则序号被5除,余数为r的同学均参加活动.在这一规定下,每位同学能参加活动的概率都是.即能公平地选出10位学生参加某项活动.22.解析(1)(i)设∠A=x,因为AB=BC,所以∠BCA=x,所以∠CBD=2x.因为BC=CD,所以∠CDB=2x,所以∠ECD=2x+x=3x.因为CD=DE,所以∠CED=3x,所以∠EDM=3x+x=84°,所以x=21°,即∠A=21°.(ii)因为点B的横坐标是3,点D的横坐标是1,点B,D在双曲线y=上,所以设点B,D的坐标分别是B,,D(1,k).因为点C的横坐标是3,AC∥x轴,点D在AC上,所以点C的坐标是(3,k), 因为BC=2,所以k-=2,解得k=3.(2)两题都是求一个未知数(转化为解一元一次方程).23.解析(1)证明:因为∠EPF=45°,点P在AC上,所以∠APE+45°+∠CPF=180°.因为四边形ABCD是正方形,所以∠ACB=45°,所以∠CPF+45°+∠CFP=180°,所以∠APE=∠CFP.2 ①在△APE与△CFP中,∠PAE=∠PCF,∠APE=∠CFP,所以△APE∽△CFP,所以=,得AE=.因为点F,E分别在线段BC,AB上,∠EPF=45°,所以2≤x≤4,所以S△APE=×2·=,S△CFP=×2·x=x,S四边形PEBF=S△ABC--x=8--x 2≤x≤4 ,因为两块阴影部分图形关于直线AC成轴对称,所以S1=2S四边形PEBF,S2=2S△CFP,所以y==--=-8--1=-8-+1 2≤x≤4 ,所以x=2时,y取最大值1.②当两块阴影部分图形关于点P成中心对称时,BE=BF,所以AE=CF,所以=x,解得x=2(负值舍去)经检验,x=2是分式方程的解, 此时y=-+-1=-+-1=-1+2-1=2-2.。

浙江省杭州2020年中考模拟试卷数学试题(含答案)

浙江省杭州2020年中考模拟试卷数学试题(含答案)

2020年浙江杭州中考模拟试卷数学考试题号一二三总分评分1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。

浙江省杭州市2019-2020学年中考数学四模考试卷含解析

浙江省杭州市2019-2020学年中考数学四模考试卷含解析

浙江省杭州市2019-2020学年中考数学四模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形2.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A.本市明天将有85%的地区下雨B.本市明天将有85%的时间下雨C.本市明天下雨的可能性比较大D.本市明天肯定下雨3.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②244b aca->;③ac-b+1=0;④OA·OB=ca-.其中正确结论的个数是()A.4 B.3 C.2 D.1 4.下列所给函数中,y随x的增大而减小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C.2yx=D.y=x+15.点A(-2,5)关于原点对称的点的坐标是( )A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有( )A.2个B.3个C.4个D.5个7.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C .–999×(52+49+1)=–999×102=–101898 D .–999×(52+49–99)=–999×2=–1998 8.在△ABC 中,∠C =90°,AC =9,sinB =35,则AB =( ) A .15 B .12C .9D .6 9.如图,半径为1的圆O 1与半径为3的圆O 2相内切,如果半径为2的圆与圆O 1和圆O 2都相切,那么这样的圆的个数是 ( )A .1B .2C .3D .4 10.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )A .4π-B .πC .12π+D .π154+ 12.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( ) A .无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.在△ABC 中,若∠A ,∠B 满足|cosA -12|+(sinB -22)2=0,则∠C =_________. 14.如图,半径为3的⊙O 与Rt △AOB 的斜边AB 切于点D ,交OB 于点C ,连接CD 交直线OA 于点E ,若∠B=30°,则线段AE 的长为 .15.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC=30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ=OQ ,则满足条件的∠OCP 的大小为_______.16.关于x 的一元二次方程24410x ax a +++=有两个相等的实数根,则581a a a --的值等于_____. 17.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts ,当t =__________时,△CPQ 与△CBA 相似.18.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)抛物线y=﹣x 2+(m ﹣1)x+m 与y 轴交于(0,3)点.(1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标;(3)x 取什么值时,抛物线在x 轴上方?(4)x 取什么值时,y 的值随x 值的增大而减小?20.(6分)如图,在一个平台远处有一座古塔,小明在平台底部的点C 处测得古塔顶部B 的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)21.(6分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.22.(8分)如图,已知△ABC中,AB=AC=5,cosA=35.求底边BC的长.23.(8分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC n的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.24.(10分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)25.(10分)列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?26.(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?27.(12分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO 的延长线交于点E,连接EC,CD.(1)试判断AB与⊙O的位置关系,并加以证明;(2)若tanE=12,⊙O的半径为3,求OA的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质2.C【解析】试题解析:根据概率表示某事情发生的可能性的大小,分析可得:A、明天降水的可能性为85%,并不是有85%的地区降水,错误;B、本市明天将有85%的时间降水,错误;C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确;D、明天肯定下雨,错误.故选C.考点:概率的意义.3.B【解析】试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x 1•x 2=,∴OA•OB=﹣,所以④正确.故选B .考点:二次函数图象与系数的关系.4.A【解析】【分析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y 随x 的增大而减小的选项.【详解】解:A .此函数为一次函数,y 随x 的增大而减小,正确;B .此函数为二次函数,当x <0时,y 随x 的增大而减小,错误;C .此函数为反比例函数,在每个象限,y 随x 的增大而减小,错误;D .此函数为一次函数,y 随x 的增大而增大,错误.故选A .【点睛】本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键. 5.B【解析】【分析】根据平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ).【详解】根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2, −5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ).6.B【解析】【分析】①观察图象可知a <0,b >0,c >0,由此即可判定①;②当x=﹣1时,y=a ﹣b+c 由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c >0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣2b a =1,可得a=﹣2b ,代入y=9a+3b+c <0即可判定④;⑤当x=1时,y 的值最大.此时,y=a+b+c ,当x=n 时,y=an 2+bn+c ,由此即可判定⑤.【详解】①由图象可知:a <0,b >0,c >0,abc <0,故此选项错误;②当x=﹣1时,y=a ﹣b+c <0,即b >a+c ,故此选项错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c >0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c <0,且x=﹣2b a =1即a=﹣2b ,代入得9(﹣2b )+3b+c <0,得2c <3b ,故此选项正确;⑤当x=1时,y 的值最大.此时,y=a+b+c ,而当x=n 时,y=an 2+bn+c ,所以a+b+c >an 2+bn+c ,故a+b >an 2+bn ,即a+b >n (an+b ),故此选项正确.∴③④⑤正确.故选B .【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.7.B【解析】【分析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1. 故选B .【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.A【解析】【分析】根据三角函数的定义直接求解.