【配套K12】[学习]四川省成都七中实验学2019届高三数学10月月考试题 文(无答案)
四川成都七中2019届高三文科数学下学期入学考试试卷(解析版)

四川成都七中2019届高三文科数学下学期入学考试试卷一、选择题(本大题共12小题,共60.0分)1.已知i是虚数单位,若2+i=z(1-i),则z的共轭复数z−对应的点在复平面的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.设集合A={y|y=3x,x∈R},B={y|y=√4−x2,x∈R},则A∩B=()A. [0,2]B. (0,+∞)C. (0,2]D. [0,2)3.函数f(x)=e|x|的大致图象是()x2−3A. B.C. D.4.执行如图所示的程序框图,则输出的k值为()A. 7B. 9C. 11D. 13⃗⃗⃗⃗⃗⃗ =()5.已知等边△ABC内接于⊙O,D为线段OA的中点,则BD第2页,共18页A. 23BA ⃗⃗⃗⃗⃗+16BC ⃗⃗⃗⃗⃗ B. 43BA ⃗⃗⃗⃗⃗−16BC ⃗⃗⃗⃗⃗ C. −23BA ⃗⃗⃗⃗⃗ +56BC ⃗⃗⃗⃗⃗ D. 23BA ⃗⃗⃗⃗⃗+13BC ⃗⃗⃗⃗⃗ 6. 某几何体的三视图如图所示,图中正方形的边长为2,四条用虚线表示的线段长度均相等,则该几何体的体积为( )A. 8−2π3 B. 8−2π C. 8−83π D. 8−8π7. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A. (−∞,14)B. (−14,+∞)C. (0,+∞)D. (−∞,−12)8. 如图,边长为a 的正六边形内有六个半径相同的小圆,这六个小圆分别与正六边形的一边相切于该边的中点,且相邻的两个小圆互相外切,则在正六边形内任取一点,该点恰好取自阴影部分的概率为( )A. 9−√3π18 B. 9−4√3π18 C. 9−√3π27 D. 9−4√3π279. 如图,点A 为双曲线x 2a2-y 2b2=1(a >0,b >0)的右顶点,P 为双曲线上一点,作PB ⊥x 轴,垂足为B ,若A 为线段OB 的中点,且以A 为圆心,AP 为半径的圆与双曲线C 恰有三个公共点,则C 的离心率为( )A. √2B. √3C. 2D. √510. 已知cos (3π2-α)=2sin (α+π3),则tan (α+π6)=( )A. −√33B. −√39C. √33D. √3911.如图,在等腰Rt△ABC中,斜边AB=√2,D为直角边BC上的一点,将△ACD沿直AD折叠至△AC1D的位置,使得点C1在平面ABD外,且点C1在平面ABD上的射影H在线段AB上,设AH=x,则x的取值范围是()A. (1,√2)B. (√22,1) C. (12,√2) D. (0,1)12.设M,N是抛物线y2=x上的两个不同的点,O是坐标原点,若直线OM与ON的斜率之积为-12,则()A. |OM|+|ON|≥4√2B. MN为直径的圆的面积大于4πC. 直线MN过抛物线y2=x的焦点D. O到直线MN的距离不大于2二、填空题(本大题共4小题,共20.0分)13.设x,y满足约束条件{x−2y+3≥0x−y+1≥0y≥1,则z=-3x+4y的最大值为______.14.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆截y轴所得弦长为______.15.《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白.与著名的海伦公式完全等价,由此可以看出我国古代具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实,一为从偶,开平方得积”,若把这段文字写成公式,即S=√14[c2a2−(c2+a2−b22)2],已知△ABC满足(sin A-sin B)(sin A+sin B)=sin A sin C-sin2C,且AB=2BC=2√2,则用以上给出的公式求得△ABC的面积为______.16.已知函数f(x)={x−2lnx,x>e−x2+6x+e2−5e−2,x≤e(其中e为自然对数的底数,且e≈2.718)若f (6-a2)>f(a),则实数a的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.已知等比数列{a n}为递增数列,且a52=a10,2(a n+a n+2)=5a n+1,数列{b n}的前n项和为S n,b1=1,b n≠0,b n b n+1=4S n-1.(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n b n,求数列{c n}的前n项和T n.18.为发挥体育在核心素养时代的独特育人价值,越来越多的中学已将某些体育项目纳入到学生的必修课程,甚至关系到是否能拿到毕业证,某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究性学习小组随机从该校高一年级第4页,共18页学生中抽取100人进行调查,其中男生60人,且抽取的男生中对游泳有兴趣的占56,而抽取的女生中有15人表示对游泳没有兴趣.(Ⅰ)试完成下面的2×2列联表,并判断能否有99%的把握认为“对游泳是否有兴趣与性别有关”?有兴趣 没兴趣 合计男生 女生 合计(Ⅱ)已知在被抽取的女生中有6名高一(1)班的学生,其中3名对游泳有兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳有兴趣的概率. K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19. 如图,在四棱锥P -ABCD 中,AB ⊥PC ,AD ∥BC ,AD ⊥CD ,且PC =BC =2AD =2CD =2√2,PA =2. (Ⅰ)求证:PA ⊥平面ABCD ;(Ⅱ)在线段PD 上,是否存在一点M ,使得BM ∥平面AMC ,求PMPD 的值.20. 已知椭圆Γ:x 2a2+y 2b 2=1(a >b >0)的右焦点为F (1,0),上顶点为A .过F 且垂直于x 轴的直线l 交椭圆F 于B 、C 两点,若S △FOA S△COB =√22(1)求椭圆Γ的方程;(2)动直线m 与椭圆Γ有且只有一个公共点,且分别交直线1和直线x =2于M 、N 两点,试求|MF||NF|的值21. 已知a ∈R ,函数f (x )=x -ae x +1有两个零点x 1,x 2(x 1<x 2).(Ⅰ)求实数a 的取值范围; (Ⅱ)证明:e x 1+e x 2>2.22. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =−12ty =2+√32t(t 为参数),以原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=√1+3sin 2θ, (Ⅰ)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(Ⅱ)设点M (0,2),曲线C 1与曲线C 2交于A ,B 两点,求|MA |•|MB |的值.23. 已知函数f (x )=|2x +1|-|x -2|.(1)画出函数f (x )的图象;(2)若关于x 的不等式x +2m +1≥f (x )有解,求实数m 的取值范围.答案和解析1.【答案】D【解析】解:由2+i=z(1-i),得z=,∴,则z的共轭复数z对应的点的坐标为(),在复平面的第四象限.故选:D.把已知等式变形,再由复数代数形式的乘除运算化简,求出z的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.【答案】C【解析】解:由y=3x,x∈R,得y>0,即A=(0,+∞),由y=,x∈R,得:0≤y≤2,即B=[0,2],即A∩B=(0,2],故选:C.分别求y=3x,x∈R,y=,x∈R的值域,得:A=(0,+∞),B=[0,2],再求交集即可.本题考查了求函数值域及交集的运算,属简单题.3.【答案】A【解析】解:f(-x)===f(x),则函数f(x)为偶函数,故排除CD,当x=1时,f(1)=<0,故排除B,故选:A.先判断函数偶函数,再求出f(1)即可判断第6页,共18页本题考查了函数图形的识别,关键掌握函数的奇偶性,和函数值,属于基础题4.【答案】C【解析】解:由题意,模拟执行程序框图,可得S=0,k=1满足条件S>-1,S=lg,k=3满足条件S>-1,S=lg+lg,k=5满足条件S>-1,S=lg+lg+lg,k=7满足条件S>-1,S=lg+lg+lg+lg,k=9满足条件S>-1,S=lg+lg+lg+lg+lg=lg(××××)=lg=-lg11,k=11不满足条件S>-1,退出循环,输出k的值为11.故选:C.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量k 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5.【答案】A【解析】解:如图所示设BC中点为E,则=+=+=+(+)=-+•=+.故选:A.根据题意画出图形,结合图形,利用平面向量的线性运算写出用、的表达式即可.本题考查了平面向量的线性表示与应用问题,是基础题.6.【答案】A【解析】解:根据几何体的三视图:该几何体是由一个边长为2正方体挖去一个底面半径为1,高为2的圆锥构成的不规则的几何体.所以:v=,=.故选:A.直接利用三视图,整理出几何体的构成,进一步利用几何体的体积公式求出结果.本题考查的知识要点:三视图的应用,几何体的体积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(-∞,-),∴f(x)的单调增区间为(-∞,-),故选:D.先求出2x2+x,(0,)的范围,再由条件f(x)>0判断出a的范围,再根据复合函数“同增异减”原则求f(x)单调区间.第8页,共18页本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.8.【答案】C【解析】解:如图所示,边长为a的正六边形,则OA=OB=AB=a,设小圆的圆心为O',则O'C⊥OA,∴OC=a,∴O'C=a,OO'=a,∴OD=a,∴S阴影=12[×a•a-π•(a)2]=(-)a2,S正六边形=a2,∴点恰好取自阴影部分的概率P===,故选:C.分别求出正六边形和阴影部分的面积,作商即可.本题考查了几何概型问题,考查特殊图形面积的求法,是一道常规题.9.【答案】A【解析】解:由题意可得A(a,0),A为线段OB的中点,可得B(2a,0),令x=2a,代入双曲线的方程可得y=±b,可设P(2a,-b),由题意结合图形可得圆A经过双曲线的左顶点(-a,0),即|AP|=2a,即有2a=,可得a=b,e===,故选:A.设A的坐标(a,0),求得B的坐标,考虑x=2a,代入双曲线的方程可得P的坐标,再由圆A经过双曲线的左顶点,结合两点的距离公式可得a=b,进而得到双曲线的离心率.本题考查双曲线的方程和性质,主要是离心率的求法,考查方程思想和运算能力,属于中档题.10.【答案】B【解析】解:∵cos (-α)=2sin(α+),∴-sinα=2sinαcos +2cosαsin,则即-2sinα= cosα,∴tanα=-,∴tan(α+)===-,故选:B.由题意利用诱导公式、两角和正弦角公式求得tanα,再利用两角和正切公式求得结果.本题主要考查两角和差的三角公式、诱导公式的应用,属于基础题.11.【答案】B【解析】解:∵在等腰Rt△ABC中,斜边AB=,D为直角边BC上的一点,∴AC=BC=1,∠ACB=90°,将△ACD沿直AD折叠至△AC1D的位置,使得点C1在平面ABD外,且点C1在平面ABD上的射影H在线段AB上,设AH=x,∴AC1=AC=1,CD=C1D∈(0,1),∠AC1D=90°,CH⊥平面ABC,∴AH<AC1=1,故排除选项A和选项C;当CD=1时,B与D重合,AH=,当CD<1时,AH >=,第10页,共18页∵D为直角边BC上的一点,∴CD∈(0,1),∴x的取值范围是(,1).故选:B.推导出AC=BC=1,∠ACB=90°,AC1=AC=1,CD=C1D∈(0,1),∠AC1D=90°,CH⊥平面ABC,从而AH<AC1=1,当CD=1时,B与D重合,AH=,当CD <1时,AH>=,由此能求出x的取值范围.本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.【答案】D【解析】解:当直线MN的斜率不存在时,设M(,y0),N(,-y0),由斜率之积为,可得,即,∴MN的直线方程为x=2;当直线的斜率存在时,设直线方程为y=kx+m,联立,可得ky2-y+m=0.设M(x1,y1),N(x2,y2),则,,∴,即m=-2k.∴直线方程为y=kx-2k=k(x-2).则直线MN过定点(2,0).则O到直线MN的距离不大于2.故选:D.由已知分类求得MN所在直线过定点(2,0),结合选项得答案.本题考查抛物线的简单性质,考查直线与篇文章位置关系的应用,是中档题.13.【答案】5【解析】解:作出x,y满足约束条件,所示的平面区域,如图:作直线-3x+4y=0,然后把直线L向可行域平移,结合图形可知,平移到点A时z最大,由可得A(1,2),此时z=5.