【论文】-分数、百分数应用题及答案-(word)可编辑

合集下载

(完整word)分数百分数应用题专项练习

(完整word)分数百分数应用题专项练习

分数、百分数应用题专项练习(一)姓名:一、填空题1.(1)修一条路800米,已修了全长的25.已经修了()米。

(2)修一条路800米,已修了全长的25。

还剩下( )米没修。

2.某工地有640吨水泥,第一次用去140吨,第二次用去剩下的35。

第二次用去( )吨.3.(1)学校今年植树120棵,比去年多35。

去年植树()棵。

(2)学校去年植树75棵,今年比去年多35。

今年植树()棵。

4。

(1)一本书600页,第一天看了它的14,第二天看了它的25。

两天一共看了()页。

(2)一本书600页,第一天看了它的14,第二天看了它的25.第二天比第一天多看()页。

5.(1)学校图书馆有文艺书2000本, 科技书是文艺书的45。

科技书有()本。

(2)学校图书馆有科技书1600本, 科技书是文艺书的45.文艺书有( )本.(3)学校图书馆有文艺书2000本,科技书比文艺书多45。

科技书有( )。

(4)学校图书馆有科技3600本,科技书比文艺书多45。

文艺书有()。

(5)学校图书馆有文艺书2000本,科技书比文艺书少45。

科技书有()。

(6)学校图书馆有科技书400本,科技书比文艺书少45.文艺书有()。

(7)文艺书和科技书共3600本,科技书是文艺书的45。

文艺书有()本,科技书有()本。

(8)科技书比文艺书少400本,科技书是文艺书的45。

文艺书有()本,科技书有()本。

(9)科技书比文艺书多400本,科技书比文艺书多45。

文艺书有()本,科技书有( )本。

(10)科技书比文艺书少400本,科技书比文艺书少45。

文艺书有()本,科技书有( )本.6.(1)一本故事书,已看了它的14正好是50页,这本故事书有()页。

(2)一本故事书,第一天看了它的14,第二天看了它的25。

两天共看了130页,这本故事书是()页.(3)一本故事书,第一天看了它的14,第二天看了它的25.第一天比第二天少看30页,这本故事书是()页.(4)一本故事书,第一天看了它的14,第二天看了它的25.还剩下70页没看,这本故事书( )页。

(完整版)六年级奥数分数百分数应用题汇总,推荐文档

(完整版)六年级奥数分数百分数应用题汇总,推荐文档

分数百分数应用题一、单位“1”定长短。

1)两根1米长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?3)一根绳子,第一次用去1/4,第二次用去1/4米。

哪一次用去的长一些?4)一根绳子,第一次用去4/7,第二次用去4/7米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去1/3,第二次用去1/3米。

哪一次用去的长一些?6)一根绳子分两次用完,第一次用去2/3,第二次用去余下的部分。

哪一次用去的长一些?练一练:1)两根1米长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?3)一根绳子,第一次用去1/6,第二次用去1/6米。

哪一次用去的长一些?3)一根绳子,第一次用去3/5,第二次用去2/5米。

哪一次用去的长一些?4)一根绳子分两次用完,第一次用去2/5,第二次用去3/5米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去3/8,第二次用去余下的部分。

哪一次用去的长一些?二、量率对应1、修一条水渠,已经修好了2/5.(1)水渠全长20千米,已经修了的比剩下没修的少多少千米?(2)正好已经修了8千米,这条水渠全长多少千米?(3)还剩12千米没修,已经修了多少千米?(4)已经修好了的比剩下没修好的少4千米,还剩下多少千米没修?2、六年级一班,男学生人数相当于女学生人数的4/5,问:(1)女生20人,全班多少人?(2)男生人数比女生人数少4人,女生有多少人?(3)男生16人,女生人数比男生人数多多少人?(4)全班36人,男生有多少人?3、等候公共汽车的人整齐的排成一排,小明也在其中。

他数了数,排在他前面的人数是总人数的2/3,排在他后面的是总人数的1/4.小明排在第几位?4、 甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买86一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱4916正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人111数正好相等。

分数、百分数应用题及答案

分数、百分数应用题及答案

分数、百分数应用题知识梳理:1、求一个数是另一个数的几分之几(或百分之几),用等式表示三种量得关系:分量÷单位“1”的量=分率(或百分率)2、已知一个数,求它的几分之几(或百分之几)是多少,用等式表示三种量的关系:单位“1”的量×分率(或百分率)=分量3、已知一个数的几分之几(或百分之几)是多少,求这个数,用等式表示三种量的关系:分量÷分率(或百分率)=单位“1”的量4、工程问题工程问题是分数应用题的特例,它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

