正交分解高一物理必修1受力分析之正交分解.ppt

合集下载

力的正交分解法

力的正交分解法

专题一:物体的受力分析(一)物体的受力分析物体之所以处于不同的运动状态,是由于它们的受力情况不同。

要研究物体的运动,必须分析物体的受力情况。

正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。

如何分析物体的受力情况呢?主要依据力的概念,从物体所处的环境(有多少个物体接触)和运动状态着手,分析它与所处环境的其他物体的相互联系。

具体的分析方法是:1、确定所研究的物体,然后找出周围有哪些物体对它产生作用。

不要找该物体施于其他物体的力。

比如所研究的物体叫A,那么就应该找出“甲对A”和“乙对A”及“丙对A”的力……而“A对甲”或“A对乙”等力就不是A所受的力。

也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。

2、要养成按步骤分析的习惯。

先画重力:作用点画在物体的重心。

其次画接触力(弹力和摩擦力):绕研究对象逆时针(或顺时针)观察一周,看研究对象跟其他物体有几个接触点(面),某个接触点(面)若有挤压,则画出弹力,若还有相对运动或趋势,则画出摩擦力。

分析完这个接触点(面)后再依次分析其他接触点(面)。

再画其他场力:看是否有电场、磁场作用,如有则画出场力。

3、画完受力图后再作一番检查。

检查一下画出的每个力能否找出它的施力物体,若没有施力物体,则该力一定不存在。

特别是检查一下分析的结果,能否使研究对象处于题目所给的运动状态,否则必然发生了多力或漏力的现象。

4、如果一个力的方向难以确定,可用假设法分析。

先假设此力不存在,观察所研究的物体会发生怎样的运动,然后审查这个力应在什么方向时,研究对象才能满足给定的运动状态。

5、合力和分力不能重复地列为物体所受的力。

力的合成与分解的过程是合力与分力“等效替代”的过程,合力和分力不能同时存在。

在分析物体受力情况时,如果已考虑了某个力,那么就不能再考虑它的分力。

例如,在分析斜面上物体的受力情况时,就不能把物体所受重力和“下滑力”并列为物体所受的力,因为“下滑力”是物体所受重力在沿斜面方向上的一个分力。

高一物理必修1正交分解

高一物理必修1正交分解

第一讲正交分解法知识点一:共点力及平衡条件共点力:物体同时受几个力的作用,如果这几个力都作用于物体的同一点或者它们的作用线交于同一点,这几个力叫共点力。

能简化成质点的物体受到的力可视为共点力。

平衡状态:物体保持静止......状态....或匀速直线运动注意:这里的静止需要二个条件,一是物体受到的合外力为零,二是物体的速度为零,仅速度为零时物体不一定处于静止状态,如物体做竖直上抛运动达到最高点时刻,物体速度为零,但物体不是处于静止状态,因为物体受到的合外力不为零。

共点力的平衡:如果物体受到共点力的作用,且处于平衡状态,就叫做共点力的平衡。

1.如图所示,小明用与水平方向成θ角的轻绳拉木箱,沿水平面做匀速直线运动,此时绳中拉力为F,则木箱所受合力大小为()>A 0B FC FcosθD Fsinθ2、如图所示,一质量为m的物体沿倾角为θ的斜面匀速下滑。

下列说法正确的是()A 物体所受合力的方向沿斜面向下B 斜面对物体的支持力等于物体的重力C 物体下滑速度越大,说明物体所受摩擦力越小D 斜面对物体的支持力和摩擦力的合力的方向竖直向上知识点二:共点力的处理方法——正交分解法!正交分解一般步骤:选定研究对象,并作出受力分析建立合适的直角坐标系(尽可能少分解力)将不在坐标轴上的力分解到坐标轴上列出平衡状态下x方向、y方向的方程求解:x方向上:F1x=F2x y方向上:F1y+F2y=G1.质量为m的木块在推力F作用下,在水平地面上做匀速运动(如图所示)。