故答案为:5.先画出约束条件的可行域,利用目标函数z=-3x+4y的几何意义,求解目标函数的最大值.本题主要考查了线性规划的简单应用,解题的关键是:明确目标函数的几何意义.14.【答案】2【解析】解:圆心到直线的距离d==∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x-1)2+y2=2.∴此时截y轴所得弦长为2故答案为:2.求出圆心到直线的距离d的最大值,求出所求圆的标准方程,即可求出半径最大的圆截y轴所得弦长.本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.15.【答案】√3【解析】第12页,共18页解:∵AB=2BC=2,∴由题意可得:c=2a=2,a=,∵(sinA-sinB)(sinA+sinB)=sinAsinC-sin2C,∴由正弦定理可得:(a-b)(a+b)=ac-c2,可得:a2+c2-b2=ac,∴S===ac==.故答案为:.由题意可得:c=2a=2,a=,利用正弦定理化简已知等式可得a2+c2-b2=ac,根据题意利用三角形的面积公式即可计算得解.本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.16.【答案】-3<a<2【解析】解:∵∴当x≤e时y=-(x-3)2+e2-5e+7∴x≤e时函数单调递增当x>e时y'=1->0恒成立,故x>e时函数单调递增,∵f(e)=e-2=e-2lne∴函数在R上为增函数.∴由f(6-a2)>f(a)得6-a2>a,解得-3<a<2故答案为-3<a<2利用二次函数的单调性,及导数工具,先探讨函数的单调性,然后利用条件列出不等式,即可解得a的范围.本题考查了函数单调性的性质及利用导数研究函数的单调性,在探讨分段函数的性质时注意分段研究.本题是个中档题.17.【答案】解:(1)设公比为q等比数列{a n}为递增数列,且a52=a10,首项为a1,则:a1q4⋅a1⋅q4=a1⋅q9,解得:a1=q,2(a n+a n+2)=5a n+1,所以:2q2-5q+2=0,第14页,共18页解得:q =2或12,由于数列为单调递增数列, 故:q =2,所以:a n =a 1⋅q n−1=2n ,数列{b n }的前n 项和为S n ,b 1=1,b n ≠0,b n b n +1=4S n -1①. 当n ≥2时,b n -1b n =4S n -1-1②, 整理得:b n -b n -1=2(常数),对n 分偶数和奇数进行分类讨论, 整理得:b n =2n -1故:c n =a n b n =(2n -1)•2n ,则:T n =1⋅21+3⋅22+⋯+(2n −1)⋅2n ①, 2T n =1⋅22+3⋅23+⋯+(2n −1)⋅2n+1②, ①-②得:-T n =2⋅2(2n −1)2−1−(2n −1)⋅2n+1−2,解得:T n =(2n −3)⋅2n+1+6. 【解析】(1)直接利用递推关系式求出数列的通项公式.(2)利用(1)的结论,进一步利用乘公比错位相减法求出数列的和. 本题考查的知识要点:数列的通项公式的求法及应用,乘公比错位相减法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.【答案】解:(1)2×2列联表如下,依题意,男生60人,故女生有100-60=40人, 对游泳感兴趣的男生有60×56=50人,则对游泳不感兴趣的男生有60-50=10人, 对游泳不感兴趣的女生有15人,故对游泳感兴趣的女生有40-15=25人,K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=100(50×15−25×10)275×25×40×60≈5.556<6.635,故没有99%的把握认为对游泳是否有兴趣与性别有关(Ⅱ)设A ={6人抽取3人,至少有2人对游泳感兴趣},则P (A )=13C 32C+C 33C 63=1020=12.【解析】(Ⅰ)分别求出男女生感兴趣和不感兴趣的人数,填入表中即可.(Ⅱ)6人中有3人对游泳感兴趣,三人不感兴趣,用计数原理算出所有的抽取方法,计算出至少2人对游泳感兴趣的概率p 即可. 本题考查了独立性检验,古典概型的概率求法,属基础题.19.【答案】证明:(Ⅰ)∵在底面ABCD 中,AD ∥BC ,AD ⊥CD ,且BC =2AD =2CD =2√2, ∴AB =AC =2,BC =2√2, ∴AB ⊥AC ,又∵AB ⊥PC ,AC ∩PC =C ,AC ⊂平面PAC ,PC ⊂平面PAC ,∴AB ⊥平面PAC , ∴AB ⊥PA ,∵PA =AC =2,PC =2√2, ∴PA ⊥AC ,又∵PA ⊥AB ,AB ∩AC =A ,AB ⊂平面ABCD ,AC ⊂平面ABCD , ∴PA ⊥平面ABCD .解:(2)以A 为原点,AB ,AC ,AP 所成角分别为x ,y ,z 轴,建立空间直角坐标系, A (0,0,0),B (2,0,0),C (0,2,0),P (0,0,2),D (-1,1,0),设M (a ,b ,c ),PM⃗⃗⃗⃗⃗⃗ =λPD ⃗⃗⃗⃗⃗ ,λ∈[0,1], 则(a ,b ,c -2)=(-λ,λ,-2λ),∴M (-λ,λ,2-2λ),BM ⃗⃗⃗⃗⃗⃗ =(-λ-2,λ,2-2λ),AM ⃗⃗⃗⃗⃗⃗ =(-λ,λ,2-2λ),AC⃗⃗⃗⃗⃗ =(0,2,0), 设平面AMC 的法向量n⃗ =(x ,y ,z ), 则{n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =−λx +λy +(2−2λ)z =0n ⃗ ⋅AC ⃗⃗⃗⃗⃗ =2y =0,取x =1,得n ⃗ =(1,0,λ2−2λ), ∵BM ∥平面AMC ,∴BM ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =-λ-2+(2-2λ)•λ2−2λ=0,方程无解,∴在线段PD 上,不存在一点M ,使得BM ∥平面AMC .【解析】(Ⅰ)推导出AB ⊥AC ,AB ⊥PC ,从而AB ⊥平面PAC ,进而AB ⊥PA ,再求出PA ⊥AC ,PA ⊥AB ,由此能证明PA ⊥平面ABCD .(2)以A 为原点,AB ,AC ,AP 所成角分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出在线段PD 上,不存在一点M ,使得BM ∥平面AMC . 本题考查面面垂直的证明,考查满足线面平行的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题.20.【答案】解:(1)易知,|BC|=2b 2a ,S △FOAS △COB=b2b 2a=a2b =√22,∴a =√2b ,c =√a 2−b 2=b ,所以,b =1,a =√2,第16页,共18页因此,椭圆Γ的方程为x 22+y 2=1;(2)设直线m 与椭圆Γ的切点为点P (x 0,y 0),则直线m 的方程为x 0x 2+y 0y =1,且有x 022+y 02=1,可得y 02=1−x 022,直线m 与直线l :x =1交于点M(1,2−x 02y 0),直线m 交直线x =2于点N(2,1−x 0y 0).所以,|MF|=|2−x 02y 0|,|NF|=√(2−1)2+(1−x0y 0)2=√1+x 02−2x 0+1y 02=√x 02−2x 0+1+1−x 022y 02=√x 022−2x 0+2y 02=√12(x 02−4x 0+4)y 02=√22⋅|2−x 0y 0|,因此,|MF||NF|=|2−x 0y 0|√22|2−x 0y 0|=√2.【解析】(1)由通径公式得出,结合已知条件得出,再由c=1,可求出a 、b 的值,从而得出椭圆的方程;(2)设切点为(x 0,y 0),从而可写出切线m 的方程为,进而求出点M 、N 的坐标,将切点坐标代入椭圆方程得出x 0与y 0之间的关系,最后利用两点间的距离公式可求出答案.本题考查直线与椭圆的综合,考查计算能力与推理能力,属于中等题. 21.【答案】解:(Ⅰ)f ′(x )=1-ae x ,①a ≤0时,f ′(x )>0,f (x )在R 上递增,不合题意,舍去,②当a >0时,令f ′(x )>0,解得x <-ln a ;令f ′(x )<0,解得x >-ln a ; 故f (x )在(-∞,-ln a )单调递增,在(-ln a ,+∞)上单调递减,由函数y =f (x )有两个零点x 1,x 2(x 1<x 2),其必要条件为:a >0且f (-ln a )=-ln a >0,即0<a <1,此时,-1<-ln a <2-2ln a ,且f (-1)=-1-ae +1=-ae <0,令F (a )=f (2-2ln a )=2-2ln a -e 2a+1=3-2ln a -e 2a,(0<a <1),则F ′(a )=-2a +e 2a2=e 2−2aa 2>0,F (a )在(0,1)上单调递增,所以,F (a )<F (1)=3-e 2<0,即f (2-2ln a )<0, 故a 的取值范围是(0,1). (Ⅱ)令f (x )=0⇒a =x+1e x ,令g (x )=x+1e x ,g ′(x )=-xe -x ,则g (x )在(-∞,0)单调递增,在(0,+∞)单调递减,由(Ⅰ)知0<a <1,故有-1<x 1<0<x 2, 令h (x )=g (-x )-g (x ),(-1<x <0),h (x )=(1-x )e x -(1+x )e -x ,(-1<x <0),h ′(x )=-xe x +xe -x =x (e -x -e x )<0, 所以,h (x )在(-1,0)单调递减,故h (x )>h (0)=0, 故当-1<x <0时,g (-x )-g (x )>0,所以g (-x 1)>g (x 1),而g (x 1)=g (x 2)=a ,故g (-x 1)>g (x 2), 又g (x )在(0,+∞)单调递减,-x 1>0,x 2>0, 所以-x 1<x 2,即x 1+x 2>0, 故ex 1+ex 2≥2√e x 1+x 2=2ex 1+x 22>2.【解析】(Ⅰ)利用导数研究单调性得f (x ) 的最大值为f (-lna )>0解得a 即可; (Ⅱ)先通过构造函数证明x 1+x 2>0,在用基本不等式可证. 本题考查了函数零点的判定定理,属难题.22.【答案】解:(Ⅰ)曲线C 1的参数方程为{x =−12ty =2+√32t (t 为参数), 由代入法消去参数t ,可得曲线C 1的普通方程为y =-√3x +2; 曲线C 2的极坐标方程为ρ=√1+3sin 2θ, 得ρ2=41+3sin 2θ,即为ρ2+3ρ2sin 2θ=4, 整理可得曲线C 2的直角坐标方程为x 24+y 2=1;(Ⅱ)将{x =−12ty =2+√32t (t 为参数), 代入曲线C 2的直角坐标方程x 24+y 2=1得13t 2+32√3t +48=0,利用韦达定理可得t 1•t 2=4813, 所以|MA |•|MB |=4813. 【解析】(Ⅰ)运用代入法,消去t ,可得曲线C 1的普通方程;由x=ρcosθ,y=ρsinθ,代入极坐标方程,即可得到所求直角坐标方程;第18页,共18页(Ⅱ)将直线的参数方程代入曲线C 2的直角坐标方程,运用参数的几何意义,由韦达定理可得所求之积.本题考查参数方程和普通方程的互化,极坐标方程和直角坐标方程的互化,考查直线参数方程的运用,以及韦达定理的运用,属于基础题. 23.【答案】解:(1)f (x )=|2x +1|-|x -2|={−x −3,x ≤−123x −1,−12<x <2x +3,x ≥2,画出y =f (x )的图象,如右图:(2)关于x 的不等式x +2m +1≥f (x )有解,即为2m +1≥f (x )-x , 由x ≥2时,y =f (x )-x =3;当-12<x <2时,y =f (x )-x =2x -1∈(-2,3);当x ≤-12时,y =f (x )-x =-2x -3∈[-2,+∞), 可得y =f (x )-x 的最小值为-2, 则2m +1≥-2, 解得m ≥-32. 【解析】(1)写出f (x )的分段函数式,画出图象;(2)由题意可得2m+1≥f (x )-x 的最小值,对x 讨论去绝对值,结合一次函数的单调性可得最小值,即可得到所求范围.本题考查绝对值不等式的解法和不等式有解的条件,注意运用分类讨论思想方法和分离参数法,考查单调性的运用:求最值,属于中档题.。
四川省成都七中高2019届数学三轮复习文科综合训练(10)及答案解析

