毕业设计指导:桁架节点的设计

合集下载

建筑结构中的桁架设计原则

建筑结构中的桁架设计原则

建筑结构中的桁架设计原则在建筑结构中,桁架设计起着至关重要的作用。

桁架是由杆件和节点组成的结构体系,能够有效地承受和分散荷载,同时提供稳定性和刚性。

在桁架设计中,有一些原则需要遵循,以确保结构的安全性和可靠性。

一、设计目标与要求桁架设计的首要任务是满足建筑的使用要求和功能需求。

在设计过程中,需要明确设计的目标和要求,例如结构的强度、稳定性、刚度和耐久性等。

同时,还需要考虑到建筑的造型、空间和美观等因素,以使设计与实际需求相匹配。

二、合理选取材料在桁架设计中,合理选取材料对于整体结构的稳定性和承载能力至关重要。

常见的桁架材料包括钢材、木材和混凝土等。

根据项目要求和实际情况,选择合适的材料,并充分考虑其强度、耐久性、施工可行性以及经济性等因素。

三、优化节点设计节点是桁架结构的关键部分,起着连接杆件和传递荷载的作用。

在桁架设计中,合理优化节点设计可以提高结构的整体刚度和稳定性。

节点应考虑到杆件的连接方式及受力情况,并采用适当的节点形式和连接方法,如焊接、螺栓连接等。

同时,还需保证节点的刚性和可靠性,以防止节点发生变形和松动。

四、荷载路径合理设计在桁架设计中,荷载的传递路径应该合理布置,使荷载能够得以均匀分散和传递。

桁架结构应采用合适的荷载路径,避免荷载集中或引起局部应力过大。

对于大跨度的桁架结构来说,还应考虑荷载在横向和纵向的分布以及侧向位移的限制,以保证结构的整体稳定性。

五、施工和维护考虑在桁架设计中,施工和维护因素也是需要考虑的重要因素。

设计应充分考虑到建造过程中的可行性和安全性,并提供详细的施工图纸和工艺要求。

此外,还需考虑到桁架结构的维护和检修,以便日后对结构进行必要的维护和修复工作。

综上所述,建筑结构中的桁架设计原则包括:明确设计目标与要求、合理选取材料、优化节点设计、合理布置荷载路径以及考虑施工和维护等因素。

遵循这些原则,可以确保桁架结构的稳定性、安全性和可靠性,为建筑提供良好的结构支撑。

钢管桁架工程设计方案

钢管桁架工程设计方案

钢管桁架工程设计方案一、工程概况钢管桁架工程是一种常见的建筑结构工程,主要用于支撑建筑物的梁柱结构。

其特点是材料轻巧、强度高、耐久性好、施工方便等优点,因此在各种建筑工程中得到了广泛的应用。

本文将针对一座建筑物的钢管桁架工程进行设计方案的阐述。

二、设计基础1. 建筑物设计荷载本工程设计的建筑物是一座五层建筑,计划总面积10000平方米,主要用于商业和办公。

根据规范的要求,结构设计应满足活载、风载、地震作用等多种荷载。

2. 建筑物地基状况建筑物地基土壤为砂质土,在地基处理方面需要采取加固措施。

3. 法规要求根据建筑法规的要求,本工程设计应符合国家建筑设计规范和相关标准的要求。

三、桁架结构设计1. 结构布置本工程的桁架结构主要采用钢管进行组装,以保证整个框架结构的承重能力,同时保证建筑物的整体稳定性。

桁架结构的布局应符合建筑物设计的总体布局,确保各个构件的布置合理、紧凑。

2. 钢管材料选择钢管桁架结构采用焊接或螺栓连接的方式进行组装。

钢管的选材应符合国家标准规范的要求,应具有良好的耐腐蚀性、强度高、可焊性好等特性。

3. 结构体系桁架结构采用空心圆管、方管或矩形管等形式进行构造,结构体系采用桁架支撑和刚性框架等形式,以确保结构的整体稳定性。

4. 桁架节点设计桁架节点的设计应尽量降低节点的应力集中,采用合理的节点连接方式,确保节点的刚度和稳定性。

四、荷载分析1. 活载建筑物的活载主要来自人员、家具等,根据相关规范计算得出活载值。

2. 风载根据地区的风载标准值,结合建筑物的高度和地理位置等因素进行风载计算。

3. 地震作用根据地震区域的地震烈度和设计地震加速度等参数,进行地震作用计算。

五、桁架结构分析1. 梁柱设计根据荷载分析结果,进行桁架结构的梁柱设计,计算梁柱受力情况,确定梁柱的截面尺寸和材料规格。

2. 桁架节点设计对桁架结构的节点进行受力分析和设计,确保节点的连接方式和构造能够满足结构的稳定性和承载能力。

桁架设计要点