【详解】在Rt △ABC 中,∠C =90°,AC =9, ∵sin AC B AB =, ∴935AB =, 解得AB =1.故选A9.C【解析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数. 详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.10.C【解析】【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形11.C【解析】【分析】这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积.【详解】 解:如图:∵正方形的面积是:4×4=16;扇形BAO 的面积是:229013603604n r πππ⨯⨯==,∴则这张圆形纸片“不能接触到的部分”的面积是4×1-4×4π=4-π, ∴这张圆形纸片“能接触到的部分”的面积是16-(4-π)=12+π, 故选C . 【点睛】本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键. 12.A 【解析】 【分析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可. 【详解】方程整理为22x 7mx 3m 370+++=, △()()22249m 43m 3737m 4=-+=-, ∵0m 2<<, ∴2m 40-<, ∴△0<,∴方程没有实数根, 故选A . 【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.75° 【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-12|+(sinB-22)2=0,∴cosA=12,sinB=2,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB 的值,另外要求我们熟练掌握一些特殊角的三角函数值.14.【解析】【分析】要求AE的长,只要求出OA和OE的长即可,要求OA的长可以根据∠B=30°和OB的长求得,OE可以根据∠OCE和OC的长求得.【详解】解:连接OD,如图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【点晴】切线的性质15.40°【解析】:在△QOC 中,OC=OQ , ∴∠OQC=∠OCQ , 在△OPQ 中,QP=QO , ∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°, ∴3∠OCP=120°, ∴∠OCP=40° 16.3- 【解析】分析:先根据根的判别式得到a-1=1a,把原式变形为23357a a a a +++--,然后代入即可得出结果. 详解:由题意得:△=2(4)44(1)0a a -⨯+= ,∴210a a --= ,∴221,1a a a a =+-=,即a(a-1)=1,∴a-1=1a, 5562232888()811a a a a a a a a a a--∴==-=-- 33232(1)8(1)33188357a a a a a a a a a =+-+=+++--=+-- (1)3(1)57a a a a =+++-- 24a a =--143=-=-故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac :当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义. 17.4.8或6411【解析】 【分析】根据题意可分两种情况,①当CP 和CB 是对应边时,△CPQ ∽△CBA 与②CP 和CA 是对应边时,△CPQ ∽△CAB ,根据相似三角形的性质分别求出时间t 即可. 【详解】①CP 和CB 是对应边时,△CPQ ∽△CBA , 所以CP CB =CQCA,即16216t-=12t,解得t =4.8;②CP 和CA是对应边时,△CPQ ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.18.>【解析】分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y 随着x的增大而减小,得出答案即可.详解:抛物线y=﹣x2+2x的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1);(2),;(1);(2)【解析】试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:X ﹣10 1 2 1y 0 1 2 1 0 图象如下.(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.∴抛物线与x轴的交点为(﹣1,0),(1,0).∵y=﹣x2+2x+1=﹣(x﹣1)2+2∴抛物线顶点坐标为(1,2).(1)由图象可知:当﹣1<x<1时,抛物线在x轴上方.(2)由图象可知:当x>1时,y的值随x值的增大而减小考点: 二次函数的运用20.古塔AB的高为(103+2)米.【解析】试题分析:延长EF交AB于点G.利用AB表示出EG,AC.让EG-AC=1即可求得AB长.试题解析:如图,延长EF交AB于点G.设AB=x米,则BG=AB﹣2=(x﹣2)米.则EG=(AB﹣2)÷tan∠3x﹣2),CA=AB÷tan∠ACB=33x.则CD=EG﹣3x﹣2)﹣33x=1.解可得:3.答:古塔AB的高为(3+2)米.21.(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;【解析】【分析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图. 【详解】(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,所以,人数最多的年龄段是11~30岁;(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,补全统计图如图.【点睛】本题考点:条形统计图与扇形统计图.22.25【解析】【分析】过点B作BD⊥AC,在△ABD中由cosA=35可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.【详解】解:过点B作BD⊥AC,垂足为点D,在Rt △ABD 中,cos ADA AB=, ∵3cos 5A =,AB=5, ∴AD=AB·cosA=5×35=3,∴BD=4, ∵AC=5, ∴DC=2,∴BC=【点睛】本题考查了锐角的三角函数和勾股定理的运用.23.(1)1502AOD α∠=︒-;(2)AD =(3 【解析】 【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解. 【详解】(1)如图1:连接OB 、OC. ∵BC=AO ∴OB=OC=BC ∴△OBC 是等边三角形 ∴∠BOC=60° ∵点D 是BC 的中点 ∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB 、OC 、OD.由(1)可得:△OBC 是等边三角形,∠BOD=1302BOC ∠=︒ ∵OB=2,∴OD=OB∙cos 30︒=3 ∵B 为AC u u u r的中点, ∴∠AOB=∠BOC=60° ∴∠AOD=90° 根据勾股定理得:AD=227AO OD +=(3)①如图3.圆O 与圆D 相内切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:3D 的半径为1 ∴31 设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+-解得:331x 4+=∴AE=3312AF 2+=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:3D 的半径为1 ∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x -=∴AE=3312AF 2=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.24.33+3.5【解析】【分析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=43•tan37°可得答案.【详解】如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠1333,∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos∠DCF=4×323∴333,过点E作EG⊥AB于点G,则GE=BF=43,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=43•tan37°,则AB=AG+BG=43•tan37°+3.5=33+3.5,故旗杆AB的高度为(33+3.5)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题25.15千米.【解析】【分析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.【详解】:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:10 x =4×1045x解得:x=15,经检验x=15是原方程的解且符合实际意义.答:小张用骑公共自行车方式上班平均每小时行驶15千米.26.(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.27.(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.【解析】【分析】(1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;(2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.【详解】解:(1)AB与⊙O的位置关系是相切,证明:如图,连接OC.∵OA=OB,C为AB的中点,∴OC⊥AB.∴AB是⊙O的切线;(2)∵ED是直径,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴BC BD CD BE BC EC==.∴BC2=BD•B E.∵1 tan2E∠=,∴12 CDEC=.∴12 BD CDBC EC==.设BD=x,则BC=2x.又BC2=BD•BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【点睛】本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

