高三年级数学高三第一次调研测试

合集下载

2024-2025学年湖南省长沙市长郡中学高三(上)第一次调研数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高三(上)第一次调研数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高三(上)第一次调研数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x|x 3−x =0},B ={x|x 2−x−2<0},则A ∩B =( )A. {0,1}B. {−1,0}C. {0,1,2}D. {−1,0,1}2.已知m ,n 是两条不同的直线,α,β是两个不同的平面,则m//α的一个充分条件是( )A. m//n ,n//αB. m//β,α//βC. m ⊥n ,n ⊥α,m⊄αD. m ∩n =A ,n//α,m⊄α3.(x −2x )2025的展开式中的常数项是( )A. 第673项B. 第674项C. 第675项D. 第676项4.铜鼓是流行于中国古代南方一些少数民族地区的礼乐器物,已有数千年历史,是作为祭祀器具和打击乐器使用的.如图,用青铜打造的实心铜鼓可看作由两个具有公共底面的相同圆台构成,上下底面的半径均为25cm ,公共底面的半径为15cm ,铜鼓总高度为30cm.已知青铜的密度约为8g/cm 3,现有青铜材料1000kg ,则最多可以打造这样的实心铜鼓的个数为(注:π≈3.14)( )A. 1B. 2C. 3D. 45.已知定义在(0,+∞)上的函数f(x)满足f(x)<x(f′(x)−1)(f′(x)为f(x)的导函数),且f(1)=0,则( )A. f(2)<2B. f(2)>2C. f(3)<3D. f(3)>36.已知过抛物线C :y 2=2px(p >0)的焦点F 且倾斜角为π4的直线交C 于A ,B 两点,M 是AB 的中点,点P 是C 上一点,若点M 的纵坐标为1,直线l :3x +2y +3=0,则P 到C 的准线的距离与P 到l 的距离之和的最小值为( )A.3 1326B.5 1326C.3 1313 D.9 13267.已知函数f(x)=2sin(ωx +φ)(ω>0,|φ|<π2),对于任意的x ∈R ,f(x +π12)=f(π12−x),f(x)+f(π2−x)=0都恒成立,且函数f(x)在(−π10,0)上单调递增,则ω的值为( )A. 3B. 9C. 3或9D.38.如图,已知长方体ABCD−A′B′C′D′中,AB =BC =2,AA′= 2,O 为正方形ABCD 的中心点,将长方体ABCD−A′B′C′D′绕直线OD′进行旋转.若平面α满足直线OD′与α所成的角为53°,直线l ⊥α,则旋转的过程中,直线AB 与l 夹角的正弦值的最小值为( )(参考数据:sin53°≈45,cos53°≈35)A. 43−310B.3 3−410C.3 3+310D. 43+310二、多选题:本题共3小题,共18分。

河北省邯郸市2024届高三上学期第一次调研监测数学试题(解析版)

河北省邯郸市2024届高三上学期第一次调研监测数学试题(解析版)