已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪一个()A μmgB μ(mg+Fsinθ)-C μ(mg-Fsinθ)D Fcosθ2.物体放在粗糙的水平地面上,物体重50N,受到斜向上方向与水平面成300角的力F作用,F = 50N,物体仍然静止在地面上,如图所示,求:物体受到的摩擦力和地面的支持力分别是多少3.在图中,AB、AC两光滑斜面互相垂直,AC与水平面成30°.如把球O的重力G按照其作用效果分解,则两个分力的大小分别为()A 12G,32G B33G,3G-C23G,22G D22G,32G4.甲、乙两人用绳子拉船,使船沿OO′方向航行,甲用1 000 N的力拉绳子,方向如图所示,要使船沿OO′方向航行,乙的拉力最小值为()A 500 3 NB 500 NC 1 000 ND 400 N练习:1.质量为m的物体在恒力F作用下,F与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少&2.直角劈形木块(截面如图所示)的质量M=2kg,用外力F顶靠在竖直墙上。

人教版高一物理必修一-力的分解——正交分解法(20张)-PPT优秀课件

人教版高一物理必修一-力的分解——正交分解法(20张)-PPT优秀课件
例题7:质量为m的物体放在倾角为θ的斜面上,在 平行斜面的推力的作用下,物体沿斜面匀速 运动。物体与斜面的动摩擦因数为μ
1)若向上运动,求:推力的大小______ 斜面对物体支持力的大小______
2)若向下运动,求:推力的大小________ 斜面对物体支持力的大小________
F
θ
人 教 版 高 一 物理必 修一: 3.5 力 的 分解 ——正 交分解 法(共2 0张PPT )【PPT 优秀课 件】-精 美版
正交分解法
学会正交分解法求合力 解决复杂平衡问题
问题:将F力向如图所示方向分解, 求分力大小容易么?
60°
F
45°
问题:求F1、F2的合力容易么?
F2=25N
30°
F1=40N
问题:将F力向如图所示方向分解, 求分力大小容易么?
已知F=100N,两分力的方向互相垂直,如图 求出:两个分力的大小
人 教 版 高 一 物理必 修一: 3.5 力 的 分解 ——正 交分解 法(共2 0张PPT )【PPT 优秀课 件】-精 美版
例四 质量为m的物体沿粗糙斜面匀速下滑, 斜面倾角为α, 求:物体受到的支持力和摩擦力 物体与斜面的动摩擦因数多大?
f
N
物体匀速运动,合力为零 X轴方向:f=mgsin α---1)
( 5 0 2 0 0 .5 )N 0 4N 00
补充问题:物体与地面间的动摩擦因数多大?
人 教 版 高 一 物理必 修一: 3.5 力 的 分解 ——正 交分解 法(共2 0张PPT )【PPT 优秀课 件】-精 美版
人 教 版 高 一 物理必 修一: 3.5 力 的 分解 ——正 交分解 法(共2 0张PPT )【PPT 优秀课 件】-精 美版

正交分解法课件

正交分解法课件

01
02
03
选取正交基
选择一组正交基,用于表 示目标向量。
展开目标向量
将目标向量展开为正交基 的线性组合,即每个基底 与对应系数的乘积之和。
求解系数
通过点积运算求解展开式 中的系数,使得目标向量 与正交基之间的点积相等 。
正交分解法的优势与局限性
优势
正交分解法能够将复杂的向量运算转化为简单的代数运算,方便计算。同时, 正交基的选择具有多样性,可以根据具体问题选择合适的基底。
多目标正交分解法
总结词
多目标正交分解法是一种解决多目标优化问 题的有效方法。
详细描述
多目标正交分解法通过将多目标优化问题转 化为一系列单目标优化问题,利用正交分解 技术求解。这种方法能够同时考虑多个目标 ,平衡不同目标之间的冲突,从而找到更全 面的解决方案。
自适应正交分解法
总结词
自适应正交分解法是一种能够自动调整参数 和方法的正交分解方法。
组合优化问题
组合优化问题是一类具有离散特征的 优化问题,如旅行商问题、排班问题 等。正交分解法也可以用于解决组合 优化问题,通过将问题分解为若干个 子问题,降低问题的复杂度,提高求 解效率。
VS
例如,一个简单的组合优化问题可以 表示为:最小化 $f(x)$,满足 $x in {0,1}^n$,其中 $f(x)$ 是一个非线 性函数。通过正交分解法,可以将这 个问题分解为一系列简单的子问题, 从而方便求解。
自适应算法设计
根据不同问题的特性,设 计自适应的正交分解法, 提高算法的适用性和鲁棒 性。
应用领域的拓展
数值分析领域
将正交分解法应用于更广泛的数值分析问题,如 求解偏微分方程、积分方程等。
机器学习领域