工作总量、工作效率、工作时间之间的关系是:工作总量=工作效率×工作时间工作时间=工作总量÷工作效率工作效率=工作总量÷工作时间工作总量÷工作效率之和=工作时间5、浓度问题浓度问题是一种研究溶液配比的百分数应用题。

基本数量关系有:溶液质量=溶质质量/溶液质量×100%=溶质质量/(溶质质量+溶剂质量)×100%溶质质量=溶液浓度×溶液质量溶液质量=溶质质量÷溶液浓度6、纳税与银行利息问题依法纳税是每个公民应有的义务。

把应缴纳的税款叫做应纳税额,应纳税额与收入的百分比叫做利率。

基本数量关系有:总利息=本金×利率×时间个人应得利息=总利息×(1-利息税税率)利率=总利息÷本金÷时间×100%本金=总利息÷利率÷时间7、折扣与商品利润问题工厂或商店有时减价出售商品,通常我们把它称为“打折”出售,几折就是百分之几十。

利润问题亦是一种常见的百分数应用题。

一般情况下,从厂家购进商品的价格称为成本价。

商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本价的百分比就称为利润率。

基本数量关系:利润率=(售价-成本价)/成本价×100%售价=成本价×(1+利润率)成本价=售价÷(1+利润率)定价=成本价×(1+期望利润率)期望利润=成本价×期望利润率基础练习1、一桶油第一次取出总数的10%,第二次取出剩下的20%,两次共取出28升。

六年级数学分数百分数应用题含答案

六年级数学分数百分数应用题含答案

分数、百分数应用题(1)1、某商品如果进价降低10%,售价不变,那么毛利率(%100⨯-进价进价售价)可增加12%,那么原来这种商品售出的毛利率是多少?2、某个体服装商将一件服装连续两次降价15%,售价为289元,已知这件服装的进价是原标价的70%,问这件服装卖出后可赚多少元?3、甲、乙两种商品成本共200元,商品甲按30%的利润定价,商品乙按20%的利润定价,后来应顾客的请求,两种商品都按定价的90%出售,结果仍获利润27.7元,问商品甲的成本是多少元?4、某商品每件的成本是72元,原来按定价出售,每天可出售100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加多少元?5、商店卖红、蓝两种笔,红笔定价5元,蓝笔定价9元,小明由于买的数量较多,商店就打折扣,红笔按定价的85%出售,蓝笔按定价的80%出售,结果小明付的钱就少了18%。

已知小明买了蓝笔30支,问红笔买了几支?6、公园出售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上团体票者可优惠10%。

(1)甲单位45人逛公园,按以上规定买票,最少应付多少元?(2)乙单位208人逛公园,按以上规定买票,最少应付多少钱?7、某出版社出版的某种书,今年每册书的成本比去年增加了10%,但是仍保持原售价,因此每本利润下降了40%,那么今年这本书的成本在定价中所占的百分数是多少?8、某出版社出版的某种书,今年每册书的成本比去年增加了10%,但是仍保持原售价,因此每本利润下降了40%,但今年的发行数量比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是多少?9、甲、乙、丙三种糖果每千克分别是14元、10元、8元,现把甲种糖果4千克,乙种糖果3千克,丙种糖果5千克混合在一起,问买2千克这种糖果需要多少钱?10、商品按原定价出售,每件利润为成本的25%,后来按原定价的90%出售,结果每天售出的件数比降价前增加了1.5倍,每天经营这种商品的总利润比降价前增加了百分之几?11、董事长在懂事会上说:“先生们,根据分路营运的实际收益,我们要支付的股息十全部股份的6%,但是有400万元的优先股我们必须支付7. 5%的股息,所以我们对普通股只能支付5%的股息了。

分数百分数应用题(含答案)

分数百分数应用题(含答案)

问题:35、甲乙二人各有人民币若干元,其中甲占60%,若乙给甲12元后,乙剩下的钱相当于甲的1/3,甲乙二人共有人民币多少元?36、甲乙二人各有人民币若干元,乙是甲的2/3,若乙给甲12元,则乙相当于甲的1/3,甲乙二人共有人民币多少元?37、四位同学共种树60棵,第一位同学种的是其它同学种的一半,第二位同学种的是其它同学种的1/3,第三位同学种的是其它同学种的1/4,第四位同学种了多少棵?38、甲乙二人同时从东镇到西镇,甲走了全程的2/5时,乙只走了9.6千米,当甲到达西镇时,乙离西镇还有全程的3/11,求东西两镇的距离。

