多模态论文
《2024年面向深度学习的多模态融合技术研究综述》范文

《面向深度学习的多模态融合技术研究综述》篇一一、引言在数字化和信息化的时代,随着多源信息感知技术的发展,图像、音频、文本等多模态数据的处理显得越来越重要。
而多模态融合技术正是结合多种不同模态的数据信息,实现多角度、多层次的信息融合,以提升信息处理的准确性和效率。
本文旨在全面梳理和总结面向深度学习的多模态融合技术研究现状及发展趋势。
二、多模态数据与多模态融合技术多模态数据指的是不同类型、不同来源的数据,如图像、音频、文本等。
这些数据具有不同的表达方式和信息特征,可以提供更全面、更丰富的信息。
而多模态融合技术则是将不同模态的数据进行融合,以实现信息的互补和增强。
三、深度学习在多模态融合中的应用深度学习作为一种强大的机器学习方法,已经在多模态融合中得到了广泛应用。
通过深度学习技术,可以有效地提取和融合不同模态的数据特征,提高信息处理的准确性和效率。
在图像与文本的融合、音频与文本的融合等方面,深度学习都取得了显著的成果。
四、多模态融合技术的研究现状目前,多模态融合技术的研究主要集中在以下几个方面:1. 特征提取:通过深度学习技术,从不同模态的数据中提取有效的特征信息。
2. 特征融合:将提取的特征信息进行融合,以实现信息的互补和增强。
3. 跨模态关联学习:通过建立不同模态之间的关联关系,提高信息的利用效率和准确性。
4. 多模态交互技术:通过引入交互式模型和注意力机制等方法,提高多模态融合的效果和效率。
五、多模态融合技术的发展趋势未来,多模态融合技术的发展将呈现以下几个趋势:1. 跨领域应用:多模态融合技术将更加广泛地应用于各个领域,如医疗、教育、娱乐等。
2. 高效性提升:随着算法和硬件的不断发展,多模态融合技术的处理效率将得到进一步提升。
3. 跨语言和跨文化研究:随着全球化和多元文化的趋势加强,跨语言和跨文化的多模态融合技术将逐渐成为研究热点。
4. 数据共享与协同计算:利用云服务和分布式计算等技术实现跨设备、跨平台的多模态数据共享和协同计算。
《2024年多模态深度学习综述》范文

《多模态深度学习综述》篇一一、引言随着人工智能技术的快速发展,多模态深度学习逐渐成为研究热点。
多模态深度学习旨在整合不同模态的数据信息,通过深度学习技术实现跨模态的交互与理解。
本文将对多模态深度学习的研究现状、关键技术、应用领域及未来发展趋势进行综述。
二、多模态深度学习概述多模态深度学习是一种跨学科的研究领域,涉及计算机视觉、自然语言处理、语音识别等多个领域。
其核心思想是将不同模态的数据(如文本、图像、音频等)进行融合,以便更好地理解和分析信息。
多模态深度学习在处理复杂任务时具有显著优势,如跨语言翻译、视频理解、情感分析等。
三、关键技术研究1. 数据表示:多模态深度学习的首要任务是建立不同模态数据之间的联系。
这需要设计有效的数据表示方法,将各种模态的数据转化为统一的表示形式,以便进行后续的深度学习处理。
2. 特征提取:特征提取是多模态深度学习的关键技术之一。
通过深度神经网络,可以从原始数据中提取出有用的特征信息,为后续的分类、聚类等任务提供支持。
3. 跨模态交互:跨模态交互是多模态深度学习的核心。
通过设计各种跨模态交互模型,实现不同模态数据之间的信息融合与交互。
4. 模型训练与优化:为提高多模态深度学习模型的性能,需要设计有效的模型训练与优化方法。
这包括损失函数的设计、模型参数的调整、训练策略的优化等。
四、应用领域多模态深度学习在多个领域得到了广泛应用,如:1. 跨语言翻译:通过融合文本和图像信息,提高翻译的准确性和流畅性。
2. 视频理解:结合视觉和音频信息,实现视频内容的准确理解与分析。
3. 情感分析:通过分析文本、语音和图像等多种模态的信息,推断出用户的情感状态。
4. 智能问答系统:整合文本、图像和语音等多种信息源,为用户提供更加智能化的问答服务。
5. 虚拟现实与增强现实:通过多模态交互技术,提供更加沉浸式的体验。
五、未来发展趋势随着技术的不断发展,多模态深度学习在未来将呈现以下发展趋势:1. 数据融合:随着多模态数据的不断增加,如何有效地融合不同模态的数据将成为研究重点。
课题研究论文:多模态教学模式在高职英语教学中的应用分析

140107 职业教育论文多模态教学模式在高职英语教学中的应用分析随着信息化教育事业的快速发展,教学资源和教学手段愈加丰富多样,对高职英语教学提出了更高的要求,传统的黑板教学已经无法适应现代化教育的发展,这就需要利用多媒体和网络教育资源来优化教学,更好地符合时代潮流。
而多模态教学模式作为一种新型的方式,是以文字语言为中心,将其用于高职英语教学中,可以很好地改变语言交际方式,激发学生的学习兴趣,进一步提高英语教学水平,实现预期的教学目标。
一、多模态教学模式概述模态主要是指人们借助触觉、味觉、听觉和视觉等对外部世界进行感知,而多模态包括三维立体、图像、图表、书面语、口等符号资源,指的是在交流活动或交流成品中涉及的不同符合模式,或者是特定文本条件下对不同构建意义和符号资源加以调动的各种方式,有利于强化记忆。
通常多模态教学模式提倡通过活动、肢体、影像和图片等形式刺激学习者的感知,使?W习者产生深刻的印象,培养学习者的多元化能力,提高教学质量和教学效果。
在多模态教学过程中,学习者需要存储、编码、理解和感知接受的信息,通过存聚的输入性知识和信息为有意识与无意识的语言输出提供有力保障,形成良性的学习循坏,促进学习者认知能力的完善、记忆能力的提高和知识的习得等。
二、多模态教学模式在高职英语教学中的应用(一)创建教学课件在高职英语教学中应用多模态教学模式时,必须要保证教学课件具有多样化的信息载体,集动画、文字、图像、声音于一体,优化整合多种教学目标,提供丰富灵活的教学方式,更好地调动学生多种感官,使学生构建科学完整的知识框架体系。
当然多模态教学课件的运用,能够让学生对各种信息进行灵活处理,有效传递与构建具有意义的课件,这样的方式对课件制作人提出了更高的要求,需要其具备专业的知识,如心理学知识和相关认知知识等,熟练掌握多媒体技术和学生需求。
此外,传统的高职英语教学过程中多是采用声音和文本两种模态,学生只能从听觉和视频方面获取与感知信息,或者是理解与使用语音中的语言符号,以便完成教学目的与培养能力。
《2024年面向深度学习的多模态融合技术研究综述》范文

《面向深度学习的多模态融合技术研究综述》篇一一、引言在数字化和信息化的时代,信息处理已经进入到了多模态的时代。
多种不同类型的信息源(如图像、文本、语音等)需要进行跨模态融合以更好地利用它们所蕴含的丰富信息。
面向深度学习的多模态融合技术,正是为了解决这一需求而发展起来的重要技术。
本文旨在全面综述多模态融合技术在深度学习领域的研究现状,分析其发展趋势和挑战,为后续研究提供参考。
二、多模态融合技术概述多模态融合技术是指将来自不同模态的信息进行融合处理的技术。
这些信息可以是图像、文本、语音等不同类型的数据。
通过多模态融合技术,可以有效地提高信息处理的准确性和效率,同时也能提供更丰富的信息表达方式。
三、深度学习在多模态融合中的应用深度学习作为一种强大的机器学习技术,已经在多模态融合领域得到了广泛应用。
通过深度学习技术,可以自动地学习和提取不同模态数据的特征,并进行跨模态的匹配和融合。
此外,深度学习还可以通过构建复杂的神经网络模型,实现多模态信息的协同处理和表达。
四、多模态融合技术的研究现状目前,多模态融合技术已经成为了深度学习领域的研究热点之一。
研究者们从不同的角度出发,提出了多种不同的多模态融合方法。
其中,基于深度学习的多模态融合方法主要包括以下几种:1. 早期融合:在数据预处理阶段进行不同模态数据的融合。
2. 晚期融合:在特征提取或模型输出阶段进行不同模态信息的融合。
3. 跨模态特征学习:通过共享不同模态数据的特征空间,实现跨模态的匹配和融合。
此外,还有一些其他的方法,如基于注意力机制的多模态融合方法、基于图卷积网络的多模态融合方法等。
这些方法都在一定程度上提高了多模态信息处理的准确性和效率。
五、多模态融合技术的发展趋势和挑战随着深度学习技术的不断发展,多模态融合技术也将继续发展。
未来的发展趋势主要包括以下几个方面:1. 跨模态语义理解:通过深度学习技术,实现不同模态之间的语义理解和表达。
2. 动态融合机制:通过引入动态的融合机制,实现不同场景下不同信息的灵活融合。
《2024年多模态深度学习综述》范文

《多模态深度学习综述》篇一一、引言随着信息技术的飞速发展,数据呈现出多元化、异构化的特点,这为人工智能的深度学习带来了新的挑战与机遇。
多模态深度学习正是在这一背景下兴起的新型技术,其能处理多种不同类型的数据(如文本、图像、音频、视频等),并且结合不同模态间的信息交互来提高处理和分析的准确率。
本文将对多模态深度学习进行综述,分析其原理、技术发展以及应用现状。
二、多模态深度学习的基本原理多模态深度学习是指利用深度学习技术对来自不同模态的数据进行联合建模和特征提取的过程。
其基本原理包括数据预处理、特征提取、信息融合和模型训练四个步骤。
首先,对来自不同模态的数据进行预处理,包括数据清洗、格式转换等;然后,利用深度学习技术对每种模态的数据进行特征提取;接着,通过信息融合技术将不同模态的特征进行整合;最后,通过模型训练得到多模态联合模型。
三、多模态深度学习的技术发展多模态深度学习的技术发展经历了从早期简单的多模态特征融合到现在的深度多模态联合建模的过程。
早期的方法主要依赖于手工设计的特征提取方法,而随着深度学习技术的发展,现在的方法更多地依赖于深度神经网络进行特征提取和联合建模。
此外,随着技术的发展,多模态学习的应用场景也在不断扩大,从最初的图像和文本处理扩展到语音识别、视频理解等多个领域。
四、多模态深度学习的应用现状多模态深度学习在各个领域都得到了广泛的应用。
在图像处理领域,多模态深度学习可以结合文本信息进行图像理解;在语音识别领域,可以利用多模态技术提高语音识别的准确率;在自然语言处理领域,可以利用图像或视频等多模态信息进行语义理解和文本生成。
此外,在智能家居、自动驾驶、人机交互等领域也有广泛的应用前景。