邯郸市2024届高三年级第一次调研监测数学注意事项:1.答卷前,考生务必将自己的姓名、班级、考场号、座位号、考生号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh=(其中S 为锥体的底面积,h 为锥体的高).棱台的体积公式()13V h S S'=+(其中S ',S 分别为棱台的上、下底面面积,h 为棱台的高).一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}1A =<,{}220B x xx =+≤,则A B ⋃=()A.(]1,2- B.{}0 C.[)2,1- D.(),1-∞【答案】C 【解析】【分析】先求一元二次不等式得{20}B xx =-≤≤∣,再根据集合运算法则求解A B ⋃即可.【详解】{}{}2{1}{01},2020A x x B x x x x x =<=≤<=+≤=-≤≤∣∣∣,则{21}A B xx ⋃=-≤<∣.故选:C.2.已知命题p :[)0,x ∞∀∈+,e 1x ≥,则p ⌝为()A.(),0x ∃∈-∞,e 1x ≥B.[)0,x ∃∈+∞,e 1x <C.(),0x ∀∈-∞,e 1x <D.[)0,x ∞∀∈+,e 1x <【答案】B 【解析】【分析】利用含有全称量词的命题的否定判断.【详解】因为命题:[0,),e 1x p x ∞∀∈+≥,所以:[0,),e 1x p x ⌝∃∈+∞<.故选:B.3.已知i 是虚数单位,若复数z 满足:()31i 1i z -=-,则z z +=()A.0B.2C.2iD.2i-【答案】A 【解析】【分析】根据复数的运算法则,求得i z=-,得到i z =,即可求解.【详解】由复数()31i 1i z -=-,可得()()()231i 1i 1i i 1i 1i 1i 1i z ---====--++-,则iz =,所以i i 0z z +=-+=.故选:A.4.设函数()()ln f x x a =+在1x =处的切线与直线12xy =+平行,则=a ()A.2- B.2C.1- D.1【答案】D 【解析】【分析】由条件,根据导数的几何意义及两平行直线的斜率关系列方程求a .【详解】函数()()ln f x x a =+的定义域为(),a -+∞,由已知1a >-,故1a >-,函数()()ln f x x a =+的导函数()1f x x a'=+,所以()111f a'=+,因为函数()()ln f x x a =+在1x =处的切线与直线12xy =+平行,所以1112a =+,所以1a =,经验证,此时满足题意.故选:D .5.设1F ,2F 是双曲线()222104x y b b-=>的左、右焦点,过1F 的直线l 交双曲线的左支于A ,B 两点,若直线2y x =为双曲线的一条渐近线,22AB b =,则22AF BF +的值为()A.11B.12C.14D.16【答案】C 【解析】【分析】根据双曲线的标准方程可得2a =,再由双曲线的定义可得212124,24AF AF a BF BF a -==-==,得到()22118AF BF AF BF +-+=,再根据||6AB =得到答案.【详解】根据双曲线的标准方程2221(0)4x y b b -=>,得2a =,由直线2y x =为双曲线的一条渐近线,得2b a =,解得b =,得2||26AB b ==.由双曲线的定义可得2124AF AF a -==①,2124BF BF a -==②,①+②可得()22118AF BF AF BF +-+=,因为过双曲线的左焦点1F 的直线l 交双曲线的左支于A ,B 两点,所以11||6AF BF AB +==,得22||86814AF BF AB +=+=+=.故选:C.6.有一种钻头,由两段组成,前段是高为3cm 、底面边长为2cm 的正六棱锥,后段是高为1cm 的圆柱,圆柱的底面圆与正六棱锥底面的正六边形内切,则此钻头的体积为()A.()33cm π B.()33cm πC.)33cm π+ D.33cm 2π⎛⎫ ⎪⎝⎭【答案】B【分析】根据棱锥和圆柱的体积公式即可得到答案.【详解】由题意,钻头的前段正六棱锥的体积)311133226cm 322V =⨯⨯⨯⨯⨯=,因为圆柱的底面圆与正六棱锥底面的正六边形内切,作出以下图形,所以圆柱的底面圆的半径2sin 60r ︒==,所以圆柱的体积()2321π3πcm V =⨯⨯=,所以此钻头的体积为()3123πcm V V +=.故选:B.7.甲口袋中有3个红球,2个白球,乙口袋中有4个红球,3个白球,先从甲口袋中随机取出1球放入乙口袋,分别以1A ,2A 表示从甲口袋取出的球是红球、白球的事件;再从乙口袋中随机取出1球,以B 表示从乙口袋取出的球是红球的事件,则()2P A B =()A.823B.623 C.1740D.58【答案】A 【解析】【分析】分别求出()2P A ,()2P B A ,再根据全概率公式求出()P B ,再根据条件概率公式即可得解.【详解】()()()()()1122352423585840P B P A P B A P A P B A =+=⨯+⨯=,()225P A =,()24182P B A ==,()()()()()()222221852232340P A P B A P A B P A B P B P B ⨯====.故选:A.8.设函数()f x 的定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()e x f x =-,A.()31f =-B.()21f -=-C.()6f x +为奇函数D.()()228f x f x =+【答案】D 【解析】【分析】由题意可得()()11f x f x --=--,()()11f x f x -+=+,结合()1,1x ∈-时,()e xf x =-,可判断AB ;求出函数的周期,进而可判断CD .【详解】因为()1f x -为奇函数,所以()()11f x f x --=--,即()()2f x f x =---,则()()11f f -=--,所以()10f -=,因为()1f x +为偶函数,所以()()11f x f x -+=+,即()()2f x f x =-+,则()()310f f =-=,故A 错误;由当()1,1x ∈-时,()e xf x =-,得()01f =-,则()()201f f -=-=,故B 错误;()()22f x f x -+=---,则()()4f x f x +=-,所以()()()84f x f x f x +=-+=,所以()()228f x f x =+,故D 正确;对于C ,由()()8f x f x +=,得()()62f x f x +=-,若()6f x +为奇函数,则()2f x -也为奇函数,令()()2g x f x =-,则()g x 为奇函数,则()00g =,又()()0210g f =-=≠,矛盾,所以()()2g x f x =-不是奇函数,即()6f x +不是奇函数,故C 错误.故选:D .【点睛】结论点睛:对称性与周期性之间的常用结论:(1)若函数()f x 的图象关于直线x a =和x b =对称,则函数()f x 的周期为2T a b =-;(2)若函数()f x 的图象关于点(),0a 和点(),0b 对称,则函数()f x 的周期为2T a b =-;(3)若函数()f x 的图象关于直线x a =和点(),0b 对称,则函数()f x 的周期为4T a b =-.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.设a ,b是两个非零向量,且a b a b +<+ ,则下列结论中正确的是()A.a b a b-≤+ B.a b a b-<+ C.a ,b的夹角为钝角 D.若实数λ使得a b λ=成立,则λ为负数【答案】AD 【解析】【分析】根据平面向量的模、线性运算的概念即可判断.【详解】对A ,当,a b 不共线时,根据向量减法的三角形法则知||||||a b a b -<+,当,a b 反向共线时,||||||a b a b -=+r r r r ,故a b a b -≤+,A 正确;对B ,若a b ⊥,则以,a b 为邻边的平行四边形为矩形,且a b + 和a b - 是这个矩形的两条对角线长,则a b a b +=-,故B 错误;对C ,若,a b 的夹角范围为π0,2⎛⎤⎥⎝⎦,根据向量加法的平行四边形法则知:||||||a b a b +<+r r r r ,故C 错误;对D ,若存在实数λ,使得a b λ=成立,则,a b 共线,由于||||||a b a b +<+r r r r ,则,a b反向共线,所以λ为负数,故D 正确.故选:AD.10.记n S 为数列{}n a 的前n 项和,若数列n S n ⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列,则()A.数列{}n a 为递减数列B.22n S n n=-C.43n a n =- D.数列{}n n a S +是等差数列【答案】BC 【解析】【分析】根据等差数列的通项即可判断B ;根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项,即可判断C ;由1n n a a +-的符号即可判断A ;根据等差数列的定义即可判断D.【详解】由题意21nS n n=-,所以22n S n n =-,故B 正确;当1n =时,111a S ==,当2n ≥时,()()221221143n n n a S S n n n n n -=-=---+-=-,当1n =时,上式也成立,所以43n a n =-,故C 正确;因为140n n a a +-=>,所以数列{}n a 为递增数列,故A 错误;2233n n n a S n =++-,因为()22119a S a S +-+=,()332213a S a S +-+=,所以数列{}n n a S +不是等差数列,故D 错误.故选:BC .11.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象过点()0,1,最小正周期为π2,则()A.