39、一年级甲班学生人数等于乙班学生人数的1.125倍,甲班学生全部是少先队员,乙班学生中有10人尚没入队,已知甲班队员人数是乙班队员的1.5倍,甲乙两班各有多少人?40、五年级甲乙丙三班共有学生138人,上期甲班比乙班多4人,本期开学初,调整人数,重新编班,把丙班人数的2/5编入甲班,3/5编入乙班,这样乙班比甲班多4人,求编班前各班的人数。

41、一年级甲班少先队员占全班人数的3/5,比乙班全班人数少13人,已知甲班比乙班多9人,求甲乙两班各几人?42、某校有学生若干人,男生比全校学生总数的1/3多144人,女生比全校学生总数的3/5少40人,求全校学生总数.43、地里收了一批西红柿,上午将全部的1/3都装完,正好装了3筐,下午把剩下的装了5筐后,还剩25千克没装,这批西红柿一共有多少千克?44、光华机械厂,两天生产了一批零件,用同样的箱子包装,第一天完成总数的3/7装满3箱还剩120个,第二天生产的零件正好装了6箱,这批零件共有多少个?45、五个连续自然数,其中第三个比一、一两个数的和的5/9少2,第三个数是多少?46、五个连续自然数中,最小的一个自然数等于这五个数的和的1/6,这五个数的和是多少?47、某校六年级有学生152人,选出男生的1/11和5名女生参加数学竞赛,剩下的男女人数相等,六年级男女生各有多少人?48、某工厂选出男职工的1/11和12名女工,去参加拔河比赛,剩下的男职工人数是女职工的2倍,已知这个厂共有职工476人,问男女职工各有多少人?49、一辆车从甲地到乙地,平均每小时行80千米,返回时所用的时间比去时少20%,返回时每小时行多少千米?50、王芳和李华在为“希望工程献爱心”的活动中共捐款252元,如果李华的捐款数再增加1/3,那么王芳和李华的捐款数之比为3:2,王芳和李华各捐了多少元?51、师徒二人加工同样的机器零件,徒弟12天加工的个数比师傅10天加工的个数还少40个,师傅与徒弟每天工作量的比是13:10,师傅每天加工多少个?52、师徒二人共同生产一种零件,师傅比徒弟每小时多生产10个,师傅生产了7小时徒弟生产了4小时,正好完成任务,完成任务时徒弟生产的零件的个数是师傅的20/21,师徒共生产零件多少个?53、一辆汽车以每小时80千米的速度从甲城开往乙城,返回时用原速走了全程的3/4还多10千米,余下的路程每小时行60千米,因此返回甲城的时间去去时多用了10分钟,甲乙两城相距多少千米?54、甲乙两人同时由A地到B地,甲乘汽车每小时行80千米,乙骑摩托车每小时行72千米,结果甲比预定时间早到了15分钟,而乙则迟到了10分钟,A、B两地的距离是多少千米?55、甲乙两人共存钱195元,甲取出自己存款的1/5,乙取出15元,二人剩下的存款相等,甲乙二人原来各存款多少元?答案:35、甲乙二人各有人民币若干元,其中甲占60%,若乙给甲12元后,乙剩下的钱相当于甲的1/3,甲乙二人共有人民币多少元?根据:若乙给甲12元后,乙剩下的钱相当于甲的1/3,可以得出:乙的钱数占两人总钱数的1/4,甲的钱数占两人总钱数的3/4。

分数,百分数的应用题

分数,百分数的应用题

分数,百分数的应用题(含详细解答)好的,以下是35道分数、百分数的应用题及其解答过程:1. 小明考试得了27分,占总分的45%,那么这场考试的总分是多少分?解答:设总分为x,则由题意得27/x=0.45,解得x=60,因此这场考试的总分是60分。

2. 一条裤子原价是320元,现在打5折出售,折后价格是多少?解答:折后价格为320×0.5=160元。

3. 甲乙两人同时从A点出发,相向而行,甲每小时走5公里,乙每小时走7公里,多少小时后他们相遇?解答:设相遇时间为t小时,则由题意得5t+7t=12t=AB,其中AB为A点到B点的距离。

已知A、B两点距离为12公里,因此t=1,所以他们相遇的时间为1小时。

4. 甲、乙、丙三个人完成一项工作需要8天,甲、丙两人一起完成同样的工作需要12天,那么乙独立完成这项工作需要多少天?解答:设乙独立完成这项工作需要t天,则有1/8=1/12+1/t,解得t=24,因此乙独立完成这项工作需要24天。