五、多模态深度学习的挑战与展望虽然多模态深度学习取得了显著的成果,但仍面临一些挑战。
首先,如何有效地融合不同模态的数据是一个重要的问题。
不同模态的数据具有不同的特征和表示方式,如何将它们有效地融合在一起是一个难题。
多模态语篇分析论文

多模态语篇分析论文摘要:多模态话语语篇分析不仅仅从语篇层面对语篇进行解读,而且也关注图像、声音、动画等其他构成意义的符号系统。
它丰富了语篇分析的视角与方法,对促进语篇分析的发展起着重要的作用。
本文以系统功能语法为理论基础,从社会符号学视角,对2013辽宁全运会会徽的再现意义、互动意义以及构图意义进行了探讨,揭示了图像的意义浅释,诠释了制图者的意图。
让读者在遇到图像文字类语篇时,能够注意到制图者的意图,以提高对多模态话语的识读能力。
关键词:多模态语篇分析;系统功能语法;视觉语法;识读能力第一章前言多模态语篇分析以以系统功能语言学理论为基础,尝试把系统功能语言学对于语言研究的方法应用到其他符号资源的研究上。
多模态分析的目的在于把这些不同交流模态所体现的再现意义、互动意义和构成意义融合起来考虑,分析它们是如何共同创造出一个完成的语篇。
本文运用Halliday的系统功能语法和Kress&Vanleeuwen 的多模态话语分析方法,以2013年辽宁全运会的会徽为例,进行多模态话语的社会符号学分析,从图像的再现意义、互动意义以及构图意义对辽宁全运会会徽展开多模态话语分析,探讨图像作为社会符号和语言作为符合如何共同作用构成意义的手段和方法,以提高读者多模态识读能力。
第二章从2013辽宁全运会会徽分析看多模态语篇的社会符号学分析一、再现意义多模态语篇分析的再现意义对应于系统功能语法的概念功能。
Kress&VanLeeuwen在再现意义上,将其分为叙事的和概念的两大类。
其中叙事的再现包括行为过程、言语过程和心理过程,而概念的再现包括关系过程和存在过程。
(朱永生,2007)辽宁全运会会徽图案庄重大气的数字12造型(表示了第十二届全运会)、辽宁拼音缩写LN造型、灵动优美的中华龙鸟造型以及动感有力的运动人性巧妙同构。
叙事再现展示了发展中的动作和事件、变化的过程、瞬息间的空间安排,它又可分为过程和情景两大类。
多模态数据的交叉学习方法论文

多模态数据的交叉学习方法论文
本文将介绍多模态数据的交叉学习方法。
由于多模式数据具有不同的特性和类型,其分析实际上比独立模态的分析更难实现。
因此,在现有的研究中,人们致力于探索一种跨模型的机器学习方法来分析多模态数据。
在这里,我们将介绍一种新的交叉学习(cross-modal learning)方法,用于多模态数据分析。
该方法会将多个模态中的信息整合起来,并使用多模态特征之间的相关性来促进推理和决策结果。
首先,它会针对每个模态构建一个模型,然后将这些模型级联起来构建一个多模态模型。
每个模态的模型都会从不同的角度去预测特定的结果,而这些预测的结果将会被级联的模型用来确定最佳的输出。
借助这种交叉学习方法,可以利用模型之间的信息整合和相关性达到更好的分析效果。
另外,通过增强模型之间的关系和同步,对于多模态数据分析的准确性有着很大的改善。
在分析
过程中,通过混合各种模态的特征,可以获得更有效的结果。
综上所述,通过构建多模态之间的关联,我们可以更快更准确地完成多模态数据的分析。
这种交叉学习方法的有效性已经由实际的研究结果证明,并且可以应用于许多不同的场景。
未来,借助这种多模态数据分析方法,我们可以更全面地解决许多实际问题。
《2024年多模态数据融合综述》范文

《多模态数据融合综述》篇一一、引言随着信息技术的飞速发展,多模态数据融合已经成为数据科学领域中一个重要的研究方向。
多模态数据融合指的是将来自不同模态的数据进行有效整合与利用,以提高数据信息的表达与处理能力。
这种技术的出现不仅提高了数据处理和分析的准确性,同时也极大地拓宽了各种应用领域的范围,包括机器翻译、自动驾驶、医学诊断、智能家居等。
二、多模态数据融合的概念多模态数据融合是指将来自不同类型的数据源(如文本、图像、音频、视频等)进行整合与处理的过程。
这些数据源具有不同的表达方式和信息维度,通过融合可以获得更全面、更丰富的信息。
多模态数据融合的目的是将不同模态的数据进行互补和协同,以获得更准确、更全面的信息表达。
三、多模态数据融合的方法多模态数据融合的方法主要包括特征级融合、决策级融合和混合融合等。
1. 特征级融合:在特征提取阶段将不同模态的数据进行融合,提取出有用的特征并进行后续的分类或回归等任务。
这种方法可以充分利用不同模态数据的互补性,提高数据的表达能力。
2. 决策级融合:在决策阶段将不同模型的输出进行融合,以获得更准确的决策结果。
这种方法可以充分利用不同模型的优点,提高决策的准确性和鲁棒性。
3. 混合融合:结合特征级融合和决策级融合的优点,先进行特征提取和初步的决策分析,然后再进行更高层次的融合。
这种方法可以充分发挥不同融合方法的优势,提高多模态数据融合的效果。
四、多模态数据融合的应用多模态数据融合在各个领域都有广泛的应用。
例如,在医学诊断中,可以通过融合病人的病史、症状描述、医学图像和生理数据等信息,提高诊断的准确性和可靠性;在自动驾驶中,可以通过融合雷达、激光雷达、摄像头等传感器数据,实现更准确的车辆定位和障碍物检测;在智能家居中,可以通过融合用户的语音指令、行为习惯和家庭环境等信息,为用户提供更加智能化的服务。
五、多模态数据融合的挑战与展望虽然多模态数据融合已经取得了很大的进展,但仍面临着一些挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A DAM :A M ETHOD FOR S TOCHASTIC O PTIMIZATIONDiederik P.Kingma *University of Amsterdam,OpenAIdpkingma@Jimmy Lei Ba ∗University of Torontojimmy@psi.utoronto.caA BSTRACTWe introduce Adam ,an algorithm for first-order gradient-based optimization of stochastic objective functions,based on adaptive estimates of lower-order mo-ments.The method is straightforward to implement,is computationally efficient,has little memory requirements,is invariant to diagonal rescaling of the gradients,and is well suited for problems that are large in terms of data and/or parameters.The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients.The hyper-parameters have intuitive interpre-tations and typically require little tuning.Some connections to related algorithms,on which Adam was inspired,are discussed.We also analyze the theoretical con-vergence properties of the algorithm and provide a regret bound on the conver-gence rate that is comparable to the best known results under the online convex optimization framework.Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods.Finally,we discuss AdaMax ,a variant of Adam based on the infinity norm.1I NTRODUCTIONStochastic gradient-based optimization is of core practical importance in many fields of science and engineering.Many problems in these fields can be cast as the optimization of some scalar parameter-ized objective function requiring maximization or minimization with respect to its parameters.If the function is differentiable w.r.t.its parameters,gradient descent is a relatively efficient optimization method,since the computation of first-order partial derivatives w.r.t.all the parameters is of the same computational complexity as just evaluating the function.Often,objective functions are stochastic.For example,many objective functions are composed of a sum of subfunctions evaluated at different subsamples of data;in this case optimization can be made more efficient by taking