()f x 在π5π,66⎛⎫⎪⎝⎭上单调递减B.()f x 的图象向右平移π6个单位长度后得到的函数为偶函数C.函数()f x 在()0,π上有且仅有4个零点D.函数()f x 在区间π5π,412⎛⎫⎪⎝⎭上有最小值无最大值【答案】BCD 【解析】【分析】根据给定条件,求出ω与ϕ,再逐项分析求解,判断作答.【详解】依题意,(0)2sin 1f ϕ==,即1sin 2ϕ=,而π2ϕ<,则()ππ,2sin 66f x x ϕω⎛⎫==+ ⎪⎝⎭.由最小正周期为2π,得22T ππω==,得4ω=,则()π2sin 46f x x ⎛⎫=+ ⎪⎝⎭,对于A ,由π5π,66x ⎛⎫∈⎪⎝⎭,得π5π7π4,662x ⎛⎫+∈ ⎪⎝⎭,则()f x 在π5π,66⎛⎫⎪⎝⎭上不单调,A 不正确;对于B ,()f x 的图象向右平移6π个单位长度后得函数()πππ2sin 42sin 42cos 4662f x x x x ⎡⎤⎛⎫⎛⎫=-+=-=- ⎪ ⎢⎝⎭⎝⎭⎣⎦,是偶函数,B 正确;对于C ,当0πx <<时,πππ44666x π<+<+,则π4π,2π,3π,4π6x +=,则5π11π17π23π,,,24242424x =,可得()f x 在()0,π上有且仅有4个零点,C 正确;对于D ,当π5π412x <<时,7ππ11π4666x <+<,当π3π462x +=,解得π3x =时,()f x 取得最小值2-,无最大值,D 正确.故选:BCD.12.已知棱长为2的正方体1111ABCD A B C D -,R ,E ,F 分别是AB ,11AD ,1CC 的中点,连接RE ,EF ,RF ,记R ,E ,F 所在的平面为α,则()A.a 截正方体所得的截面为五边形 B.1B D α⊥C.点D 到平面αD.α截正方体所得的截面面积为【答案】BCD 【解析】【分析】根据平面的性质先做出截面可判定A 、D ,再利用线线垂直可判定线面垂直得B 项正误,由正六棱锥的体积判定C .【详解】如上左图所示取111AA BC C D 、、中点分别为H G J 、、,连接EH HR RG GF FJ JE 、、、、、,易知HR FJ RG EJ GF HE ,,,HR FJ RG EJ GF HE ===,,,即六边形HRGFJE 为正六边形,平面HRGFJE 即过R ,E ,F 三点的平面α,故A 错误;由正方体的棱长为2,可得截面HRGFJE 的面积为2364S =⨯⨯=D 正确;如上右图所示,连接11AC BD BC B C 、、、,由正方体的性质可得1,AC BD BB ⊥⊥面ABCD ,AC ⊂面ABCD ,所以1,BB AC ⊥又11,BD BB B BD BB ⋂=⊂、面1BDB ,所以AC ⊥面1BDB ,1DB ⊂面1BDB ,所以1AC DB ⊥,而AC RG ,所以1RG DB ⊥,同理可得1FG DB ⊥,,FG RG G FG RG α⋂=⊂、,故1DB α⊥,即B 正确;分别连接1D B ,与截面HRGFJE 的六个顶点可得两个正六棱锥,设点D 到平面α的距离为h ,易知211128862162323D HRGFJE A HRD HRGFJE V V V h S h --=-=-⨯⨯⨯⨯==⨯⨯⨯⇒=正方体六边形,故C 正确.故选:BCD.三、填空题(本题共4小题,每小题5分,共20分)13.()841x x-的展开式的常数项是___________.【答案】70【解析】【分析】利用通项公式求解,84(1)x x-的展开式中常数项由8(1)x -的展开式的4次方项确定,求解即可.【详解】8(1)x -的展开式的通项公式为818C (1)r rr r T x-+=-,当84r -=时,44584,C r T x ==,所以84(1)x x-的展开式的常数项为48C 70=.故答案:70.14.写出函数()cos 1sin xf x x=-的一个对称中心:___________.【答案】π,02⎛⎫ ⎪⎝⎭【解析】【分析】首先化简函数得()πtan 24x f x ⎛⎫=+⎪⎝⎭,再根据正切函数的对称中心公式求解.【详解】222cos sin cos sincos 2222()1sin cos sinsin cos 2222x x x x x f x x x x x x -+===-⎛⎫-- ⎪⎝⎭π1tantan tan π224tan π241tan 1tan tan 224x x x x x ++⎛⎫===+ ⎪⎝⎭--,令1ππ24x k +=或()212ππ,242x k k k π+=+∈Z ,则1π2π2x k =-+或()212π2π,2x k k k =+∈Z ,令20k =,则π2x =,所以函数()f x 的一个对称中心是π,02⎛⎫⎪⎝⎭.故答案:π,02⎛⎫⎪⎝⎭(答案不唯一,横坐标符合π2π2x k =±(k ∈Z )即可)15.在平面直角坐标系xOy 中,已知抛物线W :214y x =+.若等腰直角三角形ABC 三个顶点均在W 上且直角顶点B 与抛物线顶点重合,则ABC 的面积为___________.【答案】1【解析】【分析】根据等腰直角三角形与二次函数的性质,建立不等式,可得答案.【详解】由题意可作图如下:设()()11221,,0,,,4A x y B C x y ⎛⎫⎪⎝⎭,其中120x x <<,则直线AB 与直线BC 的斜率分别为1114y x -,2214y x -,由AB BC ⊥,则121211441y y x x --⋅=-,由AB BC =,则222211221144x y x y ⎛⎫⎛⎫+-=+- ⎪ ⎪⎝⎭⎝⎭,将21114y x =+,22214y x =+代入121211441y y x x --⋅=-,可得121x x =-,将21114y x =+,22214y x =+代入222211221144x y x y ⎛⎫⎛⎫+-=+- ⎪ ⎪⎝⎭⎝⎭,可得24241122x x x x +=+,将121x x =-代入24241122x x x x +=+,可得()()6222110x x -+=,解得21x =,则5151,,0,,1,444A B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,==AB BC ,112ABC S AB BC =⋅⋅=V .故答案为:1.16.过圆O :222x y +=上一点P 作圆C :()()22442x y -+-=的两切线,切点分别为Q ,R ,设两切线的夹角为θ,当PQ PR +取最小值时,sin θ=___________.【答案】9【解析】【分析】易得,,,2PQ PR CPQ CPR CQ PQ CR PR θ=∠=∠=⊥⊥,从而可得2P PQ P Q R ==+,求出PC 取得最小值时,sin θ的值即可.【详解】由题意可得,,,2PQ PR CPQ CPR CQ PQ CR PR θ=∠=∠=⊥⊥,圆O 的圆心()0,0O ,半径1r =,圆C 的圆心()4,4C ,半径2r =则2PQ Q R P P ===+,当PQ PR +取最小值时,则PC 取得最小值,1min PC OC r =-=此时1sinsin23CPQ θ=∠==,又2θ为锐角,所以22cos 23θ=,所以12242sin 2339θ=⨯⨯=,即当PQ PR +取最小值时,sin 9θ=.故答案为:429.【点睛】关键点点睛:由圆的切线的性质将所求转化为求PC 的最小值是解决本题的关键.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知等比数列{}n a 的前n 项和为n S ,0n a >,且满足126a a +=,430S =.(1)求{}n a 的通项公式;(2)设()1n n b n a =-⋅,{}n b 的前n 项和为n T ,求使196n T ≤成立的n 的最大值.【答案】(1)2n n a =(2)5【解析】【分析】(1)求首项、公比,从而求得n a ;(2)利用错位相减求和法求得n T ,解不等式196n T ≤.【小问1详解】设等比数列{}n a 的公比为q ,依题意,0n a >,则0q >.1246,30a a S +==,则12346,24a a a a +=+=,得234122446a a q a a +===+,所以2q =,所以116a aq +=,所以12a =,所以2n n a =.【小问2详解】由(1)得(1)(1)2nn n b n a n =-⋅=-⋅,得231222(1)2n n T n =⨯+⨯++-⋅ ,得34121222(1)2n n T n +=⨯+⨯++-⋅ ,两式相减得23412222(1)2nn n T n +-=++++--⋅ ()112122(1)2(2)2412n n n n n ++-=-+--⋅=--⋅--,所以1(2)24n n T n +=-⋅+.由196n T ≤,得11(2)24196(2)2192n n n n ++-⋅+≤⇒-⋅≤,当5n =时,左边632192=⨯=,当5n >时,1(2)2192n n +->,所以n 的最大值为5.18.暑假期间,儿童溺水现象屡有发生,防溺水工作十分重要.现从某社区随机抽取100名居民,对他们的防溺水认识程度进行了测评,经统计,这100名居民的测评成绩全部在40至100之间,将数据按照[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100分成6组,制成如图所示的频率分布直方图.(1)估计这100名居民成绩的中位数(保留一位小数);(2)在这100名居民中用分层随机抽样的方法从成绩在[)40,50,[)50,60,[)60,70的三组中抽取12人,再从这12人中随机抽取3人,记ξ为3人中成绩在[)50,60的人数,求ξ的分布列和数学期望.【答案】(1)79.3(2)分布列见解析,()1E ξ=【解析】【分析】(1)根据在频率分布直方图中中位数的求法计算即可;(2)写出随机变量ξ的所有取值,求出对应概率,即可得出分布列,再根据期望公式求期望即可.