成都七中高2019届三轮复习(文科)综合训练(十)考试时间:120分钟 总分:150分一、选择题:本题共10小题,每小题5分,共50分.把答案填在答题卡的相应位置.1. 复数21z i=-+的虚部是 ( ) A. -1 B. i - C. 1 D. i2. 已知集合{ln(3)}A x y x ==- ,2{540}B x x x =-+≤,则A B = ( )A. {13}x x ≤<B. {13}x x <<C. {04}x x <<D. {04}x x ≤≤ 3. 若某几何体的三视图如右图所示(每个正方形的边长均为1),则该几何体的体积等于 ( )A .16 B .13 C .12 D .56若,m n 是两条不同的直线,,,αβγ为三个不同的平面,则下列 A .若m n ,m α⊂,则n α B . 若m n ,m α⊂,n β⊂, 则βαC .若αγ⊥,βα⊥, 则βγD .若m n ,m α⊥,n β⊥, 则βα4. 设0ω>,函数sin()3y x πω=+的图象向右平移43π个单位长度后与原图重合,则ω的最小值是( )A. 23B. 43C. 32D. 35. 已知向量,a b 满足2a =,32a b ⋅=, 22a b +=,则向量,a b 夹角的余弦值为 ( )A. 23B. 45C. 12D. 346. 设等差数列{}n a 的前n 项和为n S ,若599590S S +=,则7S = ( )A . 7B .14C .21D . 229. 某工厂安排甲、乙两种产品的生产,已知工厂生产每吨甲、乙两种产品所需要的原材料A 、B 、C 的数量和原材料 甲(吨) 乙(吨) 资源数量(吨) A 1 1 50 B 4 0 160 C 2 5 200则工厂每周要获得最大利润,最科学的安排生产方式是 ( ) A. 每周生产甲产品40吨,不生产乙产品 B. 每周不生产甲产品,生产乙产品40吨 C. 每周生产甲产品503吨,生产乙产品1003吨 D. 每周生产甲产品40吨,生产乙产品10吨二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.成都七中高2019届三轮复习(文科)综合训练(十)班级:姓名:总分:11..12..13..14..15..三、解答题: 本大题共6小题,共75分.解答应写出文字说明,证明过程,演算步骤.17. (本题满分12分)已知函数2()3cos 2cos f x x x x =+⋅+.(1)若()5f α=,求tan α的值;(2)设△ABC 的三个内角A,B,C 所对的边分别是,,a b c ,且(2)cos cos 0a c B b C -⋅-⋅=,求函数()f x 在(0,]B 上的最大值和最小值.成都七中高2019届三轮复习(文科)综合训练(十)答案一、选择题:本题共10小题,每小题5分,共50分.1.A 2.A 3.B 4.D 5.C 6.D 7.A9.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.n= 14.4 15. ①②④7n=7三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.。
精品解析:【全国百强校】四川省成都市实验外国语学校2019届高三10月月考数学(理)试题(解析版)

四川省成都市实验外国语学校2019届高三10月月考数学(理)试题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、试室号和座位号。
用2B型铅笔把答题卡上试室号、座位号对应的信息点涂黑。
2.选择题每小题选出答案后,用2B型铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本大题共12小题,共60.0分)1.已知集合1,2,,,则的元素个数为A. 2B. 3C. 4D. 8【答案】B【解析】【分析】由题意求出A∩B={0,1,2},由此能求出A∩B的元素个数.【详解】∵集合A={0,1,2,3},B={x∈N|0≤x≤2},∴A∩B={0,1,2},∴A∩B的元素个数为3.故选:B.【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.命题“若都是偶数,则是偶数”的逆否命题是()A. 若是偶数,则与不都是偶数B. 若是偶数,则与都不是偶数C. 若不是偶数,则与不都是偶数D. 若不是偶数,则与都不是偶数【答案】C【解析】试题分析:命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题3.执行如图所示的程序框图输出的结果是()A. B. C. D.【答案】A【解析】【分析】根据程序框图循环结构运算,依次代入求解即可。
【详解】根据程序框图和循环结构算法原理,计算过程如下:所以选A【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题。
四川省成都市第七中学2019届高三第一次诊断性检测数学(文)试题(解析版)

四川省成都市第七中学2019届高三第一次诊断性检测数学(文)试题(解析版)一、选择题(本大题共12小题,共60.0分)1.i为虚数单位,则A. B. C. D.【答案】D【解析】【分析】根据复数的运算法则进行化简、计算,即可求解,得到答案.【详解】根据复数的乘法运算法则,可得,故选:D.【点睛】本题主要考查了复数的运算法则的应用,其中解答中熟记复数的运算法则,以及是解答的关键,着重考查了推理与计算能力,属于基础题。
2.设集合,,则()A. B. C. D.【答案】A【解析】【分析】求出A与B中不等式的解集确定出A与B,从而求出两集合的交集即可.【详解】∵集合A=,解得x>-1,B={x|(x+1)(x﹣2)0且x}={x|﹣1x<2},则A∩B={x|<x<2},故选:A.【点睛】本题考查了集合的运算,考查解指数不等式及分式不等式问题,是一道基础题.3.函数的图象大致是()A. B.C. D.【答案】D【解析】【分析】先判断函数为偶函数,再根据特殊点的函数值即可判断.【详解】因为满足偶函数f(﹣x)=f(x)的定义,所以函数为偶函数,其图象关于y轴对称,故排除B,又x=0时,y=0,排除A、C,故选D.【点睛】本题考查了函数的图象的识别,一般常用特殊点的函数值、函数的奇偶性和函数的单调性来排除,属于基础题.4.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两个等径正贯的圆柱体的侧面围成,其直视图如图(其中四边形是为体现直观性而作的辅助线).当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为()A. B.C. D.【答案】B【解析】【分析】相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).根据三视图看到方向,可以确定三个识图的形状,判断答案.【详解】∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).∴其正视图和侧视图是一个圆,俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,∴俯视图是有2条对角线且为实线的正方形,故选:B.【点睛】本题很是新颖,三视图是一个常考的内容,考查了空间想象能力,属于中档题.5.执行下边的算法程序,若输出的结果为120,则横线处应填入()A. B. C. D.【答案】C【解析】【分析】由题意知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得结果.【详解】模拟执行算法程序,可得:S=1,k=1,不满足条件,S=1,k=2,不满足条件,S=2,k=3,不满足条件,S=6,k=4,不满足条件,S=24,k=5,不满足条件,S=120,k=6,此时i满足条件,退出循环,输出S的值为120;所以横线处应填写的条件为,故选C.【点睛】本题考查了程序框图的应用问题,属于直到型循环结构,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6.设实数满足,则的最大值是()A. -1B.C. 1D.【答案】D【解析】【分析】由约束条件确定可行域,由的几何意义,即可行域内的动点与定点P(0,-1)连线的斜率求得答案.【详解】由约束条件,作出可行域如图,联立,解得A(),的几何意义为可行域内的动点与定点P(0,-1)连线的斜率,由图可知,最大.故答案为:.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.7.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】【分析】由可推出,再结合充分条件和必要条件的概念,即可得出结果.【详解】若,则,所以,即“”不能推出“”,反之也不成立,因此“”是“”的既不充分也不必要条件.故选D【点睛】本题主要考查充分条件和必要条件,熟记概念即可,属于基础题型.8.已知向量,,则在方向上的投影为()A. 2B. -2C.D.【答案】B【解析】【分析】根据平面向量的数量积运算与向量投影的定义,写出对应的运算即可.【详解】向量,,∴,∴(•==-10,||==5;∴向量在向量方向上的投影为:||cos<(,>===﹣2.故选:B.【点睛】本题考查了平面向量的数量积运算与向量投影的定义与应用问题,是基础题.9.设抛物线的焦点为,准线为,点在上,点在上,且,若,则的值()A. B. 2 C. D. 3【答案】D【解析】【分析】过M向准线l作垂线,垂足为M′,根据已知条件,结合抛物线的定义得==,即可得出结论.【详解】过M向准线l作垂线,垂足为M′,根据已知条件,结合抛物线的定义得==,又∴|MM′|=4,又|FF′|=6,∴==,.故选:D.【点睛】本题考查了抛物线的定义标准方程及其性质、向量的共线,考查了推理能力与计算能力,属于中档题.10.设分别是的内角的对边,已知,则的大小为( )A. B. C. D.【答案】C【解析】【分析】利用三角形内角和定理可得.由正弦定理可得b2+c2﹣a2=-bc,由余弦定理可得cosA=,结合范围A∈(0,π)可得A的值.【详解】∵,,∴由正弦定理可得:,整理可得:b2+c2﹣a2=-bc,∴由余弦定理可得:cosA=,∴由A∈(0,π),可得:A=.故选C.【点睛】本题主要考查了正弦定理、余弦定理在三角形中的应用,属于基础题.11.已知正三棱锥的高为6,内切球(与四个面都相切)表面积为,则其底面边长为()A. 18B. 12C.D.【答案】B【解析】【分析】过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,AE是BC边上的高和中线,D 为△ABC的中心,D、M为其中两个切点,利用直角△PDE中的数量关系计算结果.【详解】如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.此时球与四个面相切,如图D、M为其中两个切点,∵S球=16π, ∴球的半径r=2.又∵PD=6,OD=2,∴OP=4,又OM=2,∴=∴ DE=2,AE=6, ∴ AB=12,故选B.【点睛】本题考查球与棱锥的组合体问题,考查球的表面积公式,找切点利用直角三角形是解决此类问题的关键,解题时要认真审题,注意空间思维能力的培养.12.已知函数(其中)的最小正周期为,函数,若对,都有,则的最小正值为()A. B. C. D.【答案】B【解析】【分析】将函数表达式展开合并,再用辅助角公式化简,得f(x)=sin(2x+)-.再根据正弦函数对称轴的公式,求出f (x)图象的对称轴方程.【详解】由函数的最小正周期为,可求得=2∴f(x)=,===2sin(+),∴又,∴x=是g(x)的一条对称轴,代入+中,有+=(k,解得=(k,k=1时,,故选B.【点睛】本题考查了三角函数的化简与三角函数性质,运用了两角和差的正余弦公式,属于中档题.二、填空题(本大题共4小题,共20.0分)13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.【答案】12【解析】【分析】利用分层抽样中的比例,可得工会代表中男教师的总人数.【详解】∵高中部女教师与高中部男教师比例为2:3,按分层抽样方法得到的工会代表中,高中部女教师有6人,则男教师有9人,工会代表中高中部教师共有15人,又初中部与高中部总人数比例为2:3,工会代表中初中部教师人数与高中部教师人数比例为2:3,工会代表中初中部教师总人数为10,又∵初中部女教师与高中部男教师比例为7:3,工会代表中初中部男教师的总人数为10×30%=3;∴工会代表中男教师的总人数为9+3=12,故答案为12.【点睛】本题考查对分层抽样的定义的理解,考查识图能力与分析数据的能力,考查学生的计算能力,比较基础.14.已知圆与轴相切,圆心在轴的正半轴上,并且截直线所得的弦长为2,则圆的标准方程是________.【答案】【解析】【分析】由圆心在在轴的正半轴上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【详解】设圆心为(t,0),且t>0,∴半径为r=|t|=t,∵圆C截直线所得的弦长为2,∴圆心到直线的距离d==∴t2-2t-3=0,∴t=3或t=-1(舍),故t=3,∴.故答案为【点睛】此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.15.已知均为锐角,且,则的最小值是________.【答案】【解析】【分析】利用余弦的和与差公式打开,“弦化切”的思想求得tanαtanβ=,再将展开利用基本不等式即可求解.【详解】由cos(α-β)=3cos(α+β),可得cosαcosβ+sinαsinβ=3cosαcosβ-3sinαsinβ,同时除以cosαcosβ,可得:1+tanαtanβ=3-3tanαtanβ,则tanαtanβ=,又=2=.