2020-2021浙江省文澜中学初三数学上期中模拟试题(带答案)

2020-2021浙江省文澜中学初三数学上期中模拟试题(带答案)

2020-2021浙江省文澜中学初三数学上期中模拟试题(带答案)一、选择题1.方程x 2+x-12=0的两个根为( )A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=32.下列事件中,属于必然事件的是( )A .随时打开电视机,正在播新闻B .优秀射击运动员射击一次,命中靶心C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形3.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( )A .100°B .120°C .130°D .150°4.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2) 5.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .4 6.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )A .(x+3)2=1B .(x ﹣3)2=1C .(x+3)2=19D .(x ﹣3)2=19 7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠3 8.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120°9.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=2110.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0)11.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =12.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 二、填空题13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.已知、是方程的两个根,则代数式的值为______.15.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.16.如图,AD 为ABC 的外接圆O 的直径,如果50BAD ∠=︒,那么ACB =∠__________.17.已知一个直角三角形的两条直角边长分别为3cm 和4cm ,则这个直角三角形的内切圆的半径为 cm18.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________. 19.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.20.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为 米.三、解答题21.如图,在等腰ABC ∆中,AB AC =,以AC 为直径作O 交BC 于点D ,过点D 作DE AB ⊥,垂足为E .(1)求证:DE 是O 的切线. (2)若3DE =,30C ∠=︒,求AD 的长. 22.如图,已知AB 为⊙O 的直径,点E 在⊙O 上,∠EAB 的平分线交⊙O 于点C ,过点C 作AE 的垂线,垂足为D ,直线DC 与AB 的延长线交于点P .(1)判断直线PC 与⊙O 的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求线段AE 的长. 23.某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y 件)与销售单价x (元)之间的函数关系式;(2)求出销售该品牌童装获得的利润W (元)与销售单价x 元)之间的函数关系式; (3)若装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?24.为响应市政府关于“垃圾不落地⋅市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为“A:非常了解;B :比较了解;C :了解较少;D :不了解.”四种,并将调查结果绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有______名;()3已知“非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.25.已知二次函数243y x x =-+.(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象. (2)若1122(,),(,)A x y B x y 是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y 、的大小关系(直接写出结果).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:将x 2+x ﹣12分解因式成(x+4)(x ﹣3),解x+4=0或x ﹣3=0即可得出结论. x 2+x ﹣12=(x+4)(x ﹣3)=0, 则x+4=0,或x ﹣3=0, 解得:x 1=﹣4,x 2=3.考点:解一元二次方程-因式分解法2.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A .是随机事件,故A 不符合题意;B .是随机事件,故B 不符合题意;C .是随机事件,故C 不符合题意;D .是必然事件,故D 符合题意.故选D .点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.3.C解析:C【解析】【分析】根据圆周角定理求出∠AOD即可解决问题.【详解】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,4.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.【详解】∵A(32,0),B(0,2),∴OA=32,OB=2,∴Rt△AOB中,AB52 =,∴OA+AB1+B1C2=32+2+52=6,∴B2的横坐标为:6,且B2C2=2,即B2(6,2),∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=6054,点B2018的纵坐标为:2,即B2018的坐标是(6054,2).故选D.【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.5.B解析:B【解析】【分析】【详解】∵抛物线与y轴交于正半轴,∴c>0,①正确;∵对称轴为直线x=﹣1,∴x <﹣1时,y 随x 的增大而增大,∴y 1>y 2②错误;∵对称轴为直线x=﹣1, ∴﹣2b a=﹣1, 则2a ﹣b=0,③正确;∵抛物线的顶点在x 轴的上方, ∴244ac b a->0,④错误; 故选B.6.D解析:D【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:2610x x -=,配方得:26919x x -+=,即2(3)19x -=,故选D . 7.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点. 8.C解析:C【解析】【分析】首先连接OA ,OB ,由⊙O 是正方形ABCD 的外接圆,即可求得∠AOB 的度数,又由圆周角定理,即可求得∠APB 的度数.【详解】连接OA ,OB ,∵⊙O 是正方形ABCD 的外接圆,∴∠AOB=90°,若点P在优弧ADB上,则∠APB=12∠AOB=45°;若点P在劣弧AB上,则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C.9.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x2-8x=5,∴x2-8x+16=5+16,即(x-4)2=21,故选D.【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.10.B解析:B【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).11.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A、∵方程M有两个不相等的实数根,∴△=b2−4ac>0,∵方程N的△=b2−4ac>0,∴方程N也有两个不相等的实数根,故不符合题意;B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,∴110 164c b a++=,∴即14是方程N的一个根,故不符合题意;C、∵方程M有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.12.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x++=,289x x+=-,2228494x x++=-+,所以()247x+=,【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.二、填空题13.20【解析】【分析】本题可设这两年平均每年的增长率为x因为经过两年时间让市区绿地面积增加44则有(1+x)2=1+44解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x根据题意得(1解析:20%【解析】【分析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5整理解析:【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.【详解】∵a,b是方程x2-x-3=0的两个根,∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5=2a2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.15.【解析】【分析】先根据∠AOC的度数和∠BOC的度数可得∠AOB的度数再根据△AOD中AO=DO可得∠A的度数进而得出△ABO中∠B的度数可得∠C的度数【详解】解:∵∠AOC的度数为105°由旋转可解析:45【解析】【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=12(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.16.40°【解析】【分析】连接BD如图根据圆周角定理得到∠ABD=90°则利用互余计算出∠D=40°然后再利用圆周角定理得到∠ACB的度数【详解】连接BD 如图∵AD为△ABC的外接圆⊙O的直径∴∠ABD解析:40°.【解析】【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=40°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-50°=40°,∴∠ACB=∠D=40°.故答案为40°.【点睛】本题考查了圆周角定理.熟练掌握并运用圆周角定理是解决本题的关键.17.1【解析】通过勾股定理计算出斜边的长得到三角形的外接圆半径;再利用内切圆半径等于两直角边的和与斜边的差的一半计算出内切圆半径最后求它们的差解:因为斜边==5内切圆半径r==1;所以r=1故填1会利用解析:1【解析】通过勾股定理计算出斜边的长,得到三角形的外接圆半径;再利用内切圆半径等于两直角边的和与斜边的差的一半,计算出内切圆半径,最后求它们的差.解:因为斜边==5,内切圆半径r==1;所以r=1.故填1.会利用勾股定理进行计算.其内切圆半径等于两直角边的和与斜边的差的一半.18.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故解析:1 8【解析】【分析】根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0,整理得:1-8m=0,解得:m=18,故答案为:18.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.2【解析】【分析】设ABBCAC与⊙O的切点分别为DFE;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB)由此可求出r的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.【详解】解:如图;在Rt△ABC,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AE,BD=BF,CE=CF;∴CE=CF=(AC+BC-AB);即:r=(5+12-13)=2.故答案为2.20.【解析】试题分析:设小道进出口的宽度为x米依题意得(30-2x)(20-x)=532整理得x2-35x+34=0解得x1=1x2=34∵34>30(不合题意舍去)∴x=1答:小道进出口的宽度应为1米解析:【解析】试题分析:设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,整理,得x2-35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.考点:一元二次方程的应用.三、解答题21.(1)见解析;(2)AD2 3π=【解析】【分析】(1)连结OD,根据等腰三角形性质和等量代换得1B∠=∠,由垂直定义和三角形内角和定理得290B ∠+∠=︒,等量代换得2190∠+∠=︒,由平角定义得90DOE ∠=︒,从而可得证.(2)连结AD ,由圆周角定理得90ADC ∠=︒,根据等腰三角形性质和三角形外角性质可得60AOD ∠=︒,在Rt DEB ∆中,由直角三角形性质得23BD CD ==,在Rt ADC ∆中,由直角三角形性质得2OA OC ==,再由弧长公式计算即可求得答案.【详解】(1)证明:如图,连结OD .∵OC OD =,AB AC =,∴1C ∠=∠,C B ∠=∠,∴1B ∠=∠,∴DE AB ⊥,∴290B ∠+∠=︒,∴2190∠+∠=︒,∴90ODE ∠=︒,∴DE 为O 的切线.(2)解:连结AD ,∵AC 为O 的直径. ∴90ADC ∠=︒.∵AB AC =,∴30B C ∠=∠=︒,BD CD =,∴60AOD ∠=︒.∵3DE =∴3BD CD ==∴2OC =,∴60221803AD ππ=⨯= 【点睛】 本题考查切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.(1)PC 是⊙O 的切线;(2)92【解析】试题分析:(1)结论:PC 是⊙O 的切线.只要证明OC ∥AD ,推出∠OCP =∠D =90°,即可.(2)由OC∥AD,推出OC OPAD AP=,即10610r r-=,解得r=154,由BE∥PD,AE=AB•sin∠ABE=AB•sin∠P,由此计算即可.试题解析:解:(1)结论:PC是⊙O的切线.理由如下:连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=34,∴PD=8,AP=10,设半径为r.∵OC∥AD,∴OC OPAD AP=,即10610r r-=,解得r=154.∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB•sin∠ABE=AB•sin∠P=152×35=92.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.23.(1)y=﹣20x+1400(40≤x≤60);(2)W=﹣20x2+2200x﹣56000;(3)商场销售该品牌童装获得的最大利润是4480元.【解析】【分析】(1)销售量y件为200件加增加的件数(60-x)×20;(2)利润w等于单件利润×销售量y件,即W=(x-40)(-20x+1400),整理即可;(3)先利用二次函数的性质得到w=-20x2+2200x-56000=-20(x-55)2+4500,而56≤x≤60,根据二次函数的性质得到当56≤x≤60时,W随x的增大而减小,把x=56代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(60﹣x)×20=﹣20x+1400,∴销售量y件与销售单价x元之间的函数关系式为: y=﹣20x+1400,(2)设该品牌童装获得的利润为W(元)根据题意得,W=(x﹣40)y=(x﹣40)(﹣20x+1400)=﹣20x2+2200x﹣56000,∴销售该品牌童装获得的利润W元与销售单价x元之间的函数关系式为:W=﹣20x2+2200x﹣56000;(3)根据题意得56≤x≤60,W =﹣20x 2+2200x ﹣56000=﹣20(x ﹣55)2+4500∵a =﹣20<0,∴抛物线开口向下,当56≤x≤60时,W 随x 的増大而减小,∴当x =56时,W 有最大值,W max =﹣20(56﹣55)2+4500=4480(元),∴商场销售该品牌童装获得的最大利润是4480元.【点睛】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.24.(1)20(2)500(3)12【解析】【分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校“非常了解”与“比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校“非常了解”与“比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61122== 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.25.(1)顶点(2,1)-;对称轴:直线2x =;与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),图象见解析;(2)12y y >.【解析】【分析】(1)根据二次函数解析式即可确定出顶点坐标、对称轴、与两坐标轴的交点坐标,再在坐标系中画出函数图象即可;(2)根据二次函数的图象解答.【详解】解:(1)二次函数y =x 2﹣4x +3=(x ﹣2)2﹣1,当x =0,y =3,当y =0时,x 2﹣4x +3=0,解得:11x =,23x =,∴抛物线的顶点为(2,﹣1),对称轴为直线x =2,与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),画出图象,如图所示:(2)∵当x <1时,y 随x 的增大而减小,∴当121x x <<时,12y y >.【点睛】此题考查了抛物线的图象与性质和二次函数与坐标轴的交点,熟练掌握二次函数的性质是解本题的关键.。