高一物理必修一《力的正交分解》

高一物理必修一《力的正交分解》
高一物理必修一《力的正交分解》
感谢您的阅览,下载可编辑
1
当物体在两个共点力作用下平衡时, 这两个力一定等值反向;
当物体在三个共点力作用下平衡时, 往往采用合成法(三角形);
当物体在四个或四个以上共点力作 用下平衡时,往往采用正交分解法。
2
正交分解法的步骤
①确定研究对象; ②分析受力情况; ③建立适当的直角坐标系; ④把不在坐标轴上的力分解到坐标轴上; ⑤列出两个方向上的平衡方程。
7
③建立适当的直角坐标系;
何为适当
①利用互相垂直的力为坐标轴
这样需要分解的力少
②利用需要求的力为坐标轴
这样避免分解后每个ห้องสมุดไป่ตู้向都含有更多的未知量
8
如图所示,质量为m的物体被一个与 水平方向成θ角的恒力顶着,在水平方向 的天花板上匀速滑行,物体与天花板间 的动摩擦因数为μ,求恒力的大小?
F mg sin_ cos
3
氢气球重10 N,空气对它的浮力为 16 N,用绳拴在地面,由于受水平风力 作用,绳子与竖直方向成30°角,求绳 子的拉力大小和水平风力的大小?
4 3N 2 3 N
4
如图所示,质量为m、横截面为直角三 角形的物块ABC,∠ABC=α,AB边靠在竖 直墙面上,现施加一垂直于斜面BC的推力F, 使物块向下匀速运动,求物块与墙面间的动 摩擦因数?
9
Dr.Feng
10
感谢您的阅览,下载可编辑
11
=mFg+cFossin
5
物体重力为mg=90N,若施加如图所 示的推力F=50N,物体刚好作匀速直线运 动,求物体与地面间的动摩擦因数μ?
6
如图所示,质量为m的物体在倾角为θ 的斜面上,受到水平方向的恒力F的作用匀 速上升,求物体与斜面间的动摩擦因数μ?

人教版物理必修一第三章力的正交分解法

人教版物理必修一第三章力的正交分解法
力的正交分解法解 决共点力平衡问题
例:一物块在拉力F的作用下静止在倾角为30 °的斜面
上,物块重40N, 拉力F与斜面成30°,大小为10N.求物
块所受支持力和摩擦力的大小.
y
f FN
N
F=10N
G
30°
x 30°
G
x方向: Gsin300 - f - Fcos300=0
y方向: N f = Gsin300
何正交分解?
Fx F1 F2x F3x ...
Fy F1y F2y F3y ...
F
Fx2 Fy2
tan Fy
Fx
y
F2
F1y F2y
F1
F2X
O
F3x F1x
x
F3y
F3
y
ΣFy
ΣF
O
ΣFx
x
总结 1.正交分解法求解合力的一般步骤:
建立坐 标系

正交分 解各力

求出x,y 轴上各力 的矢量和
4、将坐标轴上的力分别合成,求出x,y轴上的合力Fx,Fy
即:Fx=F1x+F2x+F3x+...... Fy=F1y+F2y+F3y+......
5、最后求再求合力F的大小和方向
F合 Fx2合 Fy2合
方向:tan
Fy Fx
(ɸ为与x轴的夹角)
三个力F1、F2与F3共同 作用在O点。如图, 该如

求出 合力
2.正交分解法建立坐标系的原则:
(1)一般用共点力作用线交点为坐标轴的原点。 (2)尽可能使较多的力落在坐标轴上,以少分解力和容易 分解力。
3.根据物体的状态得出各坐标轴上合力的值.如果物 体处于平衡状态,则两个坐标轴上的合力都为0。