故答案为:.【点睛】本题考查了余弦、正切的和与差公式和同角三角函数的运用,“弦化切”的思想,结合了基本不等式求最值,属于中档题.16.若函数有三个不同的零点,则实数的取值范围是______.【答案】【解析】【分析】先将函数有三个不同的零点转化为在上有两个根,即在上有两个根,用导数的方法研究函数的单调性和值域即可.【详解】因为,由可得,即函数在上有一个零点;所以函数有三个不同的零点等价于方程在上有两个不等实根,等价于方程在上有两个不等实根;即与函数在上有两个不同交点;由得,由得;由得,即函数在上单调递减,在上单调递增,所以最小值为,所以,因为与函数在上有两个不同交点,所以.故答案为【点睛】本题主要考查函数零点,根据题意可将函数有零点,转化为两函数图像有交点的问题来处理,属于常考题型.三、解答题(本大题共7小题,共82.0分)17.正项等比数列中,已知,.求的通项公式;设为的前项和,,求.【答案】221【解析】【分析】利用等比数列通项公式列出方程组,求出a1=1,q=2,由此能求出{a n}的通项公式.(2)由(1)求出{a n}的前项和,代入中,直接利求出{b n}的通项,利用等差数列求和公式求得结果.【详解】设正项等比数列的公比为,则由及得,化简得,解得或(舍去).所以的通项公式为.由得,.所以.【点睛】本题考查等比数列通项公式、等差数列的前n项和的求法,考查运算求解能力,是中档题.18.“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南镇2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:“梅实初黄暮雨深”.请用样本平均数估计镇明年梅雨季节的降雨量;“江南梅雨无限愁”.镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?(完善列联表,并说明理由).(参考公式:,其中)【答案】乙【解析】【分析】由频率分布直方图可求出第四组的频率,利用频率分布直方图中平均数的计算公式求得结果.根据题意,列出列联表,计算,与甲品种的百分数作比较得出结论.【详解】频率分布直方图中第四组的频率为.所以用样本平均数估计镇明年梅雨季节的降雨量为.根据频率分布直方图可知,降雨量在200~400之间的频数为.进而完善列联表如图..故认为乙品种杨梅的亩产量与降雨量有关的把握不足75%.而甲品种杨梅降雨量影响的把握超过八成,故老李来年应该种植乙品种杨梅.【点睛】本题考查频率分布直方图的应用,考查了列联表及的知识,考查了计算能力与推理能力.19.已知椭圆的离心率为,且经过点.求椭圆的标准方程;过点的动直线交椭圆于另一点,设,过椭圆中心作直线的垂线交于点,求证:为定值.【答案】4,证明见解析【解析】【分析】(1)利用椭圆C:的离心率为,且经过点M(2,0),可求椭圆的几何量,从而可求椭圆方程;(2)直线方程与椭圆方程联立,利用韦达定理,求得B点坐标,再结合条件求出C的坐标,计算,得出定值4.【详解】因为椭圆的离心率,且,所以.又.故椭圆的标准方程为.设直线的方程为(一定存在,且).代入,并整理得.解得,于是.又,所以的斜率为.因为,所以直线的方程为.与方程联立,解得.故为定值.【点睛】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查定值问题,正确运用韦达定理是关键.20.如图,在多面体中,和交于一点,除以外的其余各棱长均为2.作平面与平面的交线,并写出作法及理由;求证:;若平面平面,求多面体的体积.【答案】见解析见解析 2【解析】【分析】由题意可得平面,由线面平行的性质作出交线即可.取的中点,连结,.由条件可证得平面,故.又.平面.从而.将多面体分割成两个三棱锥,再利用等体积法求得结果.【详解】过点作(或)的平行线,即为所求直线.和交于一点,四点共面.又四边形边长均相等.四边形为菱形,从而.又平面,且平面,平面.平面,且平面平面,.证明:取的中点,连结,.,,,.又,平面,平面,故.又四边形为菱形,.又,平面.又平面,.解:平面平面,平面.故多面体的体积.【点睛】本题考查证明线面平行、线面垂直的方法及求多面体体积的大小,不规则多面体常进行体积分割或补形,此法是解题的关键和难点.21.已知函数,其中为常数.若曲线在处的切线斜率为-2,求该切线的方程;求函数在上的最小值.【答案】【解析】【分析】(1)先利用,求出a,进而写出切点坐标,写出的切线方程.(2)对a分类讨论,易判断当或当时,在区间内是单调的,根据单调性直接可得出最小值,当时,在区间内单调递增,在区间内单调递减,故,又因为,,将两者比较大小求得结果.【详解】求导得,由解得.此时,所以该切线的方程为,即为所求.对,,所以在区间内单调递减.当时,,在区间上单调递减,故.当时,,在区间上单调递增,故.当时,因为,,且在区间上单调递增,结合零点存在定理可知,存在唯一,使得,且在上单调递增,在上单调递减.故的最小值等于和中较小的一个值.①当时,,故的最小值为.②当时,,故的最小值为.综上所述,函数的最小值.【点睛】本题考查导数的几何意义及利用导数研究函数的单调性以及函数的最值的求法,考查分类讨论思想以及计算能力.22.在平面直角坐标系中,曲线的参数标方程为(其中为参数,且),在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线的极坐标方程为.求曲线的极坐标方程;求直线与曲线的公共点的极坐标.【答案】【解析】【分析】(1)先将曲线C的参数标方程化为普通方程,再利用极坐标与直角坐标的互化,把普通方程化为极坐标方程;(2)将与的极坐标方程联立,求出直线l与曲线C的交点的极角,代入直线的极坐标方程即可求得极坐标.【详解】消去参数,得曲线的直角坐标方程.将,代入,得.所以曲线的极坐标方程为.将与的极坐标方程联立,消去得.展开得.因为,所以.于是方程的解为,即.代入可得,所以点的极坐标为.【点睛】本题考查曲线的极坐标方程与普通方程的互化,直线的极坐标方程与曲线极坐标方程联立求交点的问题,考查计算能力.23.已知函数,且.若,求的最小值;若,求证:.【答案】见解析【解析】【分析】由柯西不等式将中的变为,求得的最小值.因为,又,故再结合绝对值三角不等式证得结论成立.【详解】由柯西不等式得,(当且仅当时取等号),所以,即的最小值为;因为,所以,故结论成立.【点睛】本题考查了利用柯西不等式求最值,考查了利用绝对值三角不等式证明的问题,属于中等题.。
【全国百强校首发】四川省成都市第七中学2019届高三热身考试数学(文)试题

17 21 题为必考题,每个试
3
一点,则该点取自中间阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是
1
A.
2
1
B.
3
4 C. 2
4 D. 1
10.
11. 在 ABC 中, a, b,c 分别为角 A, B,C 的对边, 若 ABC 的面为 S ,且 4 3S ( a b) 2 c 2 ,则
sni ( C ) 4
A. 1
2
B.
2
第Ⅰ卷
一、选择题:本大题共 12小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一个选项
符合题目要求.
1.已知集合 A x | log 2 x 1 ,集合 B y |y 2 x ,则 A B
A. ( ,2)
B. ( ,2]
C. (0,2)
D . [0, )
2.已知复数 z 满足 i z 3 2i ( i 是虚数单位) ,则 z
2018-2019 学年下期高三文科数学考试试卷
注意事项:
本试卷满分 150 分,分为第 Ⅰ 卷(选择题)和第 Ⅱ 卷(非选择题)两部分,第 Ⅰ卷为第 1 页至第 3 页,第 Ⅱ 卷为第 3 页至第 6 页。试题答案请用 2B 铅笔或 0.5mm 签字笔填涂到答题卡规定位置上, 书写在试题上的答案无效。考试时间 120 分钟。
A. 2 3i
B. 2 33i
3.已知实数 x, y 满足约束条件
x y20 x 2y 2 0 ,则目标函数 z x1
y 2 的最小值为 x1
2
A.
3
4.
5
B.
4
4
C.
3
四川省成都市第七中学2019届高三上学期入学考试数学(文)试题(解析版)

四川省成都市第七中学2019届高三上学期入学考试数学(文)试题(解析版)一、选择题(本大题共12小题,共60.0分)1.i是虚数单位,复数的虚部是A. 2iB.C. 2D.【答案】C【解析】解:i是虚数单位,复数,复数的虚部为:2.故选:C.利用复数的运算法则和复数的定义即可得出复数的虚部.本题考查了复数的运算法则和复数的基本概念,属于基础题.2.已知集合0,1,,,则A. B. C. D.【答案】D【解析】解:由或,即或,0,1,,,故选:D.求出集合,利用集合的交集定义进行计算即可.本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.3.命题“,”的否定是A. ,B. ,C. ,D. ,【答案】C【解析】解:因为特称命题的否定是全称命题,所以:命题“,”的否定是,.故选:C.利用特称命题的否定是全称命题写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.4.现在,人们出行非常注重绿色交通方式,第一种方式:骑单车或步行,第二种方式:乘地铁或公交经统计,在某校采用绿色交通方式上学的学生中,只需第一种方式的概率为,只需第二种方式的概率为,则两种方式都需要的概率是A. B. C. D.【答案】B【解析】解:人们出行非常注重绿色交通方式,第一种方式:骑单车或步行,第二种方式:乘地铁或公交.经统计,在某校采用绿色交通方式上学的学生中,只需第一种方式的概率为,只需第二种方式的概率为,则两种方式都需要的概率是.故选:B.利用对立事件概率计算公式直接求解.本题考查概率的求法,考查互斥事件概率计算公式等基础知识,考查运算求解能力,是基础题.5.若平面向量,满足,则下列各式恒成立的是A. B. C. D.【答案】C【解析】解:即即故选:C.先由得出,再将等式两边同时加运算即可本题考查了向量数量积的性质和运算,并考查了向量垂直的充要条件6.已知平面,直线m,n满足,,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】解:,,当时,成立,即充分性成立,当时,不一定成立,即必要性不成立,则“”是“”的充分不必要条件.故选:A.根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为参考数据:,,A. 12B. 24C. 36D. 48【答案】B【解析】解:模拟执行程序,可得:,,不满足条件,,,不满足条件,,,满足条件,退出循环,输出n的值为24.故选:B.列出循环过程中S与n的数值,满足判断框的条件即可结束循环.本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.8.在等比数列中,,且,则A. 4B. 8C. 16D. 32【答案】C【解析】解:在等比数列中,,且,,解得,.故选:C.利用等比数列通项公式列出方程组,求出首项和公比,由此能求出.本题考查等比数列的第11项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.9.设的内角A,B,C的对边分别为a,b,c,且,则的大小为A. B. C. D.【答案】C【解析】解:,由正弦定理可得:,可得:,可得:,,,,解得:,,.故选:C.由正弦定理,内角和定理,两角和的正弦函数公式化简已知等式可得,结合,可求,结合范围,可求A的值.本题主要考查了正弦定理,内角和定理,两角和的正弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.10.若函数的图象关于原点对称,则实数a等于A. B. C. 1 D. 2【答案】A【解析】解:根据题意,函数的图象关于原点对称,即函数为奇函数,则有,即,变形可得:,解可得;故选:A.根据题意,由函数奇偶性的定义可得数为奇函数,则有,即,变形解可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,注意奇函数的定义,属于基础题.11.如图是函数其中,的部分图象,则的值为A. B. C. D.【答案】B【解析】解:根据函数其中,的部分图象,可得,求得,再根据五点法作图可得,,函数,则,故选:B.由周期求出,由五点法作图求出的值,可得的解析式,再利用诱导公式求的值.本题主要考查由函数的部分图象求解析式,由周期求出,由五点法作图求出的值,利用诱导公式求三角函数的值,属于基础题.12.经过点的直线l与两条坐标轴的正半轴分别交于A、B两点,则的最小值为A. 2B.C.D. 4【答案】D【解析】解:设直线l:,,令,可得,令,可得,得,.则,当且仅当,由,可得时,取最小值4,故选:D.设直线l的点斜式方程,求出A,B两点的坐标,代入的解析式,使用基本不等式,求出最小值,注意检验等号成立条件.本题考查了直线的点斜式方程,以及基本不等式的应用:求最值,考查运算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13.设,,则事件A:发生的概率为______.