gradient steps w.r.t.individual subfunctions,i.e.stochastic gradient descent (SGD)or ascent.SGD proved itself as an efficient and effective optimization method that was central in many machine learning success stories,such as recent advances in deep learning (Deng et al.,2013;Krizhevsky et al.,2012;Hinton &Salakhutdinov,2006;Hinton et al.,2012a;Graves et al.,2013).Objectives may also have other sources of noise than data subsampling,such as dropout (Hinton et al.,2012b)regularization.For all such noisy objectives,efficient stochastic optimization techniques are required.The focus of this paper is on the optimization of stochastic objectives with high-dimensional parameters spaces.In these cases,higher-order optimization methods are ill-suited,and discussion in this paper will be restricted to first-order methods.We propose Adam ,a method for efficient stochastic optimization that only requires first-order gra-dients with little memory requirement.The method computes individual adaptive learning rates for different parameters from estimates of first and second moments of the gradients;the name Adam is derived from adaptive moment estimation.Our method is designed to combine the advantages of two recently popular methods:AdaGrad (Duchi et al.,2011),which works well with sparse gra-dients,and RMSProp (Tieleman &Hinton,2012),which works well in on-line and non-stationary settings;important connections to these and other stochastic optimization methods are clarified in section 5.Some of Adam’s advantages are that the magnitudes of parameter updates are invariant to rescaling of the gradient,its stepsizes are approximately bounded by the stepsize hyperparameter,it does not require a stationary objective,it works with sparse gradients,and it naturally performs a form of step size annealing.∗Equal contribution.Author ordering determined by coin flip over a Google Hangout.a r X i v :1412.6980v 9 [c s .L G ] 30 J a n 2017Algorithm 1:Adam ,our proposed algorithm for stochastic optimization.See section 2for details,and for a slightly more efficient (but less clear)order of computation.g 2t indicates the elementwise square g t g t .Good default settings for the tested machine learning problems are α=0.001,β1=0.9,β2=0.999and =10−8.All operations on vectors are element-wise.With βt 1and βt2we denote β1and β2to the power t .Require:α:StepsizeRequire:β1,β2∈[0,1):Exponential decay rates for the moment estimates Require:f (θ):Stochastic objective function with parameters θRequire:θ0:Initial parameter vector m 0←0(Initialize 1st moment vector)v 0←0(Initialize 2nd moment vector)t ←0(Initialize timestep)while θt not converged do t ←t +1g t ←∇θf t (θt −1)(Get gradients w.r.t.stochastic objective at timestep t )m t ←β1·m t −1+(1−β1)·g t (Update biased first moment estimate)v t ←β2·v t −1+(1−β2)·g 2t (Update biased second raw moment estimate)m t ←m t /(1−βt1)(Compute bias-corrected first moment estimate)v t ←v t /(1−βt2)(Compute bias-corrected second raw moment estimate)θt ←θt −1−α· m t /(√ v t + )(Update parameters)end whilereturn θt (Resulting parameters)In section 2we describe the algorithm and the properties of its update rule.Section 3explains our initialization bias correction technique,and section 4provides a theoretical analysis of Adam’s convergence in online convex programming.Empirically,our method consistently outperforms other methods for a variety of models and datasets,as shown in section 6.Overall,we show that Adam is a versatile algorithm that scales to large-scale high-dimensional machine learning problems.2A LGORITHMSee algorithm 1for pseudo-code of our proposed algorithm Adam .Let f (θ)be a noisy objec-tive function:a stochastic scalar function that is differentiable w.r.t.parameters θ.We are in-terested in minimizing the expected value of this function,E [f (θ)]w.r.t.its parameters θ.With f 1(θ),...,,f T (θ)we denote the realisations of the stochastic function at subsequent timesteps 1,...,T .The stochasticity might come from the evaluation at random subsamples (minibatches)of datapoints,or arise from inherent function noise.With g t =∇θf t (θ)we denote the gradient,i.e.the vector of partial derivatives of f t ,w.r.t θevaluated at timestep t .The algorithm updates exponential moving averages of the gradient (m t )and the squared gradient (v t )where the hyper-parameters β1,β2∈[0,1)control the exponential decay rates of these moving averages.The moving averages themselves are estimates of the 1st moment (the mean)and the 2nd raw moment (the uncentered variance)of the gradient.However,these moving averages are initialized as (vectors of)0’s,leading to moment estimates that are biased towards zero,especially during the initial timesteps,and especially when the decay rates are small (i.e.the βs are close to 1).The good news is that this initialization bias can be easily counteracted,resulting in bias-corrected estimates m t and v t .See section 3for more details.Note that the efficiency of algorithm 1can,at the expense of clarity,be improved upon by changing the order of computation,e.g.by replacing the last three lines in the loop with the following lines:αt =α· t 2/(1−βt 1)and θt ←θt −1−αt ·m t /(√v t +ˆ ).2.1A DAM ’S UPDATE RULEAn important property of Adam’s update rule is its careful choice of stepsizes.Assuming =0,theeffective step taken in parameter space at timestep t is ∆t =α· m t /√ v t .The effective stepsize has two upper bounds:|∆t |≤α·(1−β1)/√1−β2in the case (1−β1)>√1−β2,and |∆t |≤αotherwise.The first case only happens in the most severe case of sparsity:when a gradient has been zero at all timesteps except at the current timestep.For less sparse cases,the effective stepsize will be smaller.When (1−β1)=√1−β2we have that | m t /√ v t |<1therefore |∆t |<α.In more common scenarios,we will have that m t /√ v t ≈±1since |E [g ]/ E [g 2]|≤1.The effective magnitude of the steps taken in parameter space at each timestep are approximately bounded by the stepsize setting α,i.e.,|∆t | α.This can be understood as establishing a trust region around the current parameter value,beyond which the current gradient estimate does not provide sufficient information.This typically makes it relatively easy to know the right scale of αin advance.For many machine learning models,for instance,we often know in advance that good optima are with high probability within some set region in parameter space;it is not uncommon,for example,to have a prior distribution over the parameters.Since αsets (an upper bound of)the magnitude of steps in parameter space,we can often deduce the right order of magnitude of αsuch that optima can be reached from θ0within some number of iterations.With a slight abuse of terminology,we will call the ratio m t /√ v t the signal-to-noise ratio (SNR ).With a smaller SNR the effective stepsize ∆t will be closer to zero.This is a desirable property,since a smaller SNR means that there is greater uncertainty about whether the direction of m t corresponds to the direction of the true gradient.For example,the SNR value typically becomes closer to 0towards an optimum,leading to smaller effective steps in parameter space:a form of automatic annealing.The effective stepsize ∆t is also invariant to the scale of the gradients;rescaling the gradients g with factor c will scale m t with a factor c and v t with a factor c 2,which cancel out:(c · m t )/(√c 2· v t )= m t /√ v t .3I NITIALIZATION BIAS CORRECTIONAs explained in section 2,Adam utilizes initialization bias correction terms.We will here derive the term for the second moment estimate;the derivation for the first moment estimate is completely analogous.Let g be the gradient of the stochastic objective f ,and we wish to estimate its second raw moment (uncentered variance)using an exponential moving average of the squared gradient,with decay rate β2.Let g 1,...,g T be the gradients at subsequent timesteps,each a draw from an underlying gradient distribution g t ∼p (g t ).Let us initialize the exponential moving average as v 0=0(a vector of zeros).First note that the update at timestep t of the exponential moving averagev t =β2·v t −1+(1−β2)·g 2t (where g 2t indicates the elementwise square g t g t )can be written as a function of the gradients at all previous timesteps:v t =(1−β2)t i =1βt −i 2·g 2i(1)We wish to know how E [v t ],the expected value of the exponential moving average at timestep t ,relates to the true second moment E [g 2t],so we can correct for the discrepancy between the two.Taking expectations of the left-hand and right-hand sides of eq.