桁架设计要点

桁架设计要点
答:桁架设计要点是:
1.主管的外部尺寸不小于支管的外部尺寸,主管的壁厚不小于支管的壁厚,杆件相贯
时要求大管贯小管,支管不得插入主管内。

2.杆件相贯时,杆件之间的夹角不小于30度。

3.支管与主管的连接焊缝,应沿全周连续焊接并平滑过渡。

4.多管相交时,要注意杆件之间的相贯次序,保证每根杆件均能做到全周连续焊接。

5.桁架分段制作时,上下弦的分段点需要错开。

分段点一般要设置对接衬管以保证对
接焊缝质量。

要采取相应措施避免设置对接衬管后妨碍桁架安装的现象。

桁架搭建方案

桁架搭建方案

桁架搭建方案桁架结构是一种常用于建筑、桥梁和其他工程项目中的结构系统。

它由一个由杆件和连接件组成的三维网格构成,能够承受复杂的力学载荷,并提供高度的稳定性和刚度。

本文将介绍桁架搭建的基本原理和一些建议的方案。

一、桁架搭建的基本原理桁架搭建的基本原理是通过连接不同类型的杆件和连接件来构建一个稳定的三维网格结构。

在桁架结构中,杆件通常采用轻质但高强度的材料,如钢、铝等。

连接件则用于将杆件连接在一起,通常采用螺栓、焊接等方式。

桁架结构的设计要考虑到力学原理和结构力学的知识。

在设计中,需要考虑各种荷载,包括重力、风力、地震力等,以保证结构的稳定性。

此外,还需要考虑结构的刚度和变形,以确保结构在受力时不会产生过大的变形或挠曲。

二、桁架搭建方案的选择桁架搭建方案的选择会受到多种因素的影响,包括结构的用途、预算限制、材料的可获得性等。

以下是一些常见的桁架搭建方案。

1. 三角形桁架三角形桁架是最常见的桁架结构,其形状类似于多个三角形的组合。

它具有较高的刚度和稳定性,适用于各种工程项目,包括建筑、桥梁等。

2. 截面桁架截面桁架是指在桁架结构中,杆件的截面形状不同。

通过选择适当的杆件截面,可以在保持结构稳定性的同时减小重量。

这种结构常用于大跨度的桥梁和建筑项目。

3. 复合桁架复合桁架是指在桁架结构中,采用多种材料组合构建的结构。

这种方案可以充分利用各种材料的优势,提高整体结构的性能。

例如,在某些情况下,可以使用钢与混凝土的组合,提供更高的强度和刚度。

三、桁架搭建的步骤桁架搭建一般分为如下步骤:1. 设计和计算:根据结构需求和载荷要求,进行结构设计和计算。

这一步需要使用结构力学和有限元分析等方法,确保所设计的结构能够满足要求。

2. 材料采购:根据设计要求,采购适当的材料,包括杆件和连接件。

在选择材料时,需要考虑到材料的强度、刚度和可获得性等因素。

3. 搭建桁架:根据设计图纸和施工方案,将杆件和连接件按照规定的顺序和方法进行搭建。

毕业设计指导:桁架节点的设计

毕业设计指导:桁架节点的设计
桁架节点的设计
1、基本要求
(1)各杆件的形心线应尽量与屋架的几何轴线重 合,并交于节点中心,以避免由于偏心而产生节 点附加弯矩。
(2)弦杆材料规格沿长度变 化时,屋架轴线取受力较大 杆件形心线为轴线,偏心不 超过较大弦杆截面高度的5% ,可不考虑偏心影响。图 7.12所示
7.12
(3)偏心较大时,需计算偏心弯矩,将此弯 矩分配于各杆:
肢背塞焊缝计算: 肢尖角焊缝计算:
伸出节
点板时, 如何计算?
e
ΔN=? ΔM=?
式中:ΔN=0.15N ΔM=0.15N×e
(4)下弦拼接节点 采用与下弦尺寸相同的角钢来拼接
肢宽大于 125mm
a、拼接角钢长度计算:
Af
lw
4 0.7hf
f
w f
拼接角钢实际长度:L=(Lw+2hf)×2+弦杆杆端空隙 (10~20mm),且不小于600mm。
l 'w
l ''w
肢背塞焊缝计算:
塞焊缝按两条h’f=0.5t(t 为节点板厚度)
l 'w l ''w
肢尖角焊缝计算:
l 'w
l ''w
式中: ΔN=N1-N2内力差
l ''w , hw
_Байду номын сангаас肢尖角焊缝的计 算长度和焊缝高度
偏心力矩ΔM=(N1-N2)e
②当节点板向上伸出(可部分伸出)时,肢尖、肢 背焊缝共同承受集中荷载P和内力差ΔN作用
A0——锚栓孔的面积
b、底板厚度: t
6M f
M ——支座底板单位宽度上的最大弯矩
M q12
8.6 表8.6