【答案】【解析】解:设,,基本事件总数构成的几何区域是以1为边长的正方形OABC,事件A:,,事件A构成的可行域区域是,事件A:发生的概率为:.正方形故答案为:.设,,则基本事件总数构成的几何区域是以1为边长的正方形OABC,事件A:,构成的可行域区域是,由此利用几何概型能求出事件A 发生的概率.本题考查概率的求法,考查几何概型、古典概型的计算等基础知识,考查运算求解能力,考查数形结合思想,是中档题.14.某几何体的三视图如图所示,则该几何体的体积为______【答案】【解析】解:根据几何体的三视图,得出该几何体是圆柱,挖去一部分,如图.结合图中数据它的体积故答案为:.根据几何体的三视图,得出该几何体是圆柱,挖去一部分,结合图中数据求出它的体积.本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.15.求值:______.【答案】【解析】解:.故答案为:.化切为弦,通分后利用两角和的余弦变形,然后展开倍角公式得答案.本题考查三角函数的化简求值,考查倍角公式与两角和的余弦,是中档题.16.若双曲线的左支上存在点P与右焦点F关于其中一条渐近线对称,则该双曲线的离心率为______.【答案】【解析】解:过右焦点F且垂直渐近线的直线方程为:,联立渐近线方程与,解之可得,故对称中心的点坐标为,,由中点坐标公式可得对称点的坐标为,,将其代入双曲线的方程可得,结合,化简可得,故可得.故答案为:.求出过焦点F且垂直渐近线的直线方程,联立渐近线方程,解方程组可得对称中心的点的坐标,代入双曲线方程结合,由离心率公式解出e即得.本题考查双曲线的简单性质,涉及离心率的求解和对称问题,属中档题.三、解答题(本大题共7小题)17.设等差数列的前n项和为,已知.Ⅰ求和;Ⅱ求证:,.【答案】解:Ⅰ设等差数列的公差为d,则,解得,,;证明:Ⅱ由,.【解析】根据题意可得,由方程组得出,,求解即可得出通项公式和求和公式.,根利用裂项求和法能求出数列的前n项和,放缩证明即可.本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.18.如图,在三棱柱中,,,.Ⅰ求证:;Ⅱ若平面平面,且,求该三棱柱的体积.【答案】证明:取AB的中点O,连结OC,,,,,,是正三角形,,又,平面,又平面,C.解:Ⅱ平面平面,,平面ABC,,,,又,,,,该三棱柱的体积.【解析】取AB的中点O,连结OC,,推导出,,从而平面,由此能证明C.Ⅱ推导出平面ABC,,由此能求出该三棱柱的体积.本题考查线线垂直的证明,考查三棱柱的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.19.大型中华传统文化电视节目《中国诗词大会》以“赏中华诗词,寻文化基因,品生活之美”为宗旨,深受广大观众喜爱,各基层单位也通过各种形式积极组织、选拔和推荐参赛选手某单位制定规则如下:凡报名参赛的诗词爱好者必须先后通过笔试和面试,方可获得入围CCTV正赛的推荐资格;笔试成绩不低于85分的选手进入面试,面试成绩最高的3人获得推荐资格在该单位最近组织的一次选拔活动中,随机抽取了一个笔试成绩的样本,并据此绘制成频率分布直方图如图左同时,也绘制了所有面试成绩的茎叶图如图右,单位:分.Ⅰ估计该单位本次报名参赛的诗词爱好者的总人数;Ⅱ若从面试成绩高于不含中位数的选手中随机选取2人,求其中至少有一人获得推荐资格的概率.【答案】解:Ⅰ由频率分布直方图知笔试成绩不低于85分的频率为:,又由茎叶图知参加面试的人数为15,估计该单位本次报名参赛的诗词爱好者的总人数为人.Ⅱ面试成绩高于不含中位数分的选手有7人,其中获得推荐资格的有3人,设为a,b,c,d,E,F,G,从中随机抽取2人,共有21种不同结果,分别为:,,,,,,,,,,,,,,,,,,,,,其中,不含推荐资格的人选有6种情况,其中至少有一人获得推荐资格的概率.【解析】Ⅰ由频率分布直方图得到笔试成绩不低于85分的频率为,由茎叶图知参加面试的人数为15,由此能估计该单位本次报名参赛的诗词爱好者的总人数.Ⅱ面试成绩高于不含中位数分的选手有7人,其中获得推荐资格的有3人,设为a,b,c,d,E,F,G,从中随机抽取2人,利用列举法能求出其中至少有一人获得推荐资格的概率.本题考查频率分布直方图、茎叶图的应用,考查概率的求法,考查列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题20.设动圆P经过点,且与圆G:为圆心相切.Ⅰ求动圆圆心P的轨迹E;Ⅱ设经过F的直线l与轨迹E交于A、B两点,且满足的点H也在轨迹E上,求直线l的方程.【答案】解:Ⅰ圆G的圆心,半径为,由圆P与圆G相切,得,由椭圆定义知:动圆圆心P的轨迹E是以F,G为焦点且长轴长为的椭圆,其方程为.Ⅱ设直线l的方程为一定存在,代入,并整理,得:,恒成立,设,,则,设,由,得,即,点H在轨迹E上,,即,解得,舍负.直线l的方程为.【解析】Ⅰ圆G的圆心,半径为,由圆P与圆G相切,推导出动圆圆心P 的轨迹E是以F,G为焦点且长轴长为的椭圆,由此能求出结果.Ⅱ设直线l的方程为一定存在,代入,得:,利用根的判别式、韦达定理,结合已知条件能求出直线l的方程.本题考查动圆圆心的轨迹的求法,考查直线方程的求法,考查圆、椭圆、直线方程、韦达定理、向量知识等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.21.已知函数,其中a为常数,为自然对数的底数.Ⅰ当时,求经过原点且与曲线相切的直线方程;Ⅱ当时,函数的最小值为,求的最大值.【答案】解:Ⅰ当时,,,设切点坐标为,则切线方程为,将代入可得,解得,故经过原点且与曲线相切的直线方程为,即,Ⅱ,由,解得,由,解得,函数在上单调递增,在单调递减,函数在上最小值只可能在或处取得,若,此时,此时,满足题意,若,则,解得,此时,矛盾,故时,函数在上单调递增,在单调递减,的最大值为.【解析】Ⅰ设切点坐标为,则切线方程为,将代入即可求出t的值,可的切线方程,Ⅱ先求导函数的单调区间,则可得函数在上最小值只可能在或处取得,根据函数的最小值为,求出,再求出最大值即可.本题考查了导数的几何意义和导数和函数的最值的关系,考查了运算能力和转化能力,属于中档题22.在平面直角坐标系xOy中,直线l的参数方程为其中t为参数,且,在以O为极点、x轴的非负半轴为极轴的极坐标系两种坐标系取相同的单位长度中,曲线C的极坐标方程为,设直线l经过定点P,且与曲线C交于A、B两点.Ⅰ求点P的直角坐标及曲线C的直角坐标方程;Ⅱ求证:不论a为何值时,为定值.【答案】解:Ⅰ直线l的参数方程为其中t为参数,且,时,得点,即点P的直角坐标为;又曲线C的极坐标方程为,,,,即曲线C的直角坐标方程为;Ⅱ证明:将直线l的参数方程代入,整理得,其中,,,;;即不论a为何值时,都为定值1.【解析】Ⅰ由题意求得直线l过定点,化曲线C的极坐标方程为直角坐标方程即可;Ⅱ将直线l的参数方程代入曲线C的直角坐标方程,根据参数t的几何意义,利用根与系数的关系求得为定值.本题考查了参数方程与极坐标的应用问题,也考查了直线与抛物线的方程与应用问题,是中档题.23.已知不等式的解集为M.Ⅰ求M;Ⅱ设m为M中的最大元素,正数a,b满足,求的最大值.【答案】解:Ⅰ设函数,则为所求.Ⅱ由已知,,则,故的最大值为当且仅当,即,时取等【解析】Ⅰ分3段去绝对值解不等式,再相并;Ⅱ先平方求出最大值,再开方.本题考查了绝对值不等式的解法,属中档题.。
四川省成都市第七中学2019届高三第一次诊断性检测数学(文)试题(精品解析)

四川省成都市第七中学2019届高三第一次诊断性检测数学(文)试题(解析版)一、选择题(本大题共12小题,共60.0分)1.i 为虚数单位,则 (1‒i)(3+i)=()A. B. C. D. 2+3i2‒2i 2+2i 4‒2i【答案】D【解析】解:,(1‒i)(3+i)=3+i ‒3i ‒i 2=3+1‒2i =4‒2i 故选:D .根据复数的运算法则进行计算即可.本题主要考查复数的计算,根据复数乘法的运算法则是解决本题的关键.2.设集合,,则 A ={x|2x >12}B ={x|x +1x ‒2≤0}A ∩B =()A. B. C. D. (‒1,2)[‒1,2)(‒1,2][‒1,2]【答案】A【解析】解:集合,∵A ={x|2x >12}={x|x >‒1}.B ={x|x +1x ‒2≤0)={x|‒1≤x <2},∴A ∩B ={x|‒1<x <2}=(‒1,2)故选:A .先分别求出集合A 和B ,由此能求出.A ∩B 本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3.函数的图象大致是 y =ln (1+x 2)()A.B. C. D.【答案】D【解析】解:函数的定义域为R ,,故排除A ,C ;y =ln (1+x 2)f(0)=0,当时,,可知在上为减函数,排除B .y'=2x1+x 2x∈(‒∞,0)y'<0y =ln (1+x 2)(‒∞,0)故选:D .f(0)=0由函数的定义域及排除A,C,再由导数研究单调性排除B,则答案可求.本题考查函数的图象及图象变换,训练了利用导数研究函数的单调性,是中档题.4.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它(由两等径正贯的圆柱体的侧面围成,其直观图如图其中四边形是为体现直观性而作)()的辅助线当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为 A. B. C. D.【答案】B【解析】解:根据几何体的直观图:由于直观图“牟合方盖”的正视图和侧视图完全相同时,该几何体的俯视图为有对角线的正方形.故选:B.直接利用直观图“牟合方盖”的正视图和侧视图完全相同,从而得出俯视图形.本题考查的知识要点:直观图和三视图之间的转换,主要考查学生的空间想象能力和转化能力,属于基础题型.()5.执行如图的算法程序,若输出的结果为120,则横线处应填入 A. k<6B. k≤6C. k≥6D. k>6【答案】C【解析】解:模拟程序的运行,可得S=1k=1,S=1k=2执行循环体,,S=2k=3执行循环体,,S=6k=4执行循环体,,S=24k=5执行循环体,,S=120k=6执行循环体,,由题意,此时,不满足条件,退出循环,输出S 的值为120.可得横线处应填入的条件为.k ≥6故选:C .分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出变量S 的值,要确定进入循环的条件,可模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到题目要求的结果.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,.这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此①②③④..种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6.设实数x ,y 满足,则的最大值是 {2x ‒y ≤4x +2y ≤2x ‒1≥0y +1x ()A. B.C. 1D.‒11232【答案】D【解析】解:画出满足条件的平面区域,如图示:而的几何意义表示过平面区域内的点与y +1x 点的连线的斜率,D(0,‒1)由,解得:,{x =1x +2y =2A(1,12),∴K DA =12+11=32故选:D .画出约束条件的可行域,利用目标函数的几何意义,求解即可.本题主要考查线性规划的应用以及直线斜率的求解,利用数形结合是解决本题的关键.7.“”是“”的 1og 2a <1og 2b 1<1()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】解:,1og 2a <1og 2b⇔0<a <b 推不出,∵0<a <b 1a<1b推不出,1a<1b0<a <b“”是“”的既不充分也不必要条件.∴1og 2a <1og 2b 1a <1b 故选:D .首先转化,然后根据充分条件和必要条件的定义进行判断即可.1og 2a <1og 2b 本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.8.已知向量,,则在方向上的投影为 ⃗a=(4,‒7)⃗b=(3,‒4)⃗a‒2⃗b ⃗b ()A. 2B. C. D. ‒2‒2525【答案】B【解析】解:在方向上的投影为:.⃗a ‒2⃗b ⃗b (⃗a ‒2⃗b )⋅⃗b|⃗b|=⃗a ⋅⃗b‒2⃗b2|⃗b|=12+28‒2×255=‒2故选:B .根据方向投影的公式可得.本题考查了平面向量数量积的性质以及运算,属基础题.9.设抛物线C :的焦点为F ,准线为l ,点M 在C 上,点N 在l 上,且,若,y 2=12x ⃗FN =λ⃗FM (λ>0)|MF|=4则的值为 λ()A.B. 2C.D. 335【答案】D【解析】解:根据题意画出图形,如图所示;抛物线,焦点,准线为;y 2=12x F(3,0)x =‒3设,,M(x 1,y 1)N(‒3,y 2)则,|MF|=x 1+3=4解得,;x 1=1∴M(1,y 1),,∴⃗FN =(‒6,y 2)⃗FM =(‒2,y 1)又,⃗FN=λ⃗FM ,∴‒6=‒2λ解得.λ=3故选:D .根据题意画出图形,结合图形求出抛物线的焦点F 和准线方程,设出点M 、N 的坐标,根据和求出的值.