2020年浙江省杭州市中考数学全真模拟考试试卷A卷附解析

2020年浙江省杭州市中考数学全真模拟考试试卷A卷附解析

2020年浙江省杭州市中考数学全真模拟考试试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若2m-5m+5(2)y m x=-是反比例函数,则m的值是()A.4 B.1或4 C.3 D.2或-32.点P(x,y)的坐标x,y满足0xy=,则P点在()A.x轴上B.y轴上C.x轴或y轴上D.原点3.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有()A. 1个B.2个C.3个D.4个4.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中只有3个红球. 每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱. 通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A. 12 B. 9 C. 4 D. 35.用代入法解方程组342(1)25(2)x yx y+=⎧⎨-=⎩使得代入后化简比较容易的变形是()A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得25y x=-6.将某图形先向左平移3个单位,再向右平移4个单位,则相当于()A.原图形向左平移l个单位B.把原图形向左平移7个单位C.把原图形向右平移l个单位D.把原图形向右平移7个单位7.小明自从学了有理数的运算法则后, 非常得意,编了一个计算程序, 当他输入任何一个有理数时, 显示屏上出现的结果总等于所输入的有理数的平方与1的差, 他第一次输入2-,然后又将所得的结果再次输入,你猜此时显示屏上出现的结果为()A.6 B.4 C.19 D. 88.如图所示扇形统计图中,有问题的是()A .B .C .D . 二、填空题9.若锐角 ∠A 满足02sin(15)3A -=,则∠A= .10.二次函数y=-x 2-2x 的对称轴是_____________.直线x=-111.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm.12.如图,将矩形纸片ABCD 的一角沿EF 折叠,使点C 落在矩形ABCD 的内部C '处,若35EFC ∠=°,则DEC '∠= 度.13.如图,菱形ABCD 的对角线AC =24,BD =10,则菱形的周长L=________.14.某青年棒球队14名队员的年龄如下表: 1年龄(岁) 1920 21 22 1人数(人) 37 2 2 则出现次数最多的年龄是 . 15.若221<<x ,则化简()1222-+-x x = .16.△ABC 平移到△DEF ,若AD = 5,则CF 为_____________.17.计算结果用度表示:59°17′+18°28′= .18.写出代数式223a b c -与32x c 的两个相同点:(1) ;(2) .19.近似数4.80所表示的准确数n 的范围是 .三、解答题20.已知:如图,⊙O 与⊙C 内切于点A ,⊙O 的弦AB 交⊙C 于D 点,DE ⊥OB ,E 为垂足. 求证:(1)AD=DB ;(2)DE 为⊙O 的切线.21.如图,在△ABC 中,AD 平分∠BAC ,且AB+BD=AC 求证:∠B=2∠C .O E DC BA22.设a ,b 是有理数,举例说明下列说法是错误的. (1)a a -=; 2()a b a b -=-;(3)若ax b >,则b x a>.23.已知王明同学将父母给的钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内原有55元钱,两个月后盒内有85元钱.(1)求盒内钱数y(元)与存钱月数x(个)之间的函数解析式;(2)按上述方法,王明同学6个月后存到多少钱?几个月后能够存到235元钱?24.如图,O 为∠PAQ 的角平分线上的一点,OB ⊥AP 于点B ,以O 为圆心OB 为半径作⊙O ,求证:AQ 与⊙O 相切.25.在如图的网格上,找出4个格点(小方格的顶点),使每一个格点与A 、B 两点构造等腰三O QP B A角形,并画出这4个等腰三角形.26.某公司现有甲、乙两种品牌的计算器,甲品牌计算器有 A.B、C三种不同的型号,乙品牌计算器有 D.E两种不同的型号,某中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器.(1)写出所有的选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号计算器被选中的概率是多少?(3)现知该中学购买甲、乙两种品牌计算器共40个(价格如图所示),恰好用了1000元人民币,其中甲品牌计算器为 A型号计算器,求购买的A型号计算器有多少个?27.如图请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.方法方法方法28.将一个圆柱体的面包切3刀,能将面包分成6块吗?能将面包分成7块吗?能将面包分成8块吗?如果能,请画图说明.29.画一条数轴,在数轴上分别标出绝对值是4,0,122的各数.30.某商店将进货每个10元的商品按每个18元售出,每天可卖出60个,商店经理到市场上做了一翻调查发现,若将这种商品的售价(在每个18元的基础上)每个提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每个降低1元,则日销售就增加10个.为获得每日最大利润,此商品售价应定为多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.C4.A5.D6.C7.D8.A二、填空题9.75°10.11.2012.7013.5214.20岁15.1+x 16.517.78.25°18.答案不唯一. (1)它们都是单项式 (2)它们的次数都是 5 次19.4.795 4.805n ≤<三、解答题20.(1)连结OD ,证OD ⊥AB ;(2)连结CD ,利用三角形的中位线证明CD ∥OB . 21.在AC 上截取AP=AB ,证△ABD ≌△APD22.(1)当0a <时,a a =-;(2)当a b <b a =-;(3) 0a <时,结论错误 23.(1)y=15x+55;(2)145元,l2个月24.画OD ⊥AQ ,垂足为D ,证明△OBA ≌△ODA 得OD=OB .25.略26.(1)树状图表示如下:列表表示如下:A B C D(A, D) (B, D) (C, D) E (A, E) (B, E) (C, E)有 6 种可能的结果:(A ,D),(A ,E),(B ,D),(B ,E) , ( C, D) , (C, E).(2)因为选中 A 型号计算器有 2种方案, 即(A ,D),(A ,E),所以 A 型号计算器被选中的概率是2163= (3)由(2)可知,当选用方案(A ,D)时,设购买A 型号计算器x 个,则购买 D 型号计算器(40)x -个. 根据题意,得6050(40)1000x x +-=,解得100x =-(不合题意,舍去). 当选用方案(A ,E)时,设购买A 型号计算器x 个,则购买E 号计算器(40x -)个,根据题意,得6020(40)1000x x +-=,解得5x =,所以4035x -=,所以新华中学购买了5个A 型号计算器.27.略.28.29.略30.设此商品每一个售价为x元,每日利润S 最大.当x>18时,S =[60-5(x-18)](x-10)=-5(x-20)2+500;即商品提价,当x=20时,每日最大利润为500元.当x<18时,S =[60+10(18-x)](x-10)=-10(x-17)2+490;即商品降价,当x=17时,每日最大利润为490元.综上所述:此售价应定为每个20元,每日利润最大. 甲乙。

2020届杭州市中考数学模拟试卷(有答案)