【小问1详解】因为()100.0040.0080.0120.24⨯++=,0.24100.0280.52+⨯=,所以中位数在区间[)70,80内,设为x ,则()()100.0040.0080.0120.028700.5x ⨯+++-=,解得79.3x ≈,即估计这100名居民成绩的中位数为79.3;【小问2详解】成绩在[)40,50有0.0041220.0040.0080.012⨯=++人,成绩在[)50,60有0.0081240.0040.0080.012⨯=++人,成绩在[)60,70有0.0121260.0040.0080.012⨯=++人,则ξ可取0,1,2,3,()38312C 140C 55P ξ===,()1248312C C 281C 55P ξ===,()2148312C C 122C 55P ξ===,()34312C 11C 55P ξ===,所以分布列为ξ123P145528551255155所以()14281210123155555555E ξ=⨯+⨯+⨯+⨯=.19.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2sin 2cos c a C c A =-.(1)求sin 2A ;(2)若2a =,求ABC 面积的最大值.【答案】(1)34(2)273+【解析】【分析】(1)利用正弦定理把已知等式中的边转化为角的正弦,化简整理可求得sin co 1s 2A A -=,平方进而求得sin 2A ;(2)利用余弦定理表示出22b c +,根据三角形面积公式和基本不等式求得最值.【小问1详解】因为2sin 2cos c a C c A =-,由正弦定理sin sin sin a b cA B C==,得sin 2sin sin 2sin cos C A C C A =-,因为()0,,sin 0C C ∈π∴≠,所以sin co 1s 2A A -=,所以21(sin cos )4A A -=,得1312sin cos 2sin cos 44A A A A -=⇒=,即3sin 24A =.【小问2详解】由(1)知13sin cos ,2sin cos 24A A A A -==,()0,A π∈,所以0,2A π⎛⎫∈ ⎪⎝⎭,可得sin 0,cos 0A A >>,与22sin cos 1A A +=联立,有221sin cos 2sin cos 1A A A A ⎧-=⎪⎨⎪+=⎩,解得17sin 471cos 4A A ⎧+=⎪⎪⎨-⎪=⎪⎩,得1117sin 224ABC S bc A ==⨯ ,由余弦定理得,22271cos 24b c a A bc+-==,所以227142b c bc -+=+,得2271422b c bc bc -+=+≥,当且仅当b c =时等号成立,即4(59bc ≤=+,得1142(52493ABC S +≤⨯⨯+=,得最大值为23+.20.如图,几何体由四棱锥B AEFC -和三棱台EFG ACD -组合而成,四边形ABCD 为梯形,//AD BC 且2AD BC =,AD CD ⊥,2CD FG =,DG ⊥平面ABCD ,2DA DC ==,平面EBC 与平面ABCD 的夹角为45°.(1)求证:平面BCE ⊥平面CDGF ;(2)求三棱台EFG ACD -的体积.【答案】(1)证明见解析(2)73【解析】【分析】(1)利用线面垂直的性质和平行的性质得BC CD ⊥,再利用面面垂直的判定即可;(2)建立合适的空间直角坐标系,设DG h =,求出相关平面法向量,利用面面角的空间向量求法得到方程,解出h ,再利用棱台体积公式即可得到答案.【小问1详解】因为DG ⊥平面,ABCD BC ⊂平面ABCD ,所以DG BC ⊥,因为//,AD BC AD CD ⊥,所以BC CD ⊥,由GD CD D = ,,GD CD ⊂平面CDGF ,得BC ⊥平面CDGF ,由BC ⊂平面BCE ,得平面BCE ⊥平面CDGF .【小问2详解】因为DG ⊥平面ABCD ,,AD CD ⊂平面ABCD ,所以,DG AD DG CD ⊥⊥,又因为AD CD ⊥,所以,,DG AD CD 两两互相垂直,所以以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DG 所在直线为z 轴建立空间直角坐标系,如图.设DG h =,由题可知,(0,0,0),(2,0,0),(1,2,0),(0,2,0),(1,0,),(0,1,),(0,0,)D A B C E h F h G h ,易知平面ABCD 的一个法向量为(0,0,)DG h = ,设平面EBC 的法向量为(,,)n x y z =,(1,0,0),(0,2,)CB BE h ==- ,故得0n CB n BE ⎧⋅=⎪⎨⋅=⎪⎩,即020x y zh =⎧⎨-+=⎩,不妨令1y =,则20,1,,cos ,2||||DG n n n DG h DG n ⋅⎛⎫=〈〉==⎪⎝⎭ ,解得2h =,所以三棱台EFG ACD -的体积为1117222113223V ⎛⎫=⨯⨯⨯⨯+⨯⨯= ⎪ ⎪⎝⎭.21.已知函数()2ln 2xf x a x =⋅-.(1)讨论()f x 的单调性;(2)当0a >时,证明:不等式()12ln f x a a≤+有实数解.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求导,再分0a ≤和0a >两种情况讨论即可;(2)要证不等式()12ln f x a a ≤+有实数解,只需证明()min 12ln f x a a≤+即可,由(1)求出()min f x ,进而得证.【小问1详解】()()ln 22ln 2ln 221x x f x a a '=⋅-=⋅-,当0a ≤时,()0f x '<,则函数()f x 在(),-∞+∞上单调递减,当0a >时,21log x a <时,()0f x '<,21log x a>时,()0f x ¢>,所以函数()f x 在21,log a ⎛⎫-∞ ⎪⎝⎭上单调递减,在21log ,a ⎛⎫+∞ ⎪⎝⎭上单调递增,综上所述,当0a ≤时,函数()f x 在(),-∞+∞上单调递减;当0a >时,函数()f x 在21,log a ⎛⎫-∞ ⎪⎝⎭上单调递减,在21log ,a ⎛⎫+∞ ⎪⎝⎭上单调递增;【小问2详解】要证不等式()12ln f x a a ≤+有实数解,只需证明()min12ln f x a a≤+即可,由(1)得()21log 22min11log 2ln 2log 1ln a f x f a a a a ⎛⎫==⋅-⨯=+ ⎪⎝⎭,则只要证明11ln 2ln a a a+≤+即可,即证1ln 10a a+-≥,令()()1ln 10h a a a a =+->,则()22111a h a a a a-'=-=,当01a <<时,()0h a '<,当1a >时,()0h a '>,所以函数()h a 在()0,1上单调递减,在()1,+∞上单调递增,所以()()10h a h ≥=,即1ln 10a a+-≥,所以当0a >时,不等式()12ln f x a a≤+有实数解.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.已知椭圆E :()222210x y a b a b+=>>的焦点分别为()11,0F -和()21,0F ,离心率为12.不过2F 且与x 轴垂直的直线交椭圆于A ,M 两个不同的点,直线2AF 与椭圆的另一交点为点B .(1)求椭圆E 的方程;(2)①若直线MB 交x 轴于点N ,求以ON 为直径的圆的方程;②若过2F 与AB 垂直的直线交椭圆E 于D ,G 两个不同的点,当22AB DG +取最小值时,求直线AB 的方程.【答案】(1)22143x y +=(2)①22(2)4x y -+=;②1y x =-或1y x =-+.【解析】【分析】(1)根据椭圆的定义,可求其方程;(2)①联立直线AB 与椭圆方程,表示出直线BM 的方程,再由根与系数的关系求出N 点坐标,即可求出圆的方程;②根据弦长公式可求AB 长度,进而得DG 长度,根据不等式即可求解最值,得直线AB 的方程.【小问1详解】由题意可知,11,2c c e a ===,得2a =,由222a b c =+,得23b =,所以椭圆E 的方程为22143x y +=.【小问2详解】①显然直线AB 的斜率必存在,且0AB k ≠,则设直线AB 的方程为()()1122(1)(0),,,,y k x k A x y B x y =-≠,则()11,M x y -,联立有22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,可得()22224384120k x k x k +-+-=,所以221212228412,4343k k x x x x k k -+==++,直线BM 的方程为()211121,y y y y x x x x ++=-- 令0y =可得N 点的横坐标为()()()()1211212211112112121222N k x x x x x x x x x x y x x y y k x x x x ---+-=+=+=++-+-22222241282434348243k k k k kk -⨯-++==-+.所以N 为一个定点,其坐标为(4,0),则圆心坐标为()2,0,半径为2,则以ON 为直径的圆的方程为22(2)4x y -+=.②根据①可进一步求得:21||AB x =-=()2212143k k +=+,第21页/共21页因为AB DG ⊥,所以1DG k k =-,则()22121||34k DG k +=+,由()()()()()22222222221211212881||2243344334k k k AB DG AB DG k k k k ++++≥⋅=⨯⨯=++++()22222288111524943342k k k +≥=⎛⎫+++ ⎪⎝⎭,当且仅当224334k k +=+时取等号,即1k =±时,22||||AB DG +取得最小值115249,此时直线AB 的方程为1y x =-或1y x =-+.【点睛】关键点睛:本题第二问的关键是采用设线法,设直线AB的方程为(1)(0)y k x k =-≠,将其与椭圆方程联立得到韦达定理式,再去计算出N 点的横坐标为定值,则可得到圆的方程,再利用弦长公式和基本不等式则可得到22||||AB DG +的最小值.。