|MF|⃗FN =λ⃗FM λ本题考查了抛物线的方程与应用问题,也考查了平面向量的坐标运算问题,是中档题.10.设a ,b ,c 分别是的内角A ,B ,C 的对边,已知,则的△ABC (b +c)sin(A +C)=(a +c)(sinA ‒sinC)∠A 大小为 ()A. B. C. D. 30∘60∘120∘150∘【答案】C【解析】解:,∵(b +c)sin(A +C)=(a +c)(sinA ‒sinC),由正弦定理可得:,整理可得:∴(b +c)sinB =(a +c)(sinA ‒sinC)(b +c)b =(a +c)(a ‒c),b 2+c 2‒a 2=‒bc 由余弦定理可得:,∴cosA =b 2+c 2‒a 22bc=‒bc 2bc=‒12,∵A ∈(0,180∘).∴A =120∘故选:C .由三角形内角和定理,诱导公式,正弦定理化简已知等式可得:,由余弦定理可得,b 2+c 2‒a 2=‒bc cosA =‒12结合范围,可求A 的值.A ∈(0,180∘)本题主要考查了三角形内角和定理,诱导公式,正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.11.已知正三棱锥的高为6,内切球与四个面都相切表面积为,则其底面边长为 ()16π()A. 18B. 12C.D. 6343【答案】B【解析】解:如下图所示,设正三棱锥内切球的半径为r ,则,得.P ‒ABC 4πr 2=16πr =2设该正三棱锥的底面边长为2a ,则其底面积为.P ‒ABC 34×(2a )2=3a 2该三棱锥的体积为.V =13×3a 2×6=23a 2过点P 作平面ABC ,垂足点为点Q ,则点Q 为的中心,PQ ⊥△ABC 平面ABC ,平面ABC ,,∵PQ ⊥QM ⊂∴PQ ⊥QM 易知,,则,且,所以,,2AQ =AB sin 60∘=2a3=433a AQ =233a∠MAQ =30∘QM =12AQ =33a由勾股定理得,PM =PQ 2+QM2=a 2+1083,Q 为AB 的中点,,则的面积为,∵PA =PB ∴PM ⊥AB △PAB S △PAB =12AB ⋅PM =a a 2+1083所以,正三棱锥的表面积为,P ‒ABC S =3×a a 2+1083+3a 2=3a(a 2+108+a)由等体积法可得,即,解得.13×Sr =V13×3a(a 2+108+a)×2=23a 2a =6因此,该正三棱锥的底面边长为12.故选:B .设正三棱锥的底面边长为2a ,计算出该正三棱锥的体积V 以及表面积S ,并计算出内球的半径r ,利用等体积法得到关于a 的方程,求出a 即可得出答案.13Sr =V本题考查内切球,解决本题的关键在于计算出锥体的体积与表面积,并利用等体积法构建等式求解,考查计算能力,属于中等题.12.已知函数其中的最小正周期为,函数,若对,f(x)=sin(ωx +φ)(ω>0)πg(x)=f(x +π4)+3f(x)∀x ∈R 都有,则的最小正值为 g(x)≤|g(π3)|φ()A.B.C.D.π32π34π35π3【答案】B【解析】解:函数其中的最小正周期为,f(x)=sin(ωx +φ)(ω>0)π,∴ω=2ππ=2函数∴g(x)=f(x +π4)+3f(x),=sin(2x +π2+φ)+3sin(2x +φ)=cos(2x +φ)+3sin(2x +φ)=2sin[(2x +φ)+π6]又对,都有,∀x ∈R g(x)≤|g(π3)|,,∴2×π3+φ+π6=π2+kπk ∈Z 解得,,φ=‒π3+kπk ∈Z 的最小正值为.∴φ‒π3+π=2π3故选:B .函数的最小正周期求出的值,再代入化简函数为正弦型函数,结合题意利用正弦函数的图象与性质f(x)ωg(x)求出的最小正值.φ本题考查了三角函数的图象与性质的应用问题,也考查了三角恒等变换应用问题,是中档题.二、填空题(本大题共4小题,共20.0分)13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样抽方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为______.【答案】12【解析】解:高中部女教师有6人,占,则高中部人数为x ,则,得人,∵40%x40%=6x =15即抽取高中人数15人,则抽取初中人数为人,15180×120=10则男教师有人15×60%+10×30%=9+3=12故答案为:12根据高中女教师的人数和比例,先求出抽取高中人数,然后在求出抽取初中人数即可得到结论.本题主要考查分层抽样的应用,根据人数比例以及男女老少人数比例建立方程关系是解决本题的关键.14.已知圆C 与y 轴相切,圆心在x 轴的正半轴上,并且截直线所得的弦长为2,则圆C 的标准x ‒y +1=0方程是______.【答案】(x ‒3)2+y 2=9【解析】解:圆C 与y 轴相切,圆心在x 轴的正半轴上,设圆心为,,(a,0)a >0则圆C 的标准方程是,(x ‒a )2+y 2=a 2它截直线所得的弦长为2,故有,求得,∵x ‒y +1=0a 2=12+(|a ‒0+1|2)2a=3则圆C 的标准方程是,(x ‒3)2+y 2=9故答案为:.(x ‒3)2+y 2=9设圆心为,,则由题意可得圆C 的标准方程是,再根据半径、半弦长、弦心距构成(a,0)a >0(x ‒a )2+y 2=a 2直角三角形,求出a 的值,可得圆C 的标准方程.本题主要考查求圆的标准方程,直线和圆相交的性质,点到直线的距离公式的应用,属于基础题.15.已知,均为锐角,且,则的最小值是______.αβcos(α‒β)=3cos(α+β)tan(α+β)【答案】22【解析】解:,cos(α‒β)=3cos(α+β)则:,cosαcosβ+sinαsinβ=3(cosαcosβ‒sinαsinβ)整理得:,2cosαcosβ=4sinαsinβ解得:,tanαtanβ=12由于,均为锐角,αβ则:,tanα>0tanβ>0所以:,tan(α+β)=tanα+tanβ1‒tanαtanβ=2(tanα+tanβ)≥412=22故答案为:.22直接利用三角函数关系式的恒等变变换和基本不等式的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式和诱导公式的应用,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题.16.若函数有三个不同的零点,则实数a 的取值范围是______.f(x)={2x +2‒3,x ≤0x 3‒ax +2,x >0【答案】(3,+∞)【解析】解:由题意函数可知:函数图象的左半部分为单调递增指数函数的部分,有f(x)={2x +2‒3,x ≤0x3‒ax +2,x >0一个零点,函数图象的右半部分为开口向上的3次函数的一部分,必须有两个零点,,,y =x 3‒ax +2y'=3x 2‒a 如上图,要满足题意:,,{a >03x2‒a =0x =a3可得,解得.f(a 3)=(a3)3‒aa 3+2<0a >3综合可得,3<a 故答案为:.(3,+∞)由题意可得需使指数函数部分与x 轴有一个交点,3次函数的图象由最小值并且小于0,x 大于0的部分,只有两个交点.本题考查根的存在性及根的个数的判断,数形结合是解决问题的关键,属中档题.三、解答题(本大题共7小题,共82.0分)17.正项等比数列中,已知,.{a n }a 3=4a 4=a 2+6Ⅰ求的通项公式;(){a n }Ⅱ设为的前n 项和,,求.()S 2{a n }b n =1og 4(S 1+S n )(n ∈N ∗)b 2+b 5+b 8+…+b 50【答案】解:Ⅰ正项等比数列的公比设为q ,已知,,(){a n }a 3=4a 4=a 2+6可得,,解得,,a 1q 2=4a 1q 3=a 1q +6q =2a 1=1即;a n =2n ‒1Ⅱ,()S n =1‒2n=2n ‒1,b n =1og 4(S 1+S n )=log 4(1+2n ‒1)=n2.b 2+b 5+b 8+…+b 50=12(2+5+8+…+50)=174(2+50)=221【解析】Ⅰ正项等比数列的公比设为q ,运用等比数列的通项公式和求和公式,解方程可得首项和公比,(){a n }即可得到所求通项公式;Ⅱ运用等比数列的求和公式和对数的运算性质,以及等差数列的求和公式,计算可得所求和.()本题考查等比数列的通项公式和求和公式的运用,以及对数的运算性质、等差数列的求和公式,考查方程思想和运算能力,属于基础题.18.“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”江南梅雨的点点滴滴都流润着浓洌的诗情…每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q 镇年梅.2009~2018雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:(m)Ⅰ“梅实初黄暮雨深”请用样本平均数估计Q 镇明年梅雨季节的降雨量;().Ⅱ“江南梅雨无限愁”,Q 镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,亩产量受降雨量()的影响较大把握超过八成而乙品种杨梅年的亩产量亩与降雨量的发生频数年如().2009~2018(kg/)()列联表所示部分数据缺失.2×2()降雨量亩产量[200,400),[100,200)∪[400500]合计<6002≥6001合计10请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?完善列联表,并说明理(由.)参考公式:,其中(K 2=n(ad ‒bc )2(a +b)(c +d)(a +c)(b +d)n =a +b +c =d.)P(K 2≥k 0)0.500.400.250.150.10k 00.4550.7081.3232.7022.703【答案】解:Ⅰ频率分布直方图中第四组的频率为,()1‒100×(0.002+0.004+0.003)=0.1所以用样本平均数估计Q 镇明年梅雨季节的降雨量为;150×0.2+250×0.4+350×0.3+450×0.1=280(mm)Ⅱ根据频率分布直方图可知,降雨量在之间的频数为,()200~400mm 10×100×(0.003+0.004)=7从而补充列联表如下;2×2降雨量亩产量[200,400),[100,200)∪[400500]合计<600224≥600516合计7310计算,K 2=10×(2×1‒5×2)27×3×4×6=8063≈1.270<1.323所以认为乙品种杨梅的亩产量与降雨量有关的把握不足,75%而甲品种杨梅受降雨量影响的把握超过八成,故建议老李来年应该种植乙品种的杨梅.【解析】Ⅰ利用频率分布直方图求对应的频率值,计算样本的平均数即可;()Ⅱ根据频率分布直方图计算对应的频数值,补充列联表中的数据,计算观测值,对照临界值得出结论.()本题考查了频率分布直方图与独立性检验的应用问题,是基础题.19.已知椭圆的离心率为.x 2a 2+y 2b 2=1(a >b >0)22A(2,0)Ⅰ求椭圆的标准方程;()Ⅱ过点A 的动直线l 交椭圆于另一点B ,设,过椭圆中心O 作直线BD()D(‒2,0)的垂线交l 于点C ,求证:为定值.⃗OB ⋅⃗OC 【答案】解:Ⅰ椭圆C :椭圆的离心率为.()∵x 2a2+y 2b 2=1(a >b >0)22M(‒2,0),.∴a =2e =c a =22∴c =2,.∵a 2=b 2+c 2∴b =2椭圆的标准方程为;∴x 24+y 22=1Ⅱ设直线l 的方程为,.()x =ty +2(t ≠0)代入,整理可得.x 2+2y 2=4(t 2+2)y 2+4ty =0解得,于是,x 0=‒4t t 2+2x B =ty B +2=4‒2t 2t 2+2直线DB 的斜率为.∴‒4t t 2+2÷(4‒2t 2t 2+2+2)=‒t 2,直线OC 的方程为.∵OC ⊥BD ∴y =2t x 由,解得{y =2t x x =ty +2C(‒2,‒4t )定值.∴⃗OB ⋅⃗OC =4t 2‒8t 2+2+16t 2+2=4()【解析】Ⅰ利用椭圆C :椭圆的离心率为,可求椭圆的几何量,()x 2a 2+y 2b 2=1(a >b >0)22M(‒2,0)从而可求椭圆方程;Ⅱ设直线l 的方程为,.()x =ty +2(t ≠0)代入,求得B 坐标,可得直线DB 的斜率为直线OC 的方程为解得即可得:x 2+2y 2=4‒t .y =2x.C(‒2,‒4).为定值.⃗OB ⋅⃗OC 本题考查直线与椭圆的位置关系的综合应用,椭圆的方程的求法,考查转化思想以及计算能力,函数与方程的思想的应用.20.如图,在多面体ABCDE中,AC 和BD 交于一点,除EC 以外的其余各棱长均为2.Ⅰ作平面CDE 与平面ABE 的交线l ,并写出作法及理由;()Ⅱ求证:;()BD ⊥CEⅢ若平面平面ABE ,求多面体ABCDE 的体积.()ADE ⊥【答案】解:Ⅰ过点E 作或的平行线,即为所求直线l .()AB(CD)理由如下:和BD 交于一点,,B ,C ,D 四点共面,∵AC ∴A 又四边形ABCD 边长均相等,四边形ABCD 为菱形,从而,∴AB//DC 又平面CDE ,且平面CDE ,平面CDE ,AB⊄CD ⊂∴AB//平面ABE ,且平面平面,.