2020届杭州市中考数学模拟试卷(有答案)

数学中考模拟试卷本试卷由选择题、填空题和解答题三大题组成.共23小题,满分120分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.(原创)-5的相反数是( ) A .15B .15C .5D .-5 2.(原创)下列运算正确的是 () A .(-2x 2)3=-6x 6B .(y +x )(-y +x )=y 2-x2C .4x +2y =6xyD .x 4÷x 2=x23.(原创)下列各式中,是8a 2b 的同类项的是 ( ) A .4x 2y B .―9ab 2C .―a 2b D .5ab 4.(原创)某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是 ( ) A .15,15 B .15,15.5 C .15,16 D .16,155.(原创)下列几何体中,有一个几何体的俯视图与主视图的形状不一样,这个几何体是( ).A .B .C .D .6.(根据余姚市中考模拟试卷第4题改编)已知二次函数2y ax bx c =++(a <0)的图象经过点A (-2,0)、O (0,0)、B (-5,y 1)、C (5,y 2)四点,则y 1与y 2的大小关系正确的是()A.y 1>y 2B.y 1<y 2C.y 1=y 2D.不能确定7.(根据丽水市中考模拟试卷第7题改编)已知⊙O 的直径AB 与弦∠C 的夹角为30︒,过C 点的切线PC 与AB 长线交于点P .PC=12,则⊙O 的半径为 ( ) A .6 B .4√3C .10 D .5√28.(2017上海市中考一模第23题)直线1y k x b =+与直线2y k x c =+在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x c +<+的解集为 ( ) A .x >1 B .x <1 C .x >-4 D .x <-19.(原创)若△ABC ∽△DEF ,相似比为2:3,且△ABC 的面积为12,则△DEF 的面积为( ) A.16 B.24 C.18 D.2710.(张家港市中考模拟第10题)如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60︒,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP⊥AF 于P ,DQ⊥CE 于Q ,则DP :DQ 等于 ( ) A .3:4 B 1351326.313二、填空题:本大题共6小题,每小题4分,共24分.把答案直接填在答题卡相应位置上. 11.(原创)24的算术平方根是.12.(原创)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______. 13.(原创)如图,菱形ABCD 的对角线相交于点O ,AC =6 cm ,BD =8 cm ,则高AE 为_______cm .14. (原创)如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD =62°,则∠B 的度数为_______。

2020-2021浙江省文澜中学初三数学下期中模拟试题(带答案)

2020-2021浙江省文澜中学初三数学下期中模拟试题(带答案)

2020-2021浙江省文澜中学初三数学下期中模拟试题(带答案)一、选择题1.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 2.已知线段a 、b ,求作线段x ,使22b x a =,正确的作法是( ) A .B .C .D .3.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍;B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍; 4.如图所示,在△ABC 中, cos B =22,sin C =35,BC =7,则△ABC 的面积是( )A.212B.12C.14D.215.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.56.如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S △AOB=2,则的值为()A.2 B.3 C.4 D.57.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 8.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+9.在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)10.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .42B .22C .823D .3211.如图,以点O 为位似中心,将△ABC 放大得到△DEF ,若AD =OA ,则△ABC 与△DEF 的面积之比为 ( )A .1:2B .1:4C .1:5D .1:612.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个二、填空题13.如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.14.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y =﹣4x图象上的两个点,则y 1与y 2的大小关系为__________. 15.如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,3C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线垂直时,点P 的坐标为____16.反比例函数y =k x 的图象经过点P(a 、b ),其中a 、b 是一元二次方程x 2+k x +4=0的两根,那么点P 的坐标是________. 17.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.18.已知线段AB 的长为10米,P 是AB 的黄金分割点(AP >BP ),则AP 的长_____米.(精确到0.01米)19.若函数y =(k -2)2k 5x -是反比例函数,则k =______.20.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是_____cm .三、解答题21.(1)计算:tan 609tan308sin 602cos 45︒︒︒︒+-+(2)在ABC V 中,90,2,6C AC BC ︒∠===,求A ∠的度数 22.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为;(3)在不改变主视图和俯视图的情况下,最多可添加块小正方体.23.马路两侧有两根灯杆AB、CD,当小明站在点N处时,在灯C的照射下小明的影长正好为NB,在灯A的照射下小明的影长为NE,测得BD=24m,NB=6m,NE=2m.(1)若小明的身高MN=1.6m,求AB的长;(2)试判断这两根灯杆的高度是否相等,并说明理由.24.如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.25.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当P D∥AB时,求BP的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.3.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.4.A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.5.B解析:B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.6.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.7.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.8.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.9.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l )向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l )向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.10.