2025届广东省佛山市普通高中高三第一次调研测试数学试卷含解析

2025届广东省佛山市普通高中高三第一次调研测试数学试卷含解析

2025届广东省佛山市普通高中高三第一次调研测试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .2.已知函数()f x 满足()()11f x f x -=+,当1x ≥时,()2f x x x=-,则()}{21x f x +>=( ) A .{3x x <-或}0x > B .{0x x <或}2x > C .{2x x <-或}0x >D .{2x x <或}4x >3.复数()()()211z a a i a R =-+-∈为纯虚数,则z =( )A .iB .﹣2iC .2iD .﹣i4.直角坐标系 xOy 中,双曲线2222 1x y a b -=(0a b ,>)与抛物线2 2?y bx =相交于 A 、B 两点,若△ OAB 是等边三角形,则该双曲线的离心率e =( ) A .43B .54C .65D .765.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,则ABC ∆的面积222221()42a b c S ab ⎡⎤⎛⎫+-⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦.根据此公式,若()cos 3cos 0a B b c A ++=,且2222a b c --=,则ABC ∆的面积为( )A .2B .22C .6D .236.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )A .356B .328C .314D .147.运行如图程序,则输出的S 的值为( )A .0B .1C .2018D .20178.设过抛物线()220y px p =>上任意一点P (异于原点O )的直线与抛物线()280y px p =>交于,A B 两点,直线OP 与抛物线()280y px p =>的另一个交点为Q ,则ABQ ABOS S=( )A .1B .2C .3D .49.已知双曲线()222210,0x y a b a b-=>>的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )A .33y x =±B .3y x =±C .12y x =±D .2y x =±10.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )A .()85424π++B .()85824π++C .()854216π++D .()858216π++11.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( )A .2B .32C .3D .412.双曲线﹣y 2=1的渐近线方程是( )A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=0二、填空题:本题共4小题,每小题5分,共20分。

高三下学期新高考第一次调研测试数学试卷-带参考答案与解析

高三下学期新高考第一次调研测试数学试卷-带参考答案与解析

高三下学期新高考第一次调研测试数学试卷-带参考答案与解析注意专项:1.答卷前 考生务必将自己的姓名 考生号 考场号 座位号填写在答题卡上。

2.回答选择题时 选出每小题答案后 用铅笔把答题卡上对应题目的答案标号涂黑。

如简改动 用橡皮擦干静后 再选涂其他答案标号回答非选择题时 将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后 将本试卷和答题卡一并交回。