∵AB ⊂ABE ∩CDE =l ∴AB//l 证明:Ⅱ取AE 的中点O ,连结OB ,OD ,(),,,,∵AB =BE DA =DE ∴OB ⊥AE OD ⊥AE ,平面OBD ,∵OB ∩OD =O ∴AE ⊥平面OBD ,,∵BD ⊂∴AE ⊥BD 又四边形ABCD 是菱形,,∴AC ⊥BD 又,平面ACE ,AE ∩AC =A ∴BD ⊥又平面BDE ,.BD ⊂∴BD ⊥CE 解:Ⅲ平面平面ABE ,平面ABE ,()∵ADE ⊥∴DO ⊥多面体ABCDE 的体积:∴.V E ‒ABCD =2V E ‒ABD =2V D ‒ABE =2×13×(12×2×3)×3=2【解析】Ⅰ过点E 作或的平行线,即为所求直线由AC 和BD 交于一点,得A ,B ,C ,D 四点共面,()AB(CD)l.推导出四边形ABCD 为菱形,从而,进而平面CDE ,由此推导出.AB//DC AB//AB//l Ⅱ取AE 的中点O ,连结OB ,OD ,推导出,,从而平面OBD ,进而,由四边()OB ⊥AE OD ⊥AE AE ⊥AE ⊥BD 形ABCD 是菱形,得,从而平面ACE ,由此能证明.AC ⊥BD BD ⊥BD ⊥CE Ⅲ由平面平面ABE ,得平面ABE ,多面体ABCDE 的体积:.()ADE ⊥DO ⊥V E ‒ABCD =2V E ‒ABD =2V D ‒ABE 本题考查两平面的交线的求法,考查线线垂直的证明,考查多面体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.21.已知函数,其中a 为常数.f(x)=xsinx +2cosx +ax +2Ⅰ若曲线在处的切线斜率为,求该切线的方程;()y =f(x)x =π2‒2Ⅱ求函数在上的最小值.()f(x)x ∈[0,π]【答案】解:Ⅰ函数,()f(x)=xsinx +2cosx +ax +2则:,f'(x)=xcosx ‒sinx +a 由,f'(π2)=a ‒1=‒2解得:.a =‒1所以:,f(π2)=2则该切线的方程为,y ‒2=‒2(x ‒π2)整理得:.2x +y ‒2‒π=0Ⅱ对,,()∀x ∈[0,π]f″=‒xsinx ≤0所以:在区间上单调递减.f'(x)[0,π]当时,,(1)a ≤0f'(x)≤f'(0)=a ≤0所以:函数在上单调递减,f(x)[0,π]故:.f(x )min =f(π)=aπ当时,,(2)a ≥πf'(x)≥f'(π)=a ‒π≥0所以:函数在上单调递增,f(x)[0,π],f(x )min =f(0)=4当时,(3)0<a <π由,,且函数在上单调递减,f'(0)=a >0f'(π)=a ‒π<0f(x)[0,π]结合零点存在定理可知:存在唯一的,使得:,且函数在上单调递增,x 0∈(0,π)f'(x 0)=0f(x)[0,π]故:在上单调递减,[x 0,π]故:的最小值为和中较小的一个.f(x)f(0)=4f(π)=aπ当时,①4π≤a <πf(0)≤f(π)故:函数的最小值为.f(x)f(0)=4当时,.②0<a <4πf(π)≤f(0)故:函数的最小值为.f(x)f(π)=aπ综上所述:.f(x )min ={4(a ≥4π)aπ(a <4π)【解析】Ⅰ直接利用函数的求导的应用,求出函数的切线的斜率,进一步确定切线的方程.()Ⅱ利用分类讨论思想和函数的零点的应用进一步求出函数的单调性和函数的最值,最后求出函数的关系式.()本题考查的知识要点:导数的应用,函数的求导问题和函数的单调性的关系,利用分类讨论思想求出函数的中参数的取值及函数的单调性的应用,主要考查学生的运算能力和转化能力,属于基础题型.22.在平面直角坐标系xOy 中,曲线C 的参数方程为其中t 为参数,且,在以O 为极点、x 轴{x =t +1t y =t ‒1t (t >0)的非负半轴为极轴的极坐标系两种坐标系的单位长度相同中,直线l 的极坐标方程为.()ρsin (π3‒θ)=2Ⅰ求曲线C 的极坐标方程;()Ⅱ求直线l 与曲线C 的公共点P 的极坐标.()【答案】解:Ⅰ曲线C 的参数方程为其中t 为参数,且,()∵{x =t +1t y =t ‒1t (t >0)曲线C 的直角坐标方程为,,∴x 2‒y 2=4(x ≥2)将,代入,得,x =ρcosθy =ρsinθx 2‒y 2=4ρ2(cos 2θ‒sin 2θ)=4曲线C 的极坐标方程为∴ρ2cos2θ=4(‒π4<θ<π4).Ⅱ将l 与C 的极坐标方程联立,消去,()ρ得,ρ2(cos 2θ‒sin 2θ)=2cos2θ,∴3cos 2θ‒23sinθcosθ+sin 2θ=2(cos 2θ‒sin 2θ),,∵cosθ≠0∴3tan 2θ‒23tanθ+1=0方程的解为,即,∴tanθ=33θ=π6代入,得,ρsin (π3‒θ)=2ρ=22直线l 与曲线C 的公共点P 的极坐标为∴(22,π6).【解析】Ⅰ由曲线C 的参数方程求出曲线C 的直角坐标方程,由此能求出曲线C 的极坐标方程.()Ⅱ将l 与C 的极坐标方程联立,得,从而,进而方程的()ρ2(cos 2θ‒sin 2θ)=2cos2θ3tan 2θ‒23tanθ+1=0解为,由此能求出直线l 与曲线C 的公共点P 的极坐标.θ=π6本题考查曲线的极坐标方程的求法,考查直线与曲线的公共点的极坐标的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.已知函数,且a ,b ,.f(x)=x 2‒x +1c ∈R Ⅰ若,求的最小值;()a +b +c =1f(a)+f(b)+f(c)Ⅱ若,求证:.()|x ‒a|<1|f(x)‒f(a)|<2(|a|+1)【答案】解:Ⅰ由柯西不等式可得,当且仅当时()(a 2+b 2+c 2)(12+12+12)≥(a +b +c )2=1a =b =c =13取等号,即;a 2+b 2+c 2≥13,∴f(a)+f(b)+f(c)=(a 2+b 2+c 2)‒(a +b +c)+3≥13‒1+2=73即的最小值为.f(a)+f(b)+f(c)73证明:Ⅱ,()∵|x ‒a|<1∴|f(x)‒f(a)|=|(x 2‒a 2)‒(x ‒a)|=|x ‒a|⋅|x +a ‒1|<|x +a ‒1|,=|(x ‒a)+(2a ‒1)|≤|x ‒a|+|2a ‒1|<1+(2|a|+1)=2(|a|+1)故结论成立()【解析】Ⅰ根据柯西不等式即可求出最小值,()Ⅱ根据绝对值三角不等式即可证明.本题考查了柯西不等式和绝对值三角形不等式,考查了转化和化归的思想,属于中档题.。
四川省成都市第七中学2019届高三第一次诊断性检测数学(文)试题含详解

2019年4月四川省成都市第七中学2019届高三第一次诊断性检测数学(文)试题(解+析版)一、选择题(本大题共12小题,共60.0分)1.i为虚数单位,则A. B. C. D.【答案】D【分析】根据复数的运算法则进行化简、计算,即可求解,得到答案.【详解】根据复数的乘法运算法则,可得,故选:D.【点睛】本题主要考查了复数的运算法则的应用,其中解答中熟记复数的运算法则,以及是解答的关键,着重考查了推理与计算能力,属于基础题。
2.设集合,,则()A. B. C. D.【答案】A【分析】求出A与B中不等式的解集确定出A与B,从而求出两集合的交集即可.【详解】∵集合A=,解得x>-1,B={x|(x+1)(x﹣2)0且x}={x|﹣1x<2},则A∩B={x|<x<2},故选:A.【点睛】本题考查了集合的运算,考查解指数不等式及分式不等式问题,是一道基础题.3.函数的图象大致是()A. B.C. D.【答案】D【分析】先判断函数为偶函数,再根据特殊点的函数值即可判断.【详解】因为满足偶函数f(﹣x)=f(x)的定义,所以函数为偶函数,其图象关于y轴对称,故排除B,又x=0时,y=0,排除A、C,故选D.【点睛】本题考查了函数的图象的识别,一般常用特殊点的函数值、函数的奇偶性和函数的单调性来排除,属于基础题.4.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两个等径正贯的圆柱体的侧面围成,其直视图如图(其中四边形是为体现直观性而作的辅助线).当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为()A. B.C. D.【答案】B【分析】相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).根据三视图看到方向,可以确定三个识图的形状,判断答案.【详解】∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).∴其正视图和侧视图是一个圆,俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,∴俯视图是有2条对角线且为实线的正方形,故选:B.【点睛】本题很是新颖,三视图是一个常考的内容,考查了空间想象能力,属于中档题.5.执行下边的算法程序,若输出的结果为120,则横线处应填入()A. B. C. D.【答案】C【分析】由题意知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得结果.【详解】模拟执行算法程序,可得:S=1,k=1,不满足条件,S=1,k=2,不满足条件,S=2,k=3,不满足条件,S=6,k=4,不满足条件,S=24,k=5,不满足条件,S=120,k=6,此时i满足条件,退出循环,输出S的值为120;所以横线处应填写的条件为,故选C.【点睛】本题考查了程序框图的应用问题,属于直到型循环结构,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6.设实数满足,则的最大值是()A. -1B.C. 1D.【答案】D【分析】由约束条件确定可行域,由的几何意义,即可行域内的动点与定点P(0,-1)连线的斜率求得答案.【详解】由约束条件,作出可行域如图,联立,解得A(),的几何意义为可行域内的动点与定点P(0,-1)连线的斜率,由图可知,最大.故答案为:.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.7.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【分析】由可推出,再结合充分条件和必要条件的概念,即可得出结果.【详解】若,则,所以,即“”不能推出“”,反之也不成立,因此“”是“”的既不充分也不必要条件.故选D【点睛】本题主要考查充分条件和必要条件,熟记概念即可,属于基础题型.8.已知向量,,则在方向上的投影为()A. 2B. -2C.D.【答案】B【分析】根据平面向量的数量积运算与向量投影的定义,写出对应的运算即可.【详解】向量,,∴,∴(•==-10,||==5;∴向量在向量方向上的投影为:||cos<(,>===﹣2.故选:B.【点睛】本题考查了平面向量的数量积运算与向量投影的定义与应用问题,是基础题.9.设抛物线的焦点为,准线为,点在上,点在上,且,若,则的值()A. B. 2 C. D. 3【答案】D【分析】过M向准线l作垂线,垂足为M′,根据已知条件,结合抛物线的定义得==,即可得出结论.【详解】过M向准线l作垂线,垂足为M′,根据已知条件,结合抛物线的定义得==,又∴|MM′|=4,又|FF′|=6,∴==,.故选:D.【点睛】本题考查了抛物线的定义标准方程及其性质、向量的共线,考查了推理能力与计算能力,属于中档题.10.设分别是的内角的对边,已知,则的大小为( )A. B. C. D.【答案】C【分析】利用三角形内角和定理可得.由正弦定理可得b2+c2﹣a2=-bc,由余弦定理可得cosA=,结合范围A∈(0,π)可得A的值.【详解】∵,,∴由正弦定理可得:,整理可得:b2+c2﹣a2=-bc,∴由余弦定理可得:cosA=,∴由A∈(0,π),可得:A=.故选C.【点睛】本题主要考查了正弦定理、余弦定理在三角形中的应用,属于基础题.11.已知正三棱锥的高为6,内切球(与四个面都相切)表面积为,则其底面边长为()A. 18B. 12C.D.【答案】B【分析】过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,AE是BC边上的高和中线,D为△ABC的中心,D、M为其中两个切点,利用直角△PDE中的数量关系计算结果.【详解】如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.此时球与四个面相切,如图D、M为其中两个切点,∵S球=16π, ∴球的半径r=2.又∵PD=6,OD=2,∴OP=4,又OM=2, ∴=∴ DE=2,AE=6, ∴ AB=12,故选B.【点睛】本题考查球与棱锥的组合体问题,考查球的表面积公式,找切点利用直角三角形是解决此类问题的关键,解题时要认真审题,注意空间思维能力的培养.12.已知函数(其中)的最小正周期为,函数,若对,都有,则的最小正值为()A. B. C. D.【答案】B【分析】将函数表达式展开合并,再用辅助角公式化简,得f(x)=sin(2x+)-.再根据正弦函数对称轴的公式,求出f(x)图象的对称轴方程.【详解】由函数的最小正周期为,可求得=2∴f(x)=,===2sin(+),∴又,∴x=是g(x)的一条对称轴,代入+中,有+=(k,解得=(k,k=1时,,故选B.