5. 小明买了一本原价为28元的书,打8折后用一张50元的钞票付款,找回多少钱?解答:书的折后价格为28×0.8=22.4元,小明用50元钞票付款,找回的钱为50-22.4=27.6元。

6. 有两个数的和为70,两数之比为3:2,求这两个数。

解答:设两个数分别为3x和2x,则由题意得5x=70,解得x=14,因此这两个数分别为42和28。

7. 水果店购进了200斤苹果,其中有20%是烂掉的,店主把好的苹果以每斤3.5元的价格卖出,亏了120元,那么店主买进每斤苹果的价格是多少元?解答:好的苹果有80%×200斤=160斤,店主卖出的苹果收入为160×3.5元=560元,因此总成本为560+120=680元。

设每斤苹果的进价为x元,则有0.8×200x=680,解得x=4.25元,因此店主买进每斤苹果的价格是4.25元。

8. 甲、乙两人合伙开了一家小卖部,甲出资3万元,乙出资2万元,半年后两人共获利4万元,按照各自出资的比例分配利润,甲能分到多少万元?解答:甲和乙出资的比例为3:2,因此甲能分到的利润为4×3/(3+2)=2.4万元。

分数百分数应用题(含答案)

分数百分数应用题(含答案)

问题:35、甲乙二人各有人民币若干元,其中甲占60%,若乙给甲12元后,乙剩下的钱相当于甲的1/3,甲乙二人共有人民币多少元?36、甲乙二人各有人民币若干元,乙是甲的2/3,若乙给甲12元,则乙相当于甲的1/3,甲乙二人共有人民币多少元?37、四位同学共种树60棵,第一位同学种的是其它同学种的一半,第二位同学种的是其它同学种的1/3,第三位同学种的是其它同学种的1/4,第四位同学种了多少棵?38、甲乙二人同时从东镇到西镇,甲走了全程的2/5时,乙只走了9.6千米,当甲到达西镇时,乙离西镇还有全程的3/11,求东西两镇的距离。

39、一年级甲班学生人数等于乙班学生人数的1.125倍,甲班学生全部是少先队员,乙班学生中有10人尚没入队,已知甲班队员人数是乙班队员的1.5倍,甲乙两班各有多少人?40、五年级甲乙丙三班共有学生138人,上期甲班比乙班多4人,本期开学初,调整人数,重新编班,把丙班人数的2/5编入甲班,3/5编入乙班,这样乙班比甲班多4人,求编班前各班的人数。

41、一年级甲班少先队员占全班人数的3/5,比乙班全班人数少13人,已知甲班比乙班多9人,求甲乙两班各几人?42、某校有学生若干人,男生比全校学生总数的1/3多144人,女生比全校学生总数的3/5少40人,求全校学生总数.43、地里收了一批西红柿,上午将全部的1/3都装完,正好装了3筐,下午把剩下的装了5筐后,还剩25千克没装,这批西红柿一共有多少千克?44、光华机械厂,两天生产了一批零件,用同样的箱子包装,第一天完成总数的3/7装满3箱还剩120个,第二天生产的零件正好装了6箱,这批零件共有多少个?45、五个连续自然数,其中第三个比一、一两个数的和的5/9少2,第三个数是多少?46、五个连续自然数中,最小的一个自然数等于这五个数的和的1/6,这五个数的和是多少?47、某校六年级有学生152人,选出男生的1/11和5名女生参加数学竞赛,剩下的男女人数相等,六年级男女生各有多少人?48、某工厂选出男职工的1/11和12名女工,去参加拔河比赛,剩下的男职工人数是女职工的2倍,已知这个厂共有职工476人,问男女职工各有多少人?49、一辆车从甲地到乙地,平均每小时行80千米,返回时所用的时间比去时少20%,返回时每小时行多少千米?50、王芳和李华在为“希望工程献爱心”的活动中共捐款252元,如果李华的捐款数再增加1/3,那么王芳和李华的捐款数之比为3:2,王芳和李华各捐了多少元?51、师徒二人加工同样的机器零件,徒弟12天加工的个数比师傅10天加工的个数还少40个,师傅与徒弟每天工作量的比是13:10,师傅每天加工多少个?52、师徒二人共同生产一种零件,师傅比徒弟每小时多生产10个,师傅生产了7小时徒弟生产了4小时,正好完成任务,完成任务时徒弟生产的零件的个数是师傅的20/21,师徒共生产零件多少个?53、一辆汽车以每小时80千米的速度从甲城开往乙城,返回时用原速走了全程的3/4还多10千米,余下的路程每小时行60千米,因此返回甲城的时间去去时多用了10分钟,甲乙两城相距多少千米?54、甲乙两人同时由A地到B地,甲乘汽车每小时行80千米,乙骑摩托车每小时行72千米,结果甲比预定时间早到了15分钟,而乙则迟到了10分钟,A、B两地的距离是多少千米?55、甲乙两人共存钱195元,甲取出自己存款的1/5,乙取出15元,二人剩下的存款相等,甲乙二人原来各存款多少元?答案:35、甲乙二人各有人民币若干元,其中甲占60%,若乙给甲12元后,乙剩下的钱相当于甲的1/3,甲乙二人共有人民币多少元?根据:若乙给甲12元后,乙剩下的钱相当于甲的1/3,可以得出:乙的钱数占两人总钱数的1/4,甲的钱数占两人总钱数的3/4.12÷(3/4-60%)=80元36、甲乙二人各有人民币若干元,乙是甲的2/3,若乙给甲12元,则乙相当于甲的1/3,甲乙二人共有人民币多少元?根据:乙是甲的2/3得出:乙占两人总钱数的2/5根据:乙相当于甲的1/3得出:乙的钱数占两人总钱数的1/412÷(2/5-1/4)=80元37、四位同学共种树60棵,第一位同学种的是其它同学种的一半,第二位同学种的是其它同学种的1/3,第三位同学种的是其它同学种的1/4,第四位同学种了多少棵?根据:第一位同学种的是其它同学种的一半得出:第一位同学种的是四人总数的1/3根据:第二位同学种的是其它同学种的1/3得出:第二位同学种的是四人总数的1/4根据:第三位同学种的是其它同学种的1/4得出:第三位同学种的是四人总数的1/560*(1-1/3-1/4-1/5)=13棵38、甲乙二人同时从东镇到西镇,甲走了全程的2/5时,乙只走了9.6千米,当甲到达西镇时,乙离西镇还有全程的3/11,求东西两镇的距离。