(1):E [v t ]=E (1−β2)ti =1βt −i 2·g 2i (2)=E [g 2t ]·(1−β2)t i =1βt −i2+ζ(3)=E [g 2t ]·(1−βt2)+ζ(4)where ζ=0if the true second moment E [g 2i ]is stationary;otherwise ζcan be kept small since the exponential decay rate β1can (and should)be chosen such that the exponential moving averageassigns small weights to gradients too far in the past.What is left is the term (1−βt2)which is caused by initializing the running average with zeros.In algorithm 1we therefore divide by this term to correct the initialization bias.In case of sparse gradients,for a reliable estimate of the second moment one needs to average over many gradients by chosing a small value of β2;however it is exactly this case of small β2where a lack of initialisation bias correction would lead to initial steps that are much larger.4C ONVERGENCE ANALYSISWe analyze the convergence of Adam using the online learning framework proposed in (Zinkevich,2003).Given an arbitrary,unknown sequence of convex cost functions f 1(θ),f 2(θ),...,f T (θ).At each time t ,our goal is to predict the parameter θt and evaluate it on a previously unknown cost function f t .Since the nature of the sequence is unknown in advance,we evaluate our algorithm using the regret,that is the sum of all the previous difference between the online prediction f t (θt )and the best fixed point parameter f t (θ∗)from a feasible set X for all the previous steps.Concretely,the regret is defined as:R (T )=Tt =1[f t (θt )−f t (θ∗)](5)where θ∗=arg min θ∈X Tt =1f t (θ).We show Adam has O (√T )regret bound and a proof is given in the appendix.Our result is comparable to the best known bound for this general convex online learning problem.We also use some definitions simplify our notation,where g t ∇f t (θt )and g t,i as the i th element.We define g 1:t,i ∈R t as a vector that contains the i th dimension of the gradients over all iterations till t ,g 1:t,i =[g 1,i ,g 2,i ,···,g t,i ].Also,we define γβ21√β2.Our followingtheorem holds when the learning rate αt is decaying at a rate of t −12and first moment running average coefficient β1,t decay exponentially with λ,that is typically close to 1,e.g.1−10−8.Theorem 4.1.Assume that the function f t has bounded gradients, ∇f t (θ) 2≤G , ∇f t (θ) ∞≤G ∞for all θ∈R d and distance between any θt generated by Adam is bounded, θn −θm 2≤D ,θm −θn ∞≤D ∞for any m,n ∈{1,...,T },and β1,β2∈[0,1)satisfy β21√β2<1.Let αt =α√t and β1,t =β1λt −1,λ∈(0,1).Adam achieves the following guarantee,for all T ≥1.R (T )≤D 22α(1−β1)d i =1 T v T,i +α(1+β1)G ∞(1−β1)√1−β2(1−γ)2d i =1g 1:T,i 2+d i =1D 2∞G ∞√1−β22α(1−β1)(1−λ)2Our Theorem 4.1implies when the data features are sparse and bounded gradients,the sum-mation term can be much smaller than its upper bound d i =1 g 1:T,i 2<<dG ∞√T and d i =1T v T,i <<dG ∞√T ,in particular if the class of function and data features are in the form of section 1.2in (Duchi et al.,2011).Their results for the expected value E [ di =1 g 1:T,i 2]also apply to Adam.In particular,the adaptive method,such as Adam and Adagrad,can achieve O (log d √T ),an improvement over O (√dT )for the non-adaptive method.Decaying β1,t towards zero is impor-tant in our theoretical analysis and also matches previous empirical findings,e.g.(Sutskever et al.,2013)suggests reducing the momentum coefficient in the end of training can improve convergence.Finally,we can show the average regret of Adam converges,Corollary 4.2.Assume that the function f t has bounded gradients, ∇f t (θ) 2≤G , ∇f t (θ) ∞≤G ∞for all θ∈R d and distance between any θt generated by Adam is bounded, θn −θm 2≤D , θm −θn ∞≤D ∞for any m,n ∈{1,...,T }.Adam achieves the following guarantee,for all T ≥1.R (T )T =O (1√T)This result can be obtained by using Theorem 4.1and di =1g 1:T,i 2≤dG ∞√T .Thus,lim T →∞R (T )T =0.5R ELATED WORKOptimization methods bearing a direct relation to Adam are RMSProp (Tieleman &Hinton,2012;Graves,2013)and AdaGrad (Duchi et al.,2011);these relationships are discussed below.Other stochastic optimization methods include vSGD (Schaul et al.,2012),AdaDelta (Zeiler,2012)and the natural Newton method from Roux &Fitzgibbon (2010),all setting stepsizes by estimating curvaturefrom first-order information.The Sum-of-Functions Optimizer (SFO)(Sohl-Dickstein et al.,2014)is a quasi-Newton method based on minibatches,but (unlike Adam)has memory requirements linear in the number of