【点睛】本题考查了三角函数的化简与三角函数性质,运用了两角和差的正余弦公式,属于中档题.二、填空题(本大题共4小题,共20.0分)13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.【答案】12【分析】利用分层抽样中的比例,可得工会代表中男教师的总人数.【详解】∵高中部女教师与高中部男教师比例为2:3,按分层抽样方法得到的工会代表中,高中部女教师有6人,则男教师有9人,工会代表中高中部教师共有15人,又初中部与高中部总人数比例为2:3,工会代表中初中部教师人数与高中部教师人数比例为2:3,工会代表中初中部教师总人数为10,又∵初中部女教师与高中部男教师比例为7:3,工会代表中初中部男教师的总人数为10×30%=3;∴工会代表中男教师的总人数为9+3=12,故答案为12.【点睛】本题考查对分层抽样的定义的理解,考查识图能力与分析数据的能力,考查学生的计算能力,比较基础.14.已知圆与轴相切,圆心在轴的正半轴上,并且截直线所得的弦长为2,则圆的标准方程是________.【答案】【分析】由圆心在在轴的正半轴上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d 利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【详解】设圆心为(t,0),且t>0, ∴半径为r=|t|=t,∵圆C截直线所得的弦长为2,∴圆心到直线的距离d==∴t2-2t-3=0,∴t=3或t=-1(舍),故t=3,∴.故答案为【点睛】此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.15.已知均为锐角,且,则的最小值是________.【答案】【分析】利用余弦的和与差公式打开,“弦化切”的思想求得tanαtanβ=,再将展开利用基本不等式即可求解.【详解】由cos(α-β)=3cos(α+β),可得cosαcosβ+sinαsinβ=3cosαcosβ-3sinαsinβ,同时除以cosαcosβ,可得:1+tanαtanβ=3-3tanαtanβ,则tanαtanβ=,又=2=.故答案为:.【点睛】本题考查了余弦、正切的和与差公式和同角三角函数的运用,“弦化切”的思想,结合了基本不等式求最值,属于中档题.16.若函数有三个不同的零点,则实数的取值范围是______.【答案】【分析】先将函数有三个不同的零点转化为在上有两个根,即在上有两个根,用导数的方法研究函数的单调性和值域即可. 【详解】因为,由可得,即函数在上有一个零点;所以函数有三个不同的零点等价于方程在上有两个不等实根,等价于方程在上有两个不等实根;即与函数在上有两个不同交点;由得,由得;由得,即函数在上单调递减,在上单调递增,所以最小值为,所以,因为与函数在上有两个不同交点,所以.故答案为【点睛】本题主要考查函数零点,根据题意可将函数有零点,转化为两函数图像有交点的问题来处理,属于常考题型.三、解答题(本大题共7小题,共82.0分)17.正项等比数列中,已知,.求的通项公式;设为的前项和,,求.【答案】221【分析】利用等比数列通项公式列出方程组,求出a1=1,q=2,由此能求出{a n}的通项公式.(2)由(1)求出{a n}的前项和,代入中,直接利求出{b n}的通项,利用等差数列求和公式求得结果.【详解】设正项等比数列的公比为,则由及得,化简得,解得或(舍去).所以的通项公式为.由得,.所以.【点睛】本题考查等比数列通项公式、等差数列的前n项和的求法,考查运算求解能力,是中档题.18.“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南镇2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:“梅实初黄暮雨深”.请用样本平均数估计镇明年梅雨季节的降雨量;“江南梅雨无限愁”.镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小? (完善列联表,并说明理由).(参考公式:,其中)【答案】乙【分析】由频率分布直方图可求出第四组的频率,利用频率分布直方图中平均数的计算公式求得结果.根据题意,列出列联表,计算,与甲品种的百分数作比较得出结论.【详解】频率分布直方图中第四组的频率为.所以用样本平均数估计镇明年梅雨季节的降雨量为.根据频率分布直方图可知,降雨量在200~400之间的频数为. 进而完善列联表如图..故认为乙品种杨梅的亩产量与降雨量有关的把握不足75%.而甲品种杨梅降雨量影响的把握超过八成,故老李来年应该种植乙品种杨梅.【点睛】本题考查频率分布直方图的应用,考查了列联表及的知识,考查了计算能力与推理能力.19.已知椭圆的离心率为,且经过点.求椭圆的标准方程;过点的动直线交椭圆于另一点,设,过椭圆中心作直线的垂线交于点,求证:为定值.【答案】4,证明见解+析【分析】(1)利用椭圆C:的离心率为,且经过点M(2,0),可求椭圆的几何量,从而可求椭圆方程;(2)直线方程与椭圆方程联立,利用韦达定理,求得B点坐标,再结合条件求出C的坐标,计算,得出定值4.【详解】因为椭圆的离心率,且,所以.又.故椭圆的标准方程为.设直线的方程为(一定存在,且).代入,并整理得.解得,于是.又,所以的斜率为.因为,所以直线的方程为.与方程联立,解得.故为定值.【点睛】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查定值问题,正确运用韦达定理是关键.20.如图,在多面体中,和交于一点,除以外的其余各棱长均为2.作平面与平面的交线,并写出作法及理由;求证:;若平面平面,求多面体的体积.【答案】见解+析见解+析 2【分析】由题意可得平面,由线面平行的性质作出交线即可.取的中点,连结,.由条件可证得平面,故.又.平面.从而.将多面体分割成两个三棱锥,再利用等体积法求得结果.【详解】过点作(或)的平行线,即为所求直线.和交于一点,四点共面.又四边形边长均相等.四边形为菱形,从而.又平面,且平面,平面.平面,且平面平面,.证明:取的中点,连结,.,,,. 又,平面,平面,故.又四边形为菱形,.又,平面.又平面,.解:平面平面,平面.故多面体的体积.【点睛】本题考查证明线面平行、线面垂直的方法及求多面体体积的大小,不规则多面体常进行体积分割或补形,此法是解题的关键和难点.21.已知函数,其中为常数.若曲线在处的切线斜率为-2,求该切线的方程;求函数在上的最小值.【答案】【分析】(1)先利用,求出a,进而写出切点坐标,写出的切线方程.(2)对a分类讨论,易判断当或当时,在区间内是单调的,根据单调性直接可得出最小值,当时,在区间内单调递增,在区间内单调递减,故,又因为,,将两者比较大小求得结果.【详解】求导得,由解得.此时,所以该切线的方程为,即为所求.对,,所以在区间内单调递减.当时,,在区间上单调递减,故.当时,,在区间上单调递增,故.当时,因为,,且在区间上单调递增,结合零点存在定理可知,存在唯一,使得,且在上单调递增,在上单调递减.故的最小值等于和中较小的一个值.①当时,,故的最小值为.②当时,,故的最小值为.综上所述,函数的最小值.【点睛】本题考查导数的几何意义及利用导数研究函数的单调性以及函数的最值的求法,考查分类讨论思想以及计算能力.22.在平面直角坐标系中,曲线的参数标方程为(其中为参数,且),在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线的极坐标方程为.求曲线的极坐标方程;求直线与曲线的公共点的极坐标.【答案】【分析】(1)先将曲线C的参数标方程化为普通方程,再利用极坐标与直角坐标的互化,把普通方程化为极坐标方程;(2)将与的极坐标方程联立,求出直线l与曲线C的交点的极角,代入直线的极坐标方程即可求得极坐标.【详解】消去参数,得曲线的直角坐标方程.将,代入,得.所以曲线的极坐标方程为.将与的极坐标方程联立,消去得.展开得.因为,所以.于是方程的解为,即.代入可得,所以点的极坐标为.【点睛】本题考查曲线的极坐标方程与普通方程的互化,直线的极坐标方程与曲线极坐标方程联立求交点的问题,考查计算能力.23.已知函数,且.若,求的最小值;若,求证:.【答案】见解+析【分析】由柯西不等式将中的变为,求得的最小值.因为,又,故再结合绝对值三角不等式证得结论成立.【详解】由柯西不等式得,(当且仅当时取等号),所以,即的最小值为;因为,所以,故结论成立.【点睛】本题考查了利用柯西不等式求最值,考查了利用绝对值三角不等式证明的问题,属于中等题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品K12教育教学资料
精品K12教育教学资料
四川省成都七中实验学2019届高三数学10月月考试题 文(无答案)
一、选择题:本大题共12小题,每小题5分,每小题只有一项符合题目要求
1.已知集合{0,1,2,3,4,5}A,{1,0,1,2}B,则AB( )
A.{1,2} B.{0,1,2} C. {1,0,1} D.{0,1}
2.已知i为虚数单位,则复数34ii等于( )
A.43i B. 43i C. 43i D. 43i
3.已知2,53)23cos(且,则tan为( )
A.﹣ B. C.﹣ D.
4.已知向量)2,1(a,)1,(b,若ba,则||ba( )
A.52 B.4 C.17 D.10
5.已知函数),0,0)(cos()(RAxAxf,则“)(xf是奇函数”是2的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
6.在ABC中,AD为BC边上的中线,E为AD的中点,则EB( )
A.3144ABAC B.1344ABAC C.3144ABAC D.1344ABAC
7.函数2()xxeefxx的图像大致为( )
8.已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<,x∈R)在一个周期内的图象如图1所示,
则y=f(x)的图象可由函数y=cosx的图象( )
A.先把各点的横坐标缩短到原来的倍,再向左平移个单位
精品K12教育教学资料
精品K12教育教学资料
B.先把各点的横坐标伸长到原来的2倍,再向左平移个单位
C.先把各点的横坐标缩短到原来的倍,再向右平移个单位
D.先把各点的横坐标伸长到原来的2倍,再向右平移个单位
9.已知奇函数()fx在R上是增函数.若21(log)5af,2(log4.1)bf,0.8(2)cf,
则,,abc的大小关系为( )
A.abc B.bac C.cba D.cab
10.若(1)()(4)2(1)2xaxfxaxx是R上的单调递增函数,则实数a的取值范围为( )
A. [4,8) B. (4,8) C. (1,+∞) D. (1,8)
11.当曲线24yx与直线240kxyk有两个相异的交点时,实数k的取值范围是( )
A. 30,4 B. 53,124 C. 3,14 D.
3
,4
12.若关于x的不等式12ee2e2xxmx(其中e为自然对数的底数,0,xmZ)恒成
立,则m的最大值为( )
A.4 B.5 C.3 D.2
二、填空题:本大题共4小题,每小题5分
13.已知1cossincos2sin,则tan
14.已知函数xmxxfln)(2在),2[上单调递增,则实数m的取值范围为
15.定义在R上的偶函数)(xf在[0,)单调递增,且1)2(f,则(2)1fx的x的取值范围
是__________
16.已知函数()fx2,,24,,xxmxmxmxm其中0m.若存在实数b,使得关于x的方程
()fxb
有三个不同的根,则m的取值范围是_______.
三、解答题:解答应写出文字说明,证明过程或演算步骤
17.(本小题满分12分)已知函数()2cos(sincos)fxxxx.
精品K12教育教学资料
精品K12教育教学资料
(Ⅰ)求5()4f的值; (Ⅱ)求函数()fx的最小正周期及单调递增区间.
18.(本小题满分12分)在ABC中,内角A,B,C所对的边长分别为a,b,c,已知sinsin2bBaA.
(Ⅰ)求角A; (Ⅱ)若23b,ABC的面积为332,求a的值.
19.(本小题满分12分)
如图,四棱锥PABCD中,底面ABCD是边长为2
的正方形,
其它四个侧面都是侧棱长为5的等腰三角形,E为AB的中点,
F
为PC的中点.
(Ⅰ)证明://BF平面PDE;
(Ⅱ)求三棱锥EBDF的体积.
20.(本小题满分12分)已知函数2()()4xfxeaxbxx,曲线()yfx在点(0,(0))f处切线方程
为44yx.
(Ⅰ)求,ab的值;
精品K12教育教学资料
精品K12教育教学资料
(Ⅱ)讨论()fx的单调性,并求()fx的极大值.
21(本小题满分12分)已知函数lnmxfxx, 1gxnx,其中0mn
(I)若1mn,求hxfxgx的单调区间;
(II)若()0fxgx的两根为12,xx,且12xx,证明: 121220gxxmxx.
22.(本小题满分10分)在直角坐标系xOy中,圆C的方程为22625xy.
(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(II)直线l的参数方程是cossinxtyt(t为参数),l与C交于A、B两点,10AB,求l的斜
率.