桁架毕业设计

桁架毕业设计

桁架毕业设计桁架毕业设计一、引言在建筑设计领域中,桁架结构是一种重要的设计元素,它既能够提供稳定的支撑结构,又能够赋予建筑物独特的外观和空间感。

本文将探讨桁架结构在毕业设计中的应用,以及设计过程中的一些关键问题和挑战。

二、桁架结构的优势桁架结构由许多连接点和构件组成,形成了一种稳定的三维网格结构。

相比于传统的梁柱结构,桁架结构具有以下几个优势。

首先,桁架结构在承载能力上具有较高的优势。

由于桁架结构采用了三维网格的形式,能够将荷载均匀分散到各个构件上,从而提高了整个结构的承载能力。

其次,桁架结构在空间利用上更加灵活。

由于桁架结构的构件较为轻巧,可以采用更薄的梁柱,从而节省了空间,使得室内空间更加开阔。

最后,桁架结构具有较好的可塑性和可变性。

设计师可以通过调整桁架结构的构件数量和连接方式,来实现不同形式和规模的建筑物,从而满足不同的设计需求。

三、桁架毕业设计的应用案例1. 桁架体育馆桁架结构在体育馆的设计中得到了广泛应用。

通过采用桁架结构,可以实现大跨度的悬挑屋顶,从而提供更大的活动空间。

同时,桁架结构的透明性和轻盈感也能够为体育馆增添一份现代感和艺术感。

2. 桁架桥梁桁架结构在桥梁设计中也有着重要的地位。

桁架桥梁由于其结构简洁、承载能力强等特点,成为了大跨度桥梁的常见选择。

而且,桁架结构的外观形式多样,也能够为桥梁增添一份独特的美感。

3. 桁架展馆桁架结构在展馆设计中也有着广泛的应用。

由于桁架结构的可变性,设计师可以根据展览需求,灵活调整桁架的形式和规模,从而为展馆提供一个具有艺术性和功能性的空间。

四、桁架毕业设计的关键问题和挑战在进行桁架毕业设计时,设计师需要面对一些关键问题和挑战。

首先,设计师需要充分理解桁架结构的力学性能和设计原理。

只有掌握了桁架结构的基本知识,才能够进行合理的结构设计。

其次,设计师需要考虑桁架结构的施工可行性。

桁架结构的构件较多,需要进行精准的制造和安装,因此在设计过程中需要充分考虑施工的可行性和成本控制。

桁架结构设计步骤

桁架结构设计步骤

桁架结构设计步骤桁架结构设计步骤如下:第一步:确定基本设计参数设计的基本参数包括板的跨度和厚度、两阶段的板支撑、钢筋类型、混凝土强度等级和使用荷载。

第二步:钢桁架楼承板长度的确定根据工程实际情况,楼承板的长度可以是一跨,也可以是多跨之和(1)钢桁架楼板的长度应为200mm的倍数,特殊情况下,长度可为100mm的倍数。

(2)楼承板的长度应为多跨之和的连续板。

(3)楼承板的长度不宜大于20m,理论上钢桁架楼承板可以加工成无限长,但实际上考虑到楼承板的运输系数,最大长度不应超过17.5米,否则很难找到运输工具。

部分项目与承重板之间不允许有严格的拼接要求。

此时,需要现场处理。

第三步:根据使用阶段计算,初步选定钢桁架楼承板的类型钢桁架楼承板设计包括四个部分:桁架构件设计、底模设计、桁架构件连接节点设计、桁架与底模连接节点设计。

其中,连接节点的强度由结构保证,无需验算。

底模设计成型,满足应力要求。

因此,设计者只需设计桁架构件就可以选择钢桁架楼承板的类型。

第四步:当没有临时支撑时,应检查表或检查施工阶段,调整地板承重板的类型,以满足应力要求。

第五步:确定支座附加钢筋的数量当钢桁架连续时,使用阶段计算的支座负筋面积减去钢桁架上弦杆截面面积,即为支座的附加配筋量;当钢桁架在支座处不连续时,支座负筋在使用阶段计算的截面面积为支座的附加钢筋用量。