minibatch partitions of a dataset,which is often infeasible on memory-constrained systems such as a GPU.Like natural gradient descent (NGD)(Amari,1998),Adam employs a preconditioner that adapts to the geometry of the data,since v t is an approximation to the diagonal of the Fisher information matrix (Pascanu &Bengio,2013);however,Adam’s preconditioner (like AdaGrad’s)is more conservative in its adaption than vanilla NGD by preconditioning with the square root of the inverse of the diagonal Fisher information matrix approximation.RMSProp:An optimization method closely related to Adam is RMSProp (Tieleman &Hinton,2012).A version with momentum has sometimes been used (Graves,2013).There are a few impor-tant differences between RMSProp with momentum and Adam:RMSProp with momentum gener-ates its parameter updates using a momentum on the rescaled gradient,whereas Adam updates are directly estimated using a running average of first and second moment of the gradient.RMSProp also lacks a bias-correction term;this matters most in case of a value of β2close to 1(required in case of sparse gradients),since in that case not correcting the bias leads to very large stepsizes and often divergence,as we also empirically demonstrate in section 6.4.AdaGrad:An algorithm that works well for sparse gradients is AdaGrad (Duchi et al.,2011).Itsbasic version updates parameters as θt +1=θt −α·g t / t i =1g 2t .Note that if we choose β2to be infinitesimally close to 1from below,then lim β2→1 v t =t −1· ti =1g 2t .AdaGrad corresponds to a version of Adam with β1=0,infinitesimal (1−β2)and a replacement of αby an annealed version αt =α·t −1/2,namely θt −α·t −1/2· m t / lim β2→1 v t =θt −α·t −1/2·g t / t −1· ti =1g 2t=θt −α·g t /t i =1g 2t .Note that this direct correspondence between Adam and Adagrad doesnot hold when removing the bias-correction terms;without bias correction,like in RMSProp,a β2infinitesimally close to 1would lead to infinitely large bias,and infinitely large parameter updates.6E XPERIMENTSTo empirically evaluate the proposed method,we investigated different popular machine learning models,including logistic regression,multilayer fully connected neural networks and deep convolu-tional neural ing large models and datasets,we demonstrate Adam can efficiently solve practical deep learning problems.We use the same parameter initialization when comparing different optimization algorithms.The hyper-parameters,such as learning rate and momentum,are searched over a dense grid and the results are reported using the best hyper-parameter setting.6.1E XPERIMENT :L OGISTIC R EGRESSIONWe evaluate our proposed method on L2-regularized multi-class logistic regression using the MNIST dataset.Logistic regression has a well-studied convex objective,making it suitable for comparison of different optimizers without worrying about local minimum issues.The stepsize αin our logisticregression experiments is adjusted by 1/√t decay,namely αt =α√tthat matches with our theorat-ical prediction from section 4.The logistic regression classifies the class label directly on the 784dimension image vectors.We compare Adam to accelerated SGD with Nesterov momentum and Adagrad using minibatch size of 128.According to Figure 1,we found that the Adam yields similar convergence as SGD with momentum and both converge faster than Adagrad.As discussed in (Duchi et al.,2011),Adagrad can efficiently deal with sparse features and gradi-ents as one of its main theoretical results whereas SGD is low at learning rare features.Adam with 1/√t decay on its stepsize should theoratically match the performance of Adagrad.We examine the sparse feature problem using IMDB movie review dataset from (Maas et al.,2011).We pre-process the IMDB movie reviews into bag-of-words (BoW)feature vectors including the first 10,000most frequent words.The 10,000dimension BoW feature vector for each review is highly sparse.As sug-gested in (Wang &Manning,2013),50%dropout noise can be applied to the BoW features duringFigure1:Logistic regression training negative log likelihood on MNIST images and IMDB movie reviews with10,000bag-of-words(BoW)feature vectors.training to prevent over-fitting.Infigure1,Adagrad outperforms SGD with Nesterov momentum by a large margin both with and without dropout noise.Adam converges as fast