一、选择题(本大题共8小题 每小题5分 共40分.在每小题给出的四个选项中 只有一项是符合题目要求的.)1.设复数1i z =+,则复数1z z +(其中z 表示z 的共轭复数)表示的点在( )上 A .x 轴B .y 轴C .y x =-D .y x =2.已知角α和β,则“αβ=”是“tan tan αβ=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3 侧面展开图是一个半圆面,则该圆锥的体积为( )A .12πB .9πC .3πD 4.已知双曲线()222106x y b b -=>的一条渐近线的倾斜角为π6,则此双曲线的右焦点到一条渐近线的距离为( )A B .2CD .5.一对夫妻带着3个小孩和一个老人 手拉着手围成一圈跳舞 3个小孩不相邻的站法种数是( ) A .6B .12C .18D .366.已知递增的等比数列{}n a 10a > 公比为q 且1a 3a 4a 成等差数列,则q 的值为( )A B C D 7.已知平面内的三个单位向量a b c 且12a b ⋅=32a c ⋅=,则b c ⋅=( )A .0B .12C D 0 8.设方程22log 1xx ⋅=的两根为1x ()212x x x <,则( )A .101x << 22x >B .121x x >C .1201x x <<D .123x x +>二 选择题(本大题共3小题 每小题6分 共18分.在每小题给出的选项中 有多项符合题目要求.全部选对的得6分 部分选对的得部分分 有选错的得0分.)9.下列说法正确的是( )A .若事件A 和事件B 互斥 ()()()P AB P A P B = B .数据4 7 5 6 10 2 12 8的第70百分位数为8C .若随机变量ξ服从()217,N σ ()17180.4P ξ<≤=,则()180.1P ξ>=D .已知y 关于x 的回归直线方程为0.307ˆ.yx =-,则样本点()2,3-的残差为 1.9- 10.设函数()f x ()g x 的定义域都为R 且()f x 是奇函数 ()g x 是偶函数,则下列结论正确的是( )A .()()f x g x 是奇函数B .()()f x g x 是偶函数C .若()()321g x f x x x -=++,则()()111f g +=D .若函数()f x 在(),-∞+∞上单调递减且()11f =-,则满足()121f x -≤-≤的x 的取值范围是[]1,3 11.已知体积为2的四棱锥P ABCD - 底面ABCD 是菱形 2AB = 3PA =,则下列说法正确的是( )A .若PA ⊥平面ABCD ,则BAD ∠为π6B .过点P 作PO ⊥平面ABCD 若AO BD ⊥,则BD PC ⊥C .PA 与底面ABCD 所成角的最小值为6πD .若点P 仅在平面ABCD 的一侧 且AB AD ⊥,则P点轨迹长度为三 填空题(本大题共3小题 每小题5分 共15分.)12.已知关于x 的不等式10ax ->的解集为M 2M ∈且1M ∉,则实数a 的取值范围是______. 13.已知抛物线22y x =的弦AB 的中点的横坐标为2,则弦AB 的最大值为______. 14.已知()1cos 3αβ+=-cos cos 1αβ+=,则cos cos 22αβαβ-+=______()sin sin sin αβαβ+=+______. 四 解答题(本大题共5小题 共77分.解答应写出文字说明 证明过程或演算步骤.)15.(本小题满分13分)在如图所示的ABC △中 sin 0B =. (1)求B ∠的大小(2)直线BC 绕点C 顺时针旋转π6与AB 的延长线交于点D 若ABC △为锐角三角形 2AB = 求CD 长度的取值范围.16.(本小题满分15分)已知椭圆()2222:10x y W a b a b+=>>的右顶点为A 左焦点为F 椭圆W 上的点到F 的最大距离是短半轴长倍 且椭圆W 过点31,2⎛⎫⎪⎝⎭.记坐标原点为O 圆E 过O A 两点且与直线6x =相交于两个不同的点P Q (P Q 在第一象限 且P 在Q 的上方) PQ OA = 直线QA 与椭圆W 相交于另一个点B . (1)求椭圆W 的方程 (2)求QOB △的面积. 17.(本小题满分15分)如图 在四棱锥P ABCD -中 AB CD ∥ 4AB = 2CD = 2BC = 3PC PD == 平面PCD ⊥平面ABCD PD BC ⊥. (1)证明:BC ⊥平面PCD(2)若点Q 是线段PC 的中点 M 是直线AQ 上的一点 N 是直线PD 上的一点 是否存在点M N 使得MN =请说明理由.18.(本小题满分17分)已知函数()ln f x x x =的导数为()f x '.(1)若()1f x kx ≥-恒成立 求实数k 的取值范围(2)函数()f x 的图象上是否存在三个不同的点()11,A x y ()22,B x y ()33,C x y (其中123x x x <<且1x2x 3x 成等比数列) 使直线AC 的斜率等于()2f x '?请说明理由.19.(本小题满分17分)2023年10月11日 中国科学技术大学潘建伟团队成功构建255个光子的量子计算机原型机“九章三号” 求解高斯玻色取样数学问题比目前全球是快的超级计算机快一亿亿倍.相较传统计算机的经典比特只能处于0态或1态 量子计算机的量子比特(qubit )可同时处于0与1的叠加态 故每个量子比特处于0态或1态是基于概率进行计算的.现假设某台量子计算机以每个粒子的自旋状态作为是子比特 且自旋状态只有上旋与下旋两种状态 其中下旋表示“0” 上旋表示“1” 粒子间的自旋状态相互独立.现将两个初始状态均为叠加态的粒子输入第一道逻辑门后 粒子自旋状态等可能的变为上旋或下旋 再输入第二道逻辑门后 粒子的自旋状态有p 的概率发生改变 记通过第二道逻辑门后的两个粒子中上旋粒子的个数为X . (1)若通过第二道逻辑门后的两个粒子中上旋粒子的个数为2 且13p = 求两个粒子通过第一道逻辑门后上旋粒子个数为2的概率(2)若一条信息有()*1,n n n >∈N 种可能的情况且各种情况互斥 记这些情况发生的概率分别为1p2p … n p ,则称()()()12n H f p f p f p =++⋅⋅⋅+(其中()2log f x x x =-)为这条信息的信息熵.试求两个粒子通过第二道逻辑门后上旋粒子个数为X 的信息熵H(3)将一个下旋粒子输入第二道逻辑门 当粒子输出后变为上旋粒子时则停止输入 否则重复输入第二道逻辑门直至其变为上旋粒子 设停止输入时该粒子通过第二道逻辑门的次数为Y (1Y = 2 3 ⋯ n ⋯).证明:当n 无限增大时 Y 的数学期望趋近于一个常数. 参考公式:01q <<时 lim 0nn q →+∞= lim 0nn nq →+∞=.2024届新高考教学教研联盟高三第一次联考数学参考答案一 选择题(本大题共8小题 每小题5分 共40分.)1.C 【解析】11331i i 1i 22z z +=+-=-+ 所以对应的点33,22⎛⎫- ⎪⎝⎭在直线y x =-上. 2.D 【解析】当2παβ==时 tan α tan β没有意义 所以由αβ=推不出tan tan αβ=当tan tan αβ=时()πk k αβ=+∈Z所以由tan tan αβ=推不出αβ=故“αβ=”是“tan tan αβ=”的既不充分也不必要条件. 