不同类型的钢筋应更换为等强度带。

第六步:楼层结构图楼层结构图包括平面布置图和节点详图。

平面布置图包括:钢筋桁架楼承板、支座负筋、孔边及柱边附加钢筋、分布钢筋、柱边及混凝土墙边支撑等,同时,施工中临时支撑的布置必须在图纸中明确。

第七步:其他注意事项楼板可设计为单向板或双向板。

钢桁架楼承板在施工阶段均为单向板。

无临时支撑时,施工阶段所需钢筋一般大于使用阶段按单向板计算的钢筋,故楼板应按单向板设计。

当因具体工程条件需要设计双向板时,为节约钢材,施工阶段应沿垂直于桁架方向设置临时支撑。

7.4 桁架节点设计解析

7.4  桁架节点设计解析

2.节点板设计
1) 形状;矩形、梯形等, 其他形状时,至少应有二条平行边。
2)厚度: 梯形和平行弦屋架:内力由腹杆传给弦杆,节点板 的厚度由腹杆最大内力决定。 三角形屋架:节点板的厚度由上弦杆内力决定。 支座节点板厚度比中间大2mm 。 中间节点板的厚度参照表P293 7.6选用。
节点板的拉剪破坏计算:
7.4 桁架节点设计
力。
P294
节点设计:确定节点的构造,连接焊缝及节点承载 形式:使用节点板和不使用节点板 。
一、双角钢截面杆件的节点
1.节点设计的一般原则: (1) 各杆轴线汇交于节点中心。 截面的形心与肢背的距离调整为5mm的倍数。 (2) 角钢切断面时,一般应与其轴线垂直。
(3) 截面改变处应设在节点上 以两劲肋、“L”及 “H”焊缝四个部分。
底板所需毛面积 :
An=R/fc A0——锚栓孔面积。
底板短边尺寸200mm。
底板的厚度为 t
6M f
一般 t 16m。
水平焊缝“H”应能传递全部反力R。 肋板与节点板间的竖向焊缝“L”,按每块肋板竖直焊 缝的受力为V=R/4及M=Ve计算。 加劲肋的高度与节点板高度一致,厚度取等于或略 小于节点板的厚度。 加劲肋的强度按悬臂梁验算。
(3)下弦跨中拼接节点
弦杆内力较大,为保证 拼接处具有足够的强度和刚 度,用拼接角钢来拼接。
拼接角钢与弦杆规格相同,切 去部分竖肢及直角边棱。 切肢=t+hf+5mm,
切肢切棱引起的截面削弱不太 大,由节点板来补偿。
弦杆拼接节点的计算 :
1)弦杆自身拼接的传力焊缝C按:
A)传递两侧弦杆内力较小的N
弦杆自身拼接的传 力焊缝“C”。
(4) 上弦跨中拼接节点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b、弦杆与节点板的连接角焊缝
计算同下弦节点,作用荷载为两侧下弦较大内力 的15%,和两侧下弦的内力差两者中的较大值。
即:
max N1 N 2 ,15% max N1, N 2