as Adagrad.The empirical performance of Adam is consistent with our theoreticalfindings in sections2and4.Sim-ilar to Adagrad,Adam can take advantage of sparse features and obtain faster convergence rate than normal SGD with momentum.6.2E XPERIMENT:M ULTI-LAYER N EURAL N ETWORKSMulti-layer neural network are powerful models with non-convex objective functions.Although our convergence analysis does not apply to non-convex problems,we empirically found that Adam often outperforms other methods in such cases.In our experiments,we made model choices that are consistent with previous publications in the area;a neural network model with two fully connected hidden layers with1000hidden units each and ReLU activation are used for this experiment with minibatch size of128.First,we study different optimizers using the standard deterministic cross-entropy objective func-tion with L2weight decay on the parameters to prevent over-fitting.The sum-of-functions(SFO) method(Sohl-Dickstein et al.,2014)is a recently proposed quasi-Newton method that works with minibatches of data and has shown good performance on optimization of multi-layer neural net-works.We used their implementation and compared with Adam to train such models.Figure2 shows that Adam makes faster progress in terms of both the number of iterations and wall-clock time.Due to the cost of updating curvature information,SFO is5-10x slower per iteration com-pared to Adam,and has a memory requirement that is linear in the number minibatches. Stochastic regularization methods,such as dropout,are an effective way to prevent over-fitting and often used in practice due to their simplicity.SFO assumes deterministic subfunctions,and indeed failed to converge on cost functions with stochastic regularization.We compare the effectiveness of Adam to other stochasticfirst order methods on multi-layer neural networks trained with dropout noise.Figure2shows our results;Adam shows better convergence than other methods.6.3E XPERIMENT:C ONVOLUTIONAL N EURAL N ETWORKSConvolutional neural networks(CNNs)with several layers of convolution,pooling and non-linear units have shown considerable success in computer vision tasks.Unlike most fully connected neural nets,weight sharing in CNNs results in vastly different gradients in different layers.A smaller learning rate for the convolution layers is often used in practice when applying SGD.We show the effectiveness of Adam in deep CNNs.Our CNN architecture has three alternating stages of5x5 convolutionfilters and3x3max pooling with stride of2that are followed by a fully connected layer of1000rectified linear hidden units(ReLU’s).The input image are pre-processed by whitening,and6Figure 2:Training of multilayer neural networks on MNIST images.(a)Neural networks using dropout stochastic regularization.(b)Neural networks with deterministic cost function.We compare with the sum-of-functions (SFO)optimizer (Sohl-Dickstein et al.,2014)Figure 3:Convolutional neural networks training cost.(left)Training cost for the first three epochs.(right)Training cost over 45epochs.CIFAR-10with c64-c64-c128-1000architecture.dropout noise is applied to the input layer and fully connected layer.The minibatch size is also set to 128similar to previous experiments.Interestingly,although both Adam and Adagrad make rapid progress lowering the cost in the initial stage of the training,shown in Figure 3(left),Adam and SGD eventually converge considerably faster than Adagrad for CNNs shown in Figure 3(right).We notice the second moment estimate v t vanishes to zeros after a few epochs and is dominated by the in algorithm 1.The second moment estimate is therefore a poor approximation to the geometry of the cost function in CNNs comparing to fully connected network from Section 6.2.Whereas,reducing the minibatch variance through the first moment is more important in CNNs and contributes to the speed-up.As a result,Adagrad converges much slower than others in this particular experiment.Though Adam shows marginal improvement over SGD with momentum,it adapts learning rate scale for different layers instead of hand picking manually as in SGD.76.4E XPERIMENT :BIAS -CORRECTION TERMWe also empirically evaluate the effect of the bias correction terms explained in sections 2and 3.Discussed in section 5,removal of the bias correction terms results in a version of RMSProp (Tiele-man &Hinton,2012)with momentum.We vary the β1and β2when training a variational auto-encoder (V AE)with the same architecture as in (Kingma &Welling,2013)with a single hidden layer with 500hidden units with softplus nonlinearities and a 50-dimensional spherical Gaussian latent variable.We iterated over a broad range of hyper-parameter choices,i.e.