3.C 【解析】设圆锥的底面半径为r 母线为l 由于圆锥的侧面展开图是一个半圆面,则2ππr l = 所以2l r =所以圆锥的高h ==圆锥的体积为2211ππ3π33V r h ==⨯⨯⨯=.4.A 【解析】因为双曲线()222106x y b b -=>的一条渐近线的倾斜角为π6 πtan 6= 所以该渐近线的方程为3y x = 所以2263b ⎛= ⎝⎭解得b =(舍去) 所以c =此双曲线的右焦点坐标为()30y -==5.B 【解析】3232A A 12=.6.A 【解析】由题意知1432a a a += 即321112a a q a q += 又数列{}n a 递增 10a > 所以1q > 且3212q q += 解得q =7.D 【解析】如图 a OA = c OC = b OB =(或b OD =)由32a c ⋅=得cos COA ∠= 又[]0,πCOA ∠∈ 所以π6COA ∠=由12a b ⋅=得1cos 2BOA ∠= 又[]0,πBOA ∠∈ 所以π3BOA ∠=(或1cos 2DOA ∠= 又[]0,πDOA ∠∈ 所以π3DOA ∠=)所以b c 夹角为π6或π2所以32b c ⋅=或0.8.C 【解析】由题意得 120x x << 由22log 1xx ⋅=得21log 02xx ⎛⎫-= ⎪⎝⎭令()()21log 02xf x x x ⎛⎫=-> ⎪⎝⎭,则()1102f =-< ()1321044f =-=> 1102f ⎛⎫=-> ⎪⎝⎭由()1102f f ⎛⎫⋅<⎪⎝⎭ ()()120f f ⋅<得11,12x ⎛⎫∈ ⎪⎝⎭()21,2x ∈ 故A 错 由21222111log log 022xxx x ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭得21222111log log 22xxx x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭由11,12x ⎛⎫∈ ⎪⎝⎭ ()21,2x ∈得21222111log log 022x xx x ⎛⎫⎛⎫+=-< ⎪ ⎪⎝⎭⎝⎭所以1201x x << 故C 对 B 错由11,12x ⎛⎫∈ ⎪⎝⎭()21,2x ∈ 所以123x x +< D 错误.二 选择题(本大题共3小题 每小题6分 共18分.)9.BCD 【解析】对于A 若事件A 和事件B 互斥 ()0P AB = 未必有()()()P AB P A P B = A 错 对于B 对数据从小到大重新排序 即:2 4 5 6 7 8 10 12 共8个数字 由870% 5.6⨯= 得这组数据的第70百分位数为第6个数8 B 正确 对于C 因为变量ξ服从()217,N σ 且()17180.4P ξ<≤=,则()()()181717180.50.40.1P P P ξξξ>=>-<≤=-= 故C 正确对于D 由0.307ˆ.yx =- 得样本点()2,3-的残差为()30.30.72 1.9---⨯=- 故D 正确 故选BCD . 10.ACD 【解析】令()()()F x f x g x =,则()()()F x f x g x -=-- 因为()f x 是奇函数 ()g x 是偶函数 所以()()f x f x -=- ()()g x g x -= 所以()()()()F x f x g x F x -=-=- 所以()()()F x f x g x =是奇函数 A 正确同样 令()()()F x f x g x =,则()()()()()()F x f x g x f x g x F x -=--=-=- 所以()F x 是奇函数 B 错误令1x =-代入()()321g x f x x x -=++,则()()()()32111111g f ---=-+-+= 又()()11g g -=()()11f f -=- 所以()()111g f += C 正确因为()f x 为奇函数 又()11f =- 所以()11f -=由于()f x 在(),-∞+∞上单调递减 要使()121f x -≤-≤成立,则121x -≤-≤ 所以13x ≤≤ D 正确.11.BCD 【解析】114sin sin 2333P ABCD NBCD V S h AB AD BAD h h BAD -=⋅=⋅∠⋅=∠=,则当PA ⊥平面ABCD 时 3h PA ==,则1sin 2BAD ∠= 即BAD ∠为π6或5π6A 错误如图1 若PO ⊥平面ABCD ,则PO BD ⊥ 又AO BD ⊥则BD ⊥平面PAO 有BD PA ⊥ 又BD AC ⊥ 所以BD ⊥平面PAC BD PC ⊥ B 正确 设PA 与底面ABCD 所成角为θ 又11sin 233P ABCD ABCD ABCD V S h S PA θ-===则2sin ABCDS θ=因为4sin 4ABCD S BAD =∠≤,则1sin 2θ≥则PA 与底面ABCD 所成角的最小值为π6C 正确如图2 当AB AD ⊥ 根据123P ABCD ABCD V S h -== 得32h = 即P 点到底面ABCD 的距离为32过A 点作底面ABCD 的垂线为l 过点P 作PO l ⊥交l 于点O,则PO ===点P 的轨迹是以O 为圆心为半径的圆轨迹长度为 D 正确.三 填空题(本大题共3小题 每小题5分 共15分.)12.1,12⎛⎤⎥⎝⎦【解析】2M ∈且1M ∈ 所以210,10,a a ->⎧⎨-≤⎩所以112a <≤.13.5 【解析】方法一:当直线AB 的斜率不存在时 直线AB 的方程为2x = 代入22y x =得2y =或2y =- 所以4AB =当直线AB 的斜率存在时 显然不为零 设直线AB 的方程为y kx b =+代入22y x =消y 并整理得()222220k x kb x b +-+=设()11,A x y ()22,B x y 判别式480kb ∆=->时有122212222,,kb x x k b x x k -⎧+=-⎪⎪⎨⎪=⎪⎩因为弦AB 的中点的横坐标为2 所以2224kb k --= 所以212kb k =-21AB x =-==所以2211145AB k k ⎛⎫⎛⎫=≤++-= ⎪ ⎪⎝⎭⎝⎭当且仅当221114k k +=-即223k =时取到等号 故弦AB 的最大值为5.方法二:设抛物线的焦点为F ,则AB AF BF ≤+又121211122AF BF x x x x +=+++=++当弦AB 的中点的横坐标为2时 有124x x += 所以5AB ≤当直线过焦点F 时取到等号 故弦AB 的最大值为5.14.12 23(任意填对一空给3分) 【解析】由()1cos 3αβ+=-得212cos 123αβ+-=-,则21cos 23αβ+=由cos cos 1αβ+=得2cos cos 122αβαβ-+=,则1cos cos 222αβαβ-+=所以3cos cos222αβαβ-+=()2sin cos cos sin 2222sin sin 32sin cos cos 222αβαβαβαβαβαβαβαβ++++===+--+. 四 解答题(本大题共5小题 共77分.解答应写出文字说明 证明过程或演算步骤.)15.【解析】(1sin 0B =sin B = 两边同时平方可得:2cos 1sin 2B B += 由22sin cos 1B B +=整理得22cos cos 10B B +-= 解得1cos 2B =或cos 1B =- 又()0,πB ∈,则π3B =.sin 0B -=2sin cos 022B B=得cos 02B =或1sin 22B = 又()0,πB ∈,则π26B = π3B =.(2)由(1)得π3ABC ∠=,则2π3CBD ∠= 由题可知π6BCD ∠=,则π6D ∠=设BC a =,则BD BC a ==由余弦定理有2222cos CD BC BD BC BD CBD =+-⋅∠所以CD =由正弦定理有sin sin BC ABA ACB =∠所以2sin 2sin 31sin sin ACB A a ACB ACB π⎛⎫+∠ ⎪⎝⎭====∠∠ 因为ABC △为锐角三角形,则π0,2π0,2ACB A ⎧<∠<⎪⎪⎨⎪<∠<⎪⎩得ππ62ACB <∠<所以tan 3ACB ⎛⎫∠∈+∞ ⎪⎝⎭,则(1tan ACB ∈∠所以3tan CD ACB==+∠即CD的取值范围为.16.