受力分析 正交分解法

受力分析 正交分解法

F2 F 2 F12
F1
1802 2402 N 300 N
tan F 180 0.6
F2 240
= 36°
F2
F
例1:如图,重为500N的人通过滑轮的轻绳牵引重200N的物体,当绳
与水平成60o角时,物体静止,不计滑轮与绳子的摩擦,求地面对人
yF
F1x F4x
F3 F2x x
F4
F4y
x
练习
1、已知平面内有一个大小为10 N的力作用于O点,
该力与x轴正方向之间的夹角为30°,与y轴正方向之间
的夹角为60°,现将它分解到x轴和y轴方向上,则 二
轴上分力大小各力多少?
2、把竖直向下180 N 的力分解成两个分力,使其中一个分力 的方向水平向右,大小等于 240 N,求另一个分力的大小和方向。
答案
θ =37o
正交分解
练习2:如图所示, 物体在拉力F的作用下沿水
平面作匀速直线运动, 拉力F与水平面夹角为
θ,求:(1)物体受到的摩擦力大小 (2)物体受
到的重力、摩擦力和支持力三个力的合力大
小。 (3)物体受到的摩擦力与F的合力方向如
何?(4)物体受到的重力与摩擦力的合力的方
向如何?
(1)f=Fcosθ 答案
F Fx2 Fy2
tan Fy
Fx
例:三个力F1、F2与F3共同作用在O点。如图, 该如何 正交分解?
F1x F1 cos , F1y F1 sin
F2
y
F1y F2y
F1


F2X
O F3x F1x
x
F2x F2 cos , F2 y F2 sin F3y

人教版高中物理必修一课件:3.5力的分解(共84张PPT)