β1∈[0,0.9]and β2∈[0.99,0.999,0.9999],and log 10(α)∈[−5,...,−1].Values of β2close to 1,required for robust-ness to sparse gradients,results in larger initialization bias;therefore we expect the bias correction term is important in such cases of slow decay,preventing an adverse effect on optimization.In Figure 4,values β2close to 1indeed lead to instabilities in training when no bias correction term was present,especially at first few epochs of the training.The best results were achieved with small values of (1−β2)and bias correction;this was more apparent towards the end of optimization when gradients tends to become sparser as hidden units specialize to specific patterns.In summary,Adam performed equal or better than RMSProp,regardless of hyper-parameter setting.7E XTENSIONS7.1A DA M AXIn Adam,the update rule for individual weights is to scale their gradients inversely proportional to a (scaled)L 2norm of their individual current and past gradients.We can generalize the L 2norm based update rule to a L p norm based update rule.Such variants become numerically unstable for large p .However,in the special case where we let p →∞,a surprisingly simple and stable algorithm emerges;see algorithm 2.We’ll now derive the algorithm.Let,in case of the L p norm,the stepsizeat time t be inversely proportional to v 1/pt ,where:v t =βp 2v t −1+(1−βp2)|g t |p(6)=(1−βp2)t i =1βp (t −i )2·|g i |p(7)Algorithm 2:AdaMax ,a variant of Adam based on the infinity norm.See section 7.1for details.Good default settings for the tested machine learning problems are α=0.002,β1=0.9andβ2=0.999.With βt 1we denote β1to the power t .Here,(α/(1−βt1))is the learning rate with the bias-correction term for the first moment.All operations on vectors are element-wise.Require:α:StepsizeRequire:β1,β2∈[0,1):Exponential decay ratesRequire:f (θ):Stochastic objective function with parameters θRequire:θ0:Initial parameter vector m 0←0(Initialize 1st moment vector)u 0←0(Initialize the exponentially weighted infinity norm)t ←0(Initialize timestep)while θt not converged do t ←t +1g t ←∇θf t (θt −1)(Get gradients w.r.t.stochastic objective at timestep t )m t ←β1·m t −1+(1−β1)·g t (Update biased first moment estimate)u t ←max(β2·u t −1,|g t |)(Update the exponentially weighted infinity norm)θt ←θt −1−(α/(1−βt1))·m t /u t (Update parameters)end whilereturn θt (Resulting parameters)Note that the decay term is here equivalently parameterised as βp2instead of β2.Now let p →∞,and define u t =lim p →∞(v t )1/p,then:u t =lim p →∞(v t )1/p =lim p →∞(1−βp2)t i =1βp (t −i )2·|g i |p 1/p(8)=lim p →∞(1−βp 2)1/pti =1βp (t −i )2·|g i |p1/p(9)=limp →∞ti =1β(t −i )2·|g i |p1/p(10)=maxβt −12|g 1|,βt −22|g 2|,...,β2|g t −1|,|g t |(11)Which corresponds to the remarkably simple recursive formula:u t =max(β2·u t −1,|g t |)(12)with initial value u 0=0.Note that,conveniently enough,we don’t need to correct for initialization bias in this case.Also note that the magnitude of parameter updates has a simpler bound with AdaMax than Adam,namely:|∆t |≤α.7.2T EMPORAL AVERAGINGSince the last iterate is noisy due to stochastic approximation,better generalization performance is often achieved by averaging.Previously in Moulines &Bach (2011),Polyak-Ruppert averaging (Polyak &Juditsky,1992;Ruppert,1988)has been shown to improve the convergence of standardSGD,where ¯θt =1t n k =1θk .Alternatively,an exponential moving average over the parameters canbe used,giving higher weight to more recent parameter values.This can be trivially implementedby adding one line to the inner loop of algorithms 1and 2:¯θt ←β2·¯θt −1+(1−β2)θt ,with ¯θ0=0.Initalization bias can again be corrected by the estimator θt =¯θt /(1−βt 2).8C ONCLUSIONWe have introduced a simple and computationally efficient algorithm for gradient-based optimiza-tion of stochastic objective functions.Our method is aimed towards machine learning problems with。