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒=3,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒, ∵BE 平分∠ABC ,∴∠EBD=30°,∴,∴AE=AD-DE=33=, 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.11.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选B.考点:位似变换.12.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.二、填空题13.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值解析:5 13【解析】【详解】如图,过点P作PA⊥x轴于点A,∵P(5,12),∴OA=5,PA=12,由勾股定理得OP=222251213OA PA+=+=,∴5 cos13OAOPα==,故填:5 13.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值.14.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y 随x 的增大而增大∵A (-4y1)B (-1y2)解析:y 1<y 2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 2的大小,从而可以解答本题.详解:∵反比例函数y=-4x ,-4<0, ∴在每个象限内,y 随x 的增大而增大, ∵A (-4,y 1),B (-1,y 2)是反比例函数y=-4x 图象上的两个点,-4<-1, ∴y 1<y 2,故答案为:y 1<y 2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.15.(1)【解析】【分析】先根据题意求得CD 和PE 的长再判定△EPC∽△PDB 列出相关的比例式求得DP 的长最后根据PEDP 的长得到点P 的坐标【详解】由题意可知OB =2AO=8∵CD⊥BOC 是AB 的中点∴解析:(1,3)【解析】【分析】先根据题意求得CD 和PE 的长,再判定△EPC ∽△PDB ,列出相关的比例式,求得DP 的长,最后根据PE 、DP 的长得到点P 的坐标.【详解】由题意可知,OB=23,AO=8,∵CD ⊥BO ,C 是AB 的中点,∴BD=DO=12BO==PE ,CD=12AO=4. 设DP=a ,则CP=4﹣a ,当BP 所在直线与EC 所在直线第一次垂直时,∠FCP=∠DBP , 又∵EP ⊥CP ,PD ⊥BD ,∴∠EPC=∠PDB=90°,∴△EPC ∽△PDB.DP DB PE PC ∴= 343a=-, ∴a 1=1,a 2=3(舍去).∴DP=1,∵PE=3,∴P (1,3).考点:1相似三角形性质与判定;2平面直角坐标系.16.(-2-2)【解析】【分析】先根据点P (ab )是反比例函数y=的图象上的点把点P 的坐标代入解析式得到关于abk 的等式ab=k ;又因为ab 是一元二次方程x2+kx+4=0的两根得到a+b=-kab=4解析:(-2,-2).【解析】【分析】先根据点P (a ,b )是反比例函数y=k x的图象上的点,把点P 的坐标代入解析式,得到关于a 、b 、k 的等式ab=k ;又因为a 、b 是一元二次方程x 2+kx+4=0的两根,得到a+b=-k ,ab=4,根据以上关系式求出a 、b 的值即可.【详解】把点P (a ,b )代入y=k x得,ab=k , 因为a 、b 是一元二次方程x 2+kx+4=0的两根,根据根与系数的关系得:a+b=-k ,ab=4, 于是有:a b 4{ab 4+=-=, 解得a 2 {b 2=-=-, ∴点P 的坐标是(-2,-2).17.【解析】【分析】如图根据正方形的性质得:DE∥BC 则△ADE∽△ACB 列比例式可得结论【详解】如图∵四边形CDEF 是正方形∴CD=EDDE∥CF 设ED=x 则CD=xAD=12-x∵DE∥CF∴∠AD解析:6017. 【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=60 17,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.18.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP为x米根据题意得整理得x2+10x﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x=5﹣5是原方程的解析:18【解析】【分析】根据黄金分割定义:AP BPAB AP=列方程即可求解.【详解】解:设AP为x米,根据题意,得x10 10x x -=整理,得x2+10x﹣100=0解得x1=55﹣5≈6.18,x2=﹣55﹣5(不符合题意,舍去)经检验x=55﹣5是原方程的根,∴AP的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.19.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣2解析:-2【解析】【分析】根据反比例函数的定义列出方程2k-5=-1k-20⎧⎨≠⎩,解出k的值即可.【详解】解:若函数y=(k-2)2k5x-是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.20.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O连接OBOC交AB于D∴OC⊥ABBD=AB由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r ,则OD=r ﹣2,OB=r ,在Rt △BOD 中,根据勾股定理得,OB 2=AD 2+OD 2,∴r 2=36+(r ﹣2)2,∴r=10cm ,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.三、解答题21.(1)2;(2)∠A =60° 【解析】 【分析】 (1)原式利用特殊角的三角函数值计算即可得到结果;(2)由锐角三角函数定义求出∠A 度数即可.【详解】(1)原式=3323+9-8+2=3+33-43+2=2⨯⨯⨯; (2)∵90,2,6C AC BC ︒∠===, ∴tanA =632BC AC ==, ∴∠A =60°【点睛】此题考查了实数的运算以及解直角三角形,熟练掌握运算法则是解本题的关键.22.(1)见解析;(2)32.(3)1.【解析】试题分析:(1)根据图示可知主视图有3列,每列小正方形的个数依次为3、1、3,左视图有两列,每列小正方形的个数依次为3、2,据此即可画出;(2)根据三视图画出几何体,根据几何体即可得;(3)要不改变主视图和俯视图的情况下,根据题意画出添加小正方体后的图形(如图2)即可.试题解析:(1)它的主视图和左视图,如图所示,(2)如图1,给这个几何体喷上颜色(底面不喷色),根据图形可知需要喷色的面有32个,所以喷色的面积为32;(3)如图2,在不改变主视图和俯视图的情况下,最多可添加1个小正方体,23.(1)AB=6.4m;(2)AB=CD,理由见解析.【解析】【分析】(1)直接利用相似三角形的判定与性质分析得出答案;(2)直接利用平行线分线段成比例定理分析得出答案.【详解】(1)∵MN∥AB,∴△MNE∽ABE,∴MNAB=NEBE.∵NB=6,NE=2,MN=1.6,∴1.6AB=28,∴AB=6.4(m);(2)这两根灯杆的高度相等,理由如下:∵MN∥CD,BD=24,∴MNAB=NEBE=28=14,∴MNCD=BNBD=624=14,∴AB=CD.【点睛】本题考查了相似三角形的应用,正确得出相似三角形是解题的关键.24.(1)6yx(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.25.(1)证明见解析;(2)BP=25 3.【解析】【分析】(1)由题意可得∠ABC=∠ACB,∠DPC=∠BAP,可证△ABP∽△PCD;(2))由△ABP∽△PCD,可得PC ABCD BP=,由PD∥AB,可得PC BCCD AC=,即AB BCBP AC=,可求BP的长.【详解】(1)∵AB=AC,∴∠ABC=∠ACB.∵∠APC=∠ABC+∠BAP,∴∠APD+∠DPC=∠ABC+∠BAP,且∠APD=∠B,∴∠DPC =∠BAP且∠ABC=∠ACB,∴△BAP∽△CPD.(2)∵△ABP∽△PCD,∴PC CDAB BP=即PC ABCD BP=.∵PD∥AB,∴PC CDBC AC=即PC BCCD AC=,∴AB BCBP AC=,∴101210BP=,∴BP253=.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,熟练掌握相似三角形的性质是本题的关键.。