(5)支座节点
铰接屋架支座 a、底板的面积:
R ——屋架支座反力; fc ——钢筋混凝土轴心抗压强度设计值; A ——锚栓孔的面积
Ne ft w 1 2 tlw 6
5、绘制施工图
施工图绘制内容 详见教材204页 施工图绘制要点
上弦节点施工图
采用与上弦 尺寸相同的角钢 来拼接,以保持 拼接处的刚度和 强度 ①构造要求:
切肢:
竖向肢Δ= t+hf+5 mm切除 刨角:
热弯成形:
②屋脊节点计算: a、拼接角钢 长度计算:
单边焊缝长度计算:
式中: N ——相邻上弦节间中较大的内力。 拼接角钢实际长度:L=(Lw+2hf)×2+弦杆杆端空隙 (10~20mm),且不小于600mm。
桁架节点的设计
1、基本要求 (1)各杆件的形心线应尽量与屋架的几何轴线重 合,并交于节点中心,以避免由于偏心而产生节 点附加弯矩。 (2)弦杆材料规格沿长度变 化时,屋架轴线取受力较大 杆件形心线为轴线,偏心不 超过较大弦杆截面高度的5% ,可不考虑偏心影响。图 7.12所示
7.12
(3)偏心较大时,需计算偏心弯矩,将此弯 矩分配于各杆:
b、弦杆与节点板的连接焊缝
肢背塞焊缝计算: 肢尖角焊缝计算:
e
伸出节 点板时, 如何计算?
ΔN=? ΔM=?
式中:ΔN=0.15N
ΔM=0.15N×e
(4)下弦拼接节点 采用与下弦尺寸相同的角钢来拼接
肢宽大于 125mm
a、拼接角钢长度计算:
Af lw w 4 0.7h f f f
拼接角钢实际长度:L=(Lw+2hf)×2+弦杆杆端空隙 (10~20mm),且不小于600mm。
4、节点计算
上弦节点 、下弦节点 、 屋脊拼接节点 、下弦拼 接节点 、支座节点 (演示)
(1)上弦节点
(a)腹杆与节点板的连接焊缝长度 肢背:
l 'w
肢尖:
l ''wf
N
(b)弦杆与节点板的连接焊缝的计算 两种计算方法 ①集中荷载P由肢背塞焊缝承受,上弦节点相邻节间 的内力差Δ N=N1-N2由角钢肢尖与节点板的角焊缝承 受,考虑偏心力矩Δ M=(N1-N2)e的作用
7.13
(6)节点板形式简单,应优先采用矩形、梯形 、平行四边形,避免凹角。图7.14
7.14
(7)角钢端部的切割一般垂直于它的轴线,可切去 部分肢,但绝不允许垂直肢完全切去而留下平行 的斜切图7.15
7.15
(8)上弦杆直接搁置大型钢筋混凝土屋面板,当 支承处的集中荷载超过教材表7.5时的加强方式图 7.16。
R A A0 fc
6M b、底板厚度: t f
M ——支座底板单位宽度上的最大弯矩
0
M q
2 1
8.6
表8.6
c、加劲肋与支座节点板的焊缝:
详细过程 d、支座节点板、加劲肋与支座底板的水平连接焊缝:
t
Σlw—节点板、加劲肋 与支座底板的水平焊缝总 长度 R-屋架支反力
L
w
7.16
2、节点板的厚度
查表7.4确定节点板厚度。节点板的厚度对于梯 形普通钢桁架等可按受力最大的腹杆内力确定,对于 三角形普通钢桁架则按其弦杆最大内力确定。
7.4
3、节点设计步骤
① 据屋架几何形式定出节点的轴线关系,并按比 例画出轴线(1/20~1/10)和杆件(1/10~1/5) , 弦杆肢尖与腹杆、腹杆之间距离满足前述基本 要求。 ② 计算腹杆肢背、肢尖焊缝长度,图中作出定位 点。 ③ 计算弦杆与节点板的焊缝,图中作出定位点。 ④ 画出节点板,将各定位点都包括在内。 ⑤ 适当调整焊缝厚度、长度,重新验算。 ⑥绘制节点大样(比例尺为1/10~1/5),标注需 要的尺寸。(演示)
Ki Mi M Ki
Mi — 所计算杆件承担的弯矩 M —节点偏心弯矩,M=N1e Ki — 所计算杆件的延刚度 ΣKi — 交于节点的各杆件延刚度之和
*杆件按偏压(拉)构件设计
(4)腹杆与弦杆或腹杆与腹杆之间的净距不小于 15~20mm(图7.13)
(5)节点板边缘与杆件轴线的夹角不小于15º,单斜 杆与弦杆连接不出现偏心弯矩。 (图7.13)
2 2a 2h f 2 2b t 2c1 4h f
(6)T型钢作弦杆的屋架节点计算
节点板与弦杆采用对接焊缝,此焊缝承受弦杆相邻 节间的内力差ΔN=N1-N2,以及内力差产生的偏心弯 矩M= ΔNe。计算如下: 最大剪应力: 最大正应力:
1.5N f vw lwt
肢背与节点板的连接焊缝 :
肢尖与节点板的连接焊缝 :
上 上
(2)下弦节点
无集中荷载: 肢背焊缝:
N1
N2
Δ N = N1-N2
K1N hf 1 w 2 0.7lw f f
肢尖焊缝:
hf 2
K2 N w 2 0.7lw f f
有集中荷载:同上弦节点
肢背焊缝:
肢尖焊缝:
(3)屋脊节点 (上弦拼接节点)
l 'w
l ''w
肢背塞焊缝计算:
塞焊缝按两条h’f=0.5t(t 为节点板厚度)
l 'w
l ''w
肢尖角焊缝计算:
l 'w
l ''w
式中: ΔN=N1-N2内力差
__肢尖角焊缝的计 l ''w , hw
算长度和焊缝高度 偏心力矩ΔM=(N1-N2)e
②当节点板向上伸出(可部分伸出)时,肢尖、肢 背焊缝共同承受集中荷载P和内力差ΔN作用
相关文档
最新文档