小学数学分数、百分数应用题(含答案)

小学数学分数、百分数应用题(含答案)

分数、百分数应用题(一)知识框架一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1 199÷=.二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【论文】-分数、百分数应用题及答案-(word)可编辑分数、百分数应用题
1、一桶油第一次取出总数的10,,第二次取出剩下的20,,两次共取出28
升。

这桶油共有多少升?
、一桶柴油,第一次用了全桶的20,,第二次用去20千克,第三次用了前两次的和,这时桶里还2
剩8千克油(问这桶油有多少千克,
3、服装厂一车间人数占全厂的25%,二车间人数比一车间少`1/5`,三车间人数比二车间多`3/10`,三车间是156人,这个服装厂全厂共有多少人,
4、加工一批零件,甲乙二人合作需12天完成;现由甲先工作3天,然后由乙工作2天还剩这批零件`4/5`没完成. 已知甲每天比乙少加工4个,这批零件共有多少个, 的
5、某商店同时卖出两件商品,每件各得60元,但其中一件赚20,,另一件亏本20,,问这个商店卖出这两件商品是赚钱还是亏本,赚多少,亏多少,
6、甲、乙两只装有糖水的桶,甲桶有糖水60千克,含糖率4,,乙桶有糖水40千克,含糖率为20,,两桶互相交换多少千克才能使两桶糖水的含糖率相等,
7、现有浓度为10,的盐水20千克,再加入多少千克浓度为30,的盐水,可以得到浓度为22,的盐水,
8、在浓度为40,的酒精溶液中加入5千克水,浓度变为30,,再加入多少千克酒精,浓度变为50,,
9、一批商品,按期望获得 50,的利润来定价。

结果只销掉 70,的商品。

为尽早销掉剩下的商品,商店决定按定价打折扣销售。

这样所获得的全部利润,是原来期望利润的91,,问:打了多少折扣
10、一列火车从甲地开往乙地,如果将车速提高20,,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25,,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度。

答案
1、100
2、80
3、600
4、240
5、亏5元
6、24
7、30
8、8
9、九折
10、540千米,90千米/小时
解析:速度比为 1:(1+20%)=5:6,时间比为 6:5.
由于车速提高20%,可比原计划提前1小时,而6与5正好多1份,
因此1份是1小时,于是原速行完全程需6小时。

速度比:1:(1+25%)=4:5,时间比为5:4,
因此,5:4=6:x x=4.8,
6-4.8=1.2小时=72分钟,
32240?=540千米, 72
540?6=90千米/小时。

相关文档
最新文档