2020年浙江省杭州市中考数学一模试卷及解析

2020年浙江省杭州市中考数学一模试卷及解析

2020年浙江省杭州市中考一模试卷数学试卷一、选择题(本大题共10小题,共30分)1.实数2019的相反数是()A. 2019B. −12019C. 12019D. −20192.2019年春节期间,杭州市共接待游客总量约4700000人次;用科学记数法表示的结果是()A. 4.7×106 B. 4.7×105 C. 0.47×106 D. 0.47×1073.下列各图中,经过折叠不能围成一个棱柱的是()A. B. C. D.4.下列各式变形中,正确的是()A. 3a2−a=2aB. 1a+1−1a=1a(a+1)C. a2⋅a3=a6 D. (−a−b)2=a2+2ab+b25.已知a=b≠0,则()A. ca =cbB. ac=bcC. a|c+1|>b|c+2|D. a+c>b−c6.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍.设调往甲处植树x人,则可列方程()A. 23−x=2(17+20−x)B. 23−x=2(17+20+x)C. 23+x=2(17+20−x)D. 23+x=2(17+20+x)7.年龄13141516频数5713■中位数可能是14中位数可能是14.5C. 平均数可能是14D. 众数可能是168.地面上铺设了长为20cm,宽为10cm的地砖,长方形地毯的位置如图所示.那么地毯的长度最接近多少?()A.50cmB. 100cmC. 150cmD. 200cm9.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A. 4个B. 6个C. 8个D. 10个10.如图,以△ABC的一边AB为直径作⊙O,交于BC的中点D,过点D作直线EF与⊙O相切,交AC于点E,交AB的延长线于点F.若△ABC的面积为△CDE的面积的8倍,则下列结论中,错误的是()A. AC=2AOB. EF=2AEC. AB=2BFD. DF=2DE二、填空题(本大题共6小题,共24分)11.请写出一个比2小的无理数是______.12.有一枚质地均匀的骰子,六个面分别标有1到6的点数,任意将它抛掷一次,朝上面的点数小于3的概率是______.13.如图,在△ABC中,AD是BC边上的高线,CE是一条角平分线,且相交于点P.已知∠APE=55°,∠AEP=80°,则∠B为______度.14.在平面直角坐标系中,已知点A(−1,0),B(0,−1),C(−3,−1),D(−2,1),移动点A,使得顺次连结这四个点的图形是平行四边形,则移动后点A的坐标为______.15.如图,已知矩形ABCD,E,F分别是边AB,CD的中点,M,N分别是边AD,AB上两点,将△AMN沿MN对折,使点A落在点E上.若AB=a,BC=b,且N是FB的中点,则b的值为______.a(k≠0)的一个交点为16.在平面直角坐标系中,直线y=x与双曲线y=kxP(√2,n).将直线向上平移b(0>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线的一个交点为Q.若AQ=3AB,则b=______.三、解答题(本大题共7小题,共66分)17.如果某蓄水池的进水管每小时进水8m3,那么6小时可将空水池蓄满水.(1)求将空水池蓄满水所需的时间y关于每小时进水量x的函数表达式;(2)如果准备在5小时内将空水池蓄满水,那么每小时的进水量至少为多少?18.下面是甲、乙两校男、女生人数的统计图.根据统计图回答问题:(1)若甲校男生人数为273人,求该校女生人数;(2)方方同学说:“因为甲校女生人数占全校人数的40%,而乙校女生人数占全校人数的55%,所以甲校的女生人数比乙校女生人数少”,你认为方方同学说的对吗?为什么?19.如图,在△ABC中,AD、BE是中线,它们相交于点F,EG//BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求AG的值.DF20.已知A、B两地之间的笔直公路上有一处加油站C(靠近B地),一辆客车和一辆货车分别从A、B两地出发,朝另一地前进,两车同时出发,匀速行驶.如图所示是客车、货车离加油站C的距离y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求客车和货车的速度;(2)图中点E代表的实际意义是什么,求点E的横坐标.21.有一块等腰三角形白铁皮余料ABC,它的腰AB=10cm,底边BC=12cm.(1)圆圆同学想从中裁出最大的圆,请帮他求出该圆的半径;(2)方方同学想从中裁出最大的正方形,请帮他求出该正方形的边长.22.已知二次函数y=x2−2(k−1)x+2.(1)当k=3时,求函数图象与x轴的交点坐标;(2)函数图象的对称轴与原点的距离为2,当−1≤x≤5时,求此时函数的最小值;(3)函数图象交y轴于点B,交直线x=4于点C,设二次函数图象上的一点P(x,y)满足0≤x≤4时,y≤2,求k的取值范围.23.如图,在正方形ABCD中,点E,F分别在BC,AB上,且DE=DF,连结AC,分别交DE,DF于点M,N.(1)求证:△ADF≌△CDE;(2)设△DMN和△AFN的面积分别为S1和S2;①若∠ADF=∠EDF,求S2:S1的值.②若S2=2S1,求tan∠ADF.答案和解析1.【答案】D【解析】解:因为a的相反数是−a,所以2019的相反数是−2019.故选:D.根据相反数的意义,直接可得结论.本题考查了相反数的意义.理解a的相反数是−a,是解决本题的关键.2.【答案】A【解析】解:4700000=4.7×106,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、C、D可以围成四棱柱,B选项不能围成一个棱柱.故选:B.由平面图形的折叠及正方体的展开图解题.此题主要考查了展开图折成几何体,同学们应熟知常见几种几何体的展开图及其变式图形.4.【答案】D【解析】解:(A)原式=3a2−a,故A错误;(B)原式=aa(a+1)−a+1a(a+1)=−1a(a+1),故B错误;(C)原式=a5,故C错误;故选:D.根据整式的运算法则以及分式的运算法则即可求出答案.本题考查学生的运算能力,解题的关键熟练运用运算法则,本题属于基础题型.5.【答案】A【解析】解:A、因为a=b≠0,所以ca =cb,正确;B、当c=0时,无意义,错误;C、因为a=b≠0时,c的值无法确定,|c+1|与|c+2|的大小不能确定,错误;D、因为a=b≠0时,c的值无法确定,所以a+c与a−c不能确定大小,错误;故选:A.根据等式的性质和不等式的性质解答即可.此题考查不等式的性质,关键是根据等式的性质和不等式的性质解答.6.【答案】C【解析】解:设应调往甲处植树x人,则调往乙处植树(20−x)人,根据题意得:23+x=2(17+20−x).故选:C.设应调往甲处x人,则调往乙处(20−x)人,根据使在甲处植树的人数是乙处植树人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.【答案】D【解析】解:5+7+13=25,由列表可知,人数大于25人,则中位数是15或(15+16)÷2=15.5或16.平均数应该大于14,综上,D选项正确;故选:D.分别求得该组数据的中位数、平均数及众数即可确定正确的选项.本题考查的是列表和中位数的概念,读懂列表,从中得到必要的信息、掌握中位数的概念是解决问题的关键.8.【答案】C【解析】解:长方形地毯的长为10×10√2=100√2≈141.4cm,故选:C.根据等腰直角三角形的性质即可得到结论.本题考查了生活中的平移现象,等腰直角三角形的性质,正确的识别图形是解题的关键.9.【答案】D【解析】解:如图,AB是直角边时,点C共有6个位置,即有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,△ABC是直角三角形的个数有6+4=10个.故选:D.根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.本题考查了正多边形和圆,难点在于分AB是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.10.【答案】B【解析】解:连接OD、AD,∵OB=OA,BD=DC,∴AC=2OD,∵OA=OD,∴AC=2OD,A正确,不符合题意;∵EF是⊙O的切线,∴OD⊥EF,∵OB=OA,BD=DC,∴OD//AC,∴AE⊥EF,∵△ABC的面积为△CDE的面积的8倍,D是BC的中点,∴△ADC的面积为△CDE的面积的4倍,∴△ADE的面积为△CDE的面积的3倍,∴AE=3EC,∴ODAE =23,∵OD//AC,∴FOFA =ODAE=23,∴FA=2AE,B错误,符合题意;AB=2BF,C正确,不符合题意;DF EF =ODAE=23,∴DF=2DE,D正确,不符合题意;故选:B.连接OD、AD,根据三角形中位线定理判断A;根据切线的性质、三角形的面积公式判断B;根据平行线分线段成比例定理判断C、D.本题考查的是切线的性质、平行线分线段成比例定理,掌握圆的切线垂直于经过切点的半径是解题的关键.11.【答案】√2(答案不唯一)【解析】解:比2小的无理数是√2,故答案为:√2(答案不唯一).根据无理数的定义写出一个即可.本题考查了无理数的定义,能熟记无理数是指无限不循环小数是解此题的关键,此题是一道开放型的题目,答案不唯一.12.【答案】13【解析】解:一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,点数小于3的有1,2,共2种,∴掷得朝上一面的点数小于3的概率为26=13;故答案为:13.由于骰子六个面出现的机会相同,所以只需先求出骰子向上的一面点数小于3的情况有几种,再直接应用求概率的公式求解即可.此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.