人教版高中物理必修一课件:3.5力的分解(共84张PPT)
例1.已知放在水平面上的物体,受到与水平方
向成θ角的拉力F的作用。拉力F会产生怎样的
作用效果?
向上提升物 体的效果
F
θ
向前拉动物
体的效果
1. 根据力的作用效果进行分解
例1.已知放在水平面上的物体,受到与水平方
向成θ角的拉力F的作用。拉力F会产生怎样的
作用效果?
F
θ
1. 根据力的作用效果进行分解
例1.已知放在水平面上的物体,受到与水平方
例1.已知放在水平面上的物体,受到与水平方
向成θ角的拉力F的作用。拉力F会产生怎样的
作用效果?
F
θ
向前拉动物
体的效果
1. 根据力的作用效果进行分解
例1.已知放在水平面上的物体,受到与水平方
向成θ角的拉力F的作用。拉力F会产生怎样的
作用效果?
向上提升物 体的效果
F
θ
向前拉动物
体的效果
1. 根据力的作用效果进行分解
复习引入:
1、力的合成 2、力的合成遵循平行四边形定则
力可以合成,是否也可以分解呢?
一、力的分解法则
分力F1、F2
力的合成
合力F
力的分解
1、力的分解是力的合成的逆运算
注意:几个分力与原来那个力是等效的,它们可以互相代替, 并非同时并存------ “有你无我,有我无你”
F1
F
F2 2、力的分解同样遵守平行四边行定则
力为G,轻绳AO与水平方向夹角为θ,AOB为直 角,重力G 产生怎样的作用效果?
B
O
θA
例3.用两根轻绳将物体悬挂起来。已知物体重
力为G,轻绳AO与水平方向夹角为θ,AOB为直 角,重力G 产生怎样的作用效果?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矢量的运算。
步骤
1、先对物体进行受力分析,画出受力示意图。 2、以力的作用点为坐标原点,恰当地建立直角坐 标系,标出x轴和y轴。 注意:坐标轴方向的选择虽具有任意性, 但原则是:使坐标轴与尽量多的力重合, 使需要分解的力尽量少和容易分解。 3、将不在坐标轴上的各力分解为沿两坐标轴方向 的分力,并在图上标明。
F3x
F1x
O
F3y
x
F
F
y
x
F1 F2 x F3x ...
F3 y
ΣF
F1y F2 y F3 y ...
ΣFy
2 2 F F x y
F
tan
Fy Fx
O
ΣFx
x
目的:
是化复杂的矢量运算为普通的代数运
算,将力的合成化简为同向或反向或垂直
方向。便于运用普通代数运算公式来解决
1.如图所示,用绳AO和BO吊起一个重 100N的物体,两绳AO、BO与竖直方向 的夹角分别为30o和45o,求绳AO和BO对 物体的拉力的大小。
2. 如图所θ=370,sin370=0.6 cos370 =0.8。箱子重G=200N,箱子与地面的 动摩擦因数μ=0.30。要匀速拉动箱子, 拉力F为多大?
Ff=μ FN
Ff Gsinα
Fcosα F Fsinα G Gcosα
x
例1:一个物体受到四个力的作用,已知
F1=1N,方向正东;F2=2N,方向东偏北 600,F3= 3 3 N,方向西偏北300;F4=4N, 方向东偏南600,求物体所受的合力。
y
F3 F2y
300
F3y F2
600
2x
F4x
A FAO FAOX O y FAOY B
x
FAOX=FBO=G
C
正交分解法
如图,氢气球被水平吹来的风吹成图示的情形,若测得 绳子与水平面的夹角为37˚,已知气球受到空气的浮力为15N, 忽略氢气球的重力,求: 风 ①氢气球受到的水平风力多大? y 15N ②绳子对氢气球的拉力多大? FTsin37=15N
3. 如图,位于水平地面上的质量为 M 的小木块, 在大小为 F 、方向与水平方向成 a 角的拉力作 用下沿地面作匀速直线运动。求: 1. 地面对物体的支持力? 2. 木块与地面之间的动摩擦因数?
5.如图所示,重力为500N的人通过跨过定滑轮 的轻绳牵引重200N的物体,当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面 对人的支持力和摩擦力。
F o FT FTsin37 FTcos37x 37˚
FTcos37=F
正交分解法
如图,物体A的质量为m,斜面倾角α,A与斜面间的动 摩擦因数为μ,斜面固定,现有一个水平力F作用在A上,当 F多大时,物体A恰能沿斜面匀速向上运动?
F
FN=Fsinα+Gcosα
Fcosα=Gsinα+Ff
FN y
A α
F3x
600 F F 1
x
F4y
F4
正交分解法
计算多个共点力的合力时,正交分解法显得简明方便 正交分解法求合力,运用了“欲合先分”的策略,降低了 运算的难度,是解题中的一种重要思想方法。
选择合适的坐标 分解不在坐标上的力 进行同轴的代数和的运算 将两个垂直的力合成
左图:θ=370光滑球重G=100N,试用三种 方法,求:球对斜面、对挡板的作用力? y
600
7.如图所示重20N的物体在斜面上匀速下滑,斜 面的倾角为370,求: (1)物体与斜面间的动摩擦因数。 (2)要使物体沿斜面向上匀速运动,应沿斜面向 上施加一个多大的推力? (sin370=0.6, cos370=0.8 )
丹 寨 民 族 高 级 中 学
力的正交分解
定义:把力沿着两个选定的互相垂直的方向分解 正交——相互垂直的两个坐标轴
y
Fy
F
θFy F sin
例:三个力F1、F2与F3 共同作用在O点。如图, 该如何正交分解?
y F2
F2X F1y F2y
F1
4、将坐标轴上的力分别合成,按坐标轴规定的方向求代数和
即:Fx合=F1x+F2x+F3x+...... Fy合=F1y+F2y+F3y+......
5、最后求再求合力F的大小和方向 F合
2 Fx2 F 合 y合
正交分解法
如图,物体重力为10N,AO绳与顶板间的夹角为45º , BO绳水平,试用计算法求出AO绳和BO绳所受拉力的大小。 FAOY=FAOcos45=G
FN1 F1 FN1
FN1
G
FN1
正 x 交 法
G
F2
G
分解法 解:将重力G 按如图分解
四边形法 解:以球为对象 由于球静止 F合=0 FN1=Gtan370 N2=G/cos370
F1=Gtan370 F2=G/cos370
解:以球为对象 建立如图坐标 Fx=0 FN1 - FN2sin370=0 Fy=0 FN2cos370 - G=0
相关文档
最新文档