【答案】45【解析】解:∵AD⊥BC,∴∠PDC=90°,∵∠CPD=∠APE=55°,∴∠PCD=90°−55°=35°,∵∠AEP=∠B+∠ECB,∴∠B=80°−35°=45°,故答案为45.根据∠AEP=∠B+∠ECB,只要求出∠ECB即可解决问题.本题考查三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【答案】(1,1)【解析】解:∵B(0,−1),C(−3,−1),∴BC=3,∵四边形ABCD是平行四边形,∴AD=BC=3,∵D(−2,1),移动点A,使得顺次连结这四个点的图形是平行四边形,如图所示:∴A(1,1);故答案为:(1,1).由题意得出BC=3,由平行四边形的性质得出AD=BC=3,再由题意即可得出结果.本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解题的关键.15.【答案】√22【解析】解:∵四边形ABCD是矩形∴AB=CD,AB//CD,∠A=90°∵E,F分别是边AB,CD的中点,N是FB的中点,∴DE=AF=BF=12AB=12a,FN=14AB=14a,∴AN=AF+FN=34a∵AF=DE,DC//AB,∠A=90°∴四边形ADEF是矩形∴AD=EF=b,∠EFB=90°∵将△AMN沿MN对折,使点A落在点E上∴AN=EN=34a,在Rt△EFN中,EN2=EF2+FN2,∴916a2=b2+116a2,∴b=√22a∴ba=√22故答案为:√22由题意可证四边形ADEF是矩形,可得AD=EF=b,∠EFB=90°,由折叠性质可得AN=EN=34a,由勾股定理可求解.本题考查了翻折变换,矩形的性质和判定,勾股定理,熟练运用折叠的性质是本题的关键.16.【答案】√33或√66【解析】解:(1)∵直线y =x 经过P(√2,n). ∴n =√2, ∴P(√2,√2),∵点P(√2,√2)在y =kx (k ≠0)上,∴k =√2×√2=2.∵直线y =x 向上平移b(b >0)个单位长度后的解析式为y =x +b ,∴OA =OB =b , ∵AQ =3AB , 作QC ⊥x 轴于C , ∴QC//y 轴,∴△ABO∽△AQC , ∴OB QC=OA AC=AB AQ =13, ∴点Q 坐标(2b,3b)或(−4b,−3b)∴6b 2=2或−4b ⋅(−3b)=2 b =±√33或b =±√66∵b >0, ∴b =√33或b =√66 故答案为√33或√66.将点P 的坐标代入y =x 即可求得n =√2,然后把P(√2,√2)代入y =kx (k ≠0)即可求得k 的值;根据题意设平移后的直线为y =x +b ,然后根据△ABO∽△AQC 和AQ =3AB ,求得Q 点的坐标,代入y =2x ,即可求得b .本题考查了一次函数与反比例函数的交点坐标等关系,相似三角形的判定和性质,由点的坐标求函数的解析式以及平移问题. 17.【答案】解:(1)由题意可得, y =8×6x=48x,即将空水池蓄满水所需的时间y 关于每小时进水量x 的函数表达式是y =48x;(2)当y =5时, 5=48x,得x =9.6,即每小时的进水量至少9.6m 3.【解析】(1)根据题意可以得到y 与x 的函数关系式,本题得以解决; (2)将y =5代入(1)中的函数解析式,即可解答本题. 本题考查反比例函数的应用,解答本题的关键是明确题意,利用反比例函数的性质解答. 18.【答案】解:(1)∵甲校中男生有273人,占60%,∴总人数为:273÷60%=455人,则女生有455−273=182人;(2)不是同一个扇形统计图,因为总体不一定相同,所以没法比较人数的多少,所以方方同学说的对.【解析】(1)首先求得总人数,然后乘以女生所占的百分比即可;(2)扇形统计图只能得出两学校的女生所占的比例,如果要知道数量还要知道两学校的学生人数.此题考查了扇形统计图的知识,扇形统计图直接反映部分占总体的百分比大小,在比较各部分的大小时,必须在总体相同的情况下才能做比较.19.【答案】(1)证明:∵GE//BC,∴∠GEF=∠DBF.又∵∠GFE=∠DFB,∴△FGE∽△FDB;(2)∵AD、BE是中线,EG//BC,∴GE为△ADC的中位线,BD=DC,∴GE=12DC=12BD,AG=DG.∵△FGE∽△FDB,∴GFDF =GEDB=12,∴DF=23DG,∴AGDF =DG23DG=32.【解析】(1)由GE//BC,可得出∠GEF=∠DBF,再结合对顶角相等即可得出△FGE∽△FDB;(2)根据三角形中位线定理以及中线的定义得出GE=12BD、AG=DG,再利用相似三角形的性质得出DF=23DG,进而即可得出AGDF=32.本题考查了相似三角形的判定与性质、三角形中线的定义以及中位线定理,解题的关键是:(1)由GE//BC利用相似三角形的判定定理证出△EGF∽△BDF;(2)根据相似三角形的性质结合中位线定理得出DF=23DG、AG=DG.20.【答案】解:(1)由图可得,客车的速度为:360÷6=60km/ℎ,货车的速度为:80÷2=40km/ℎ;(2)图中点E代表的实际意义是此时客车与货车相遇,设点E的横坐标为t,60t+40(t−2)=360,解得,t=4.4,即点E的横坐标为4.4.【解析】(1)根据题意和函数图象中的数据可以求得客车和货车的速度;(2)根据图象可以写出点E代表的实际意义并写出点E的横坐标.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)如图1,⊙O为等腰△ABC的内切圆,作AD⊥BC于D,∵AB=AC,∴BD=CD=6,在Rt△ABD中,AD=√102−62=8,设⊙O的半径为R,1 2×r×(AB+AC+BC)=∵S△ABC=12AD×BC,∴r=8×1210+10+12=3,答:等腰三角形中裁出最大的圆的半径为3cm;(2)如图2,正方形EFGH为等腰△ABC的最大内接正方形,作高AD交EH于M,设正方形的边长为xcm,由(1)得AD=8,则AM=8−x,∵EH//BC,∴△AEH∽△ABC,∴EHBC =AMAD,即x12=8−x8,解得x=245.答:等腰三角形中裁出最大的正方形的边长为245cm.【解析】(1)如图1,⊙O为等腰△ABC的内切圆,作AD⊥BC于D,利用等腰三角形的性质得BD=CD=6,利用勾股定理得AD=8,设⊙O的半径为R,利用切线的性质和三角形面积公式得到12×r×(AB+AC+BC)=12AD×BC,从而可求出r;(2)如图2,正方形EFGH为等腰△ABC的最大内接正方形,作高AD交EH于M,设正方形的边长为xcm,证明△AEH∽△ABC,利用相似比得到x12=8−x8,然后解方程即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的性质和正方形的性质.22.【答案】解:(1)∵k=3,∴y=x2−4x+2,令y=0,则x2−4x+2=0,解得x=2±√2,∴函数图象与x轴的交点坐标为(2−√2,0),(2+√2,0);(2)∵函数图象的对称轴与原点的距离为2,∴−−2(k−1)2×1=±2,解得k=3或−1,当对称轴为直线x=−2时,则k=−1,把x=−1代入得,y=−1,∴此时函数的最小值为−1;当对称轴为x=2时,则k=3,∵y=x2−4x+2=(x−2)2−2∴此时函数的最小值为−2;(3)由二次函数y=x2−2(k−1)x+2可知B(0,2),开口向上,设二次函数图象上的一点P(x,y),若满足0≤x≤4时,y≤2,则−−2(k−1)2≥2∴k≥3.【解析】(1)令y=0,得到关于x的方程,解方程即可;(2)分两种情况讨论求得即可;(3)由题意可知−−2(k−1)2≥2,解不等式即可求得.本题考查了二次函数图象上点的坐标特征,二次函数的图象和系数的关系,二次函数的最值,以及二次函数与x轴的交点,二次函数图象上点的坐标适合解析式是关键.23.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAF=∠DCE=∠ADC=90°,∵DF=DE,∴Rt△ADF≌Rt△CDE(HL).(2)①如图,作NH⊥AB于H.设FH=a.∵Rt△ADF≌Rt△CDE(HL),∵∠ADF=∠CDE,∵∠ADF=∠DEF,∴∠ADF=∠EDF=∠CDE=30°,∴∠AFD=60°,∵∠NHF=90°,∴∠FNH=30°,∴HN=√3a,∵∠NAH=45°,∠AHN=90°,∴∠NAH=∠ANH=45°,∴HA=HN=√3a,∴AF=(1+√3)a,AD=√3AF=(3+√3)a,∴S2=12⋅AF⋅NH=12⋅(1+√3)a⋅√3a=3+√32a2,∵∠ADN=∠CDM,AD=DC,∠DAN=∠DCM=45°,∴△ADN≌△CDM(ASA),∴S△ADN=S△DCM,∴S1=S△ADC−2S△ADN=12⋅[(3+√3)a]2−2×12⋅(3+√3)a⋅√3a=(9+6√3)a2,∴S2S1=3+√32a2(9+6√3)a2=√3−16.(3)如图,作NH⊥AB于H.∵∠FHN=∠FAD=90°,∴HN//AD,∴∠ADF=∠HNF,设tan∠ADF=tan∠FNH=k,设NH=AH=b,则FH=kb,∴AF=b+kb,∴AD=b+bkk =1+kkb,∴S2=12[(1+k)b]2,S1=S△ADC−2S△ADN=12(1+kkb)2−2×12⋅1+kkb⋅b,∵S2=2S1,∴12(1+k)b]2=2⋅[12(1+kkb)2−2×12⋅1+kkb⋅b]整理得:k2+2k−2=0,解得:k=√3−1或−√3−1(舍弃),∴tan∠ADF=k=√3−1.【解析】(1)根据HL证明三角形全等即可.(2)①如图,作NH⊥AB于H.设FH=a.利用参数表示S2,S1即可.②如图,作NH⊥AB于H.易证∠ADF=∠HNF,设tan∠ADF=tan∠FNH=k,设NH= AH=b,则FH=kb,利用面积关系构建方程求出k即可解决问题.本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档