【解析】(1)依题有a c += 又222a b c =+所以2,a cb =⎧⎪⎨=⎪⎩所以椭圆W 的方程为2222143x y c c +=又点31,2⎛⎫⎪⎝⎭在椭圆W 上 所以221191434c c +⨯=解得1c =所以椭圆W 的方程为22143x y +=. (2)设()6,P P y ()6,Q Q y 0P Q y y >> ()0,0O ()2,0A因为PQ OA = 所以2P Q y y -= ①圆E 过点O 与A 且与直线6x =相交于两个不同的点P Q ,则圆心E 的坐标为1,2P Q y y +⎛⎫⎪⎝⎭又EO EP = =解得24P Q y y = ②(另法一:设直线6x =与x 轴交于点G ,则有GA GO GQ GP =又4GA = 6GO = 所以24P Q y y = ② 另法二:由OA PQ =知 612P Qy y +=- 10P Q y y += ②)由①②解得6P y = 4Q y =所以()6,4Q 40162M k -==-所以直线QA 的方程为2y x =-与椭圆方程联立消去y 得271640x x -+= 解得B 点的横坐标27B x =所以267Q B QB x x =-=-=又O 到直线QA 的距离d ==所以QOB △的面积11402277S QB d =⋅=⨯=.17.【解析】(1)如图 取CD 的中点O 因为3PC PD ==,则PO CD ⊥因为平面PCD ⊥平面ABCD 平面PCD 平面ABCD CD = PO ⊂平面PCD所以PO ⊥平面ABCD 又BC ⊂平面ABCD所以PO BC ⊥ 又BC PD ⊥ PO ⊂平面PCD PD ⊂平面PCD PD PO P =所以BC ⊥平面PCD .(2)因为3PC PD == O 为CD 的中点 1OC =所以PO ==过点O 作OE BC ∥交AB 于点E ,则由BC ⊥平面PCD 可得BC CD ⊥,则以O 为原点 OE OCOP 分别为x 轴 y 轴 z 轴建立如图所示的空间直角坐标系则()0,0,0O ()2,3,0A -10,2Q ⎛ ⎝()0,1,0D -(P所以72,2AQ ⎛=- ⎝(DP = ()2,2,0AD =-设与AQ DP 都重直的向量为(),,n x y z =,则720,2220,n AQ x y nDP y ⎧⋅=-++=⎪⎨⎪⋅=+=⎩得3,2,x y z y ⎧=⎪⎪⎨⎪=⎪⎩令4y =,则(6,4,n =设直线AQ与直线DP 的距离为d则12cos ,36AD n d AD AD n n⋅-=⋅===>则不存在点M 和N 使得MN =. 18.【解析】(1)()1f x kx ≥-恒成立即ln 1x x kx ≥-恒成立 又0x > 所以1ln x k x+≥恒成立今()()1ln 0g x x x x =+> 所以()22111x g x x x x ='-=-当01x <<时 ()0g x '< 函数()g x 单调递减 当1x >时 ()0g x '> 函数()g x 单调递增所以当1x =时 ()g x 取到极小值也是最小值 且()11g =所以1k ≤故实数k 的取值范围为(],1-∞.(2)1x 2x 3x 成等比数列且123x x x << 设公比为()1q q >,则21x qx = 231x q x =()ln f x x x =求导得()1ln f x x ='+ 所以()2211ln 1ln ln f x x q x =+=++'直线AC 的斜率为()21131331123131ln 2ln ln ln ln 1q x q x y y x x x x x x x x q +---==---若存在不同的三点A B C 使直线AC 的斜率等于()2f x '则有()21112ln 2ln ln 1ln ln 1q x q x q x q +-=++-整理成221ln 01q q q --=+. 令()()221ln 11x h x x x x -=->+,则()()()()222222114011x xh x x x x x -=-=+'≥+所以()221ln 1x h x x x -=-+在1x >时单调递增 而()10h = 故方程221ln 01q q q --=+在1q >时无实数解 所以不存在不同的三点A B C 使直线AC 的斜率等于()2f x '.19.【解析】(1)设i A =“两个粒子通过第一道逻辑门后上旋粒子个数为i 个” 0i = 1 2B =“两个粒子通过第二道逻辑门后上旋粒子个数为2个” 则()()2021124P A P A ⎛⎫=== ⎪⎝⎭ ()221211C 22P A ⎛⎫== ⎪⎝⎭()019P B A =∣ ()129P B A =∣ ()249P B A =∣则()()()211121414929494i i i P B P A P BA ===⨯+⨯+⨯=∑∣故()()()()()()222214449194P A P BA P AB P A B P B P B ⨯====∣∣. (2)由题知0X = 1 2由(1)知()()()2211112114244P X p p p p ==+-+-=同理可得()()()()21212211111C 11C 14242P X p p p p p p ⎡⎤==-++-+-=⎣⎦则()()()101124P X P X P X ==-=-==故X 的信息熵22111111132log log 42444222H f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++=⨯--=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (3)由题知()()11n P Y n p p -==- 其中1n = 2 3 …则()()()01111211n EY p p p p n p p -=⋅-+⋅-+⋅⋅⋅+⋅-+⋅⋅⋅又()()111111nni i i i i p p p i p --==⋅-=⋅-∑∑则()()()()1111111211ni n i i p p p n p --=⋅-=⋅-+⋅-+⋅⋅⋅+⋅-∑ ①()()()()()11211111211ni ni p i p p p n p -=-⋅⋅-=⋅-+⋅-+⋅⋅⋅+⋅-∑ ②-①②得:()()()()()1011111111ni n ni p i p p p p n p --=⋅-=-+-+⋅⋅⋅+---∑()()()()111111nnn np p n p n p p p p ---=--=---由题知 当n 无限增大时 ()1np -趋近于零 ()1nn p -趋近于零,则EY 趋近于1p. 所以当n 无限增大时 Y 的数学期望䞨近于一个常数.。

深圳宝安区2025届高三上学期第一次调研测试数学试卷+答案

深圳宝安区2025届高三上学期第一次调研测试数学试卷+答案

宝安区2024-2025学年第一学期调研测试卷高三数学2024.101.样本数据1,6,7,8,8,9,10,11,12,13的第30注意事项:1.答题前,请将姓名、班级和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并正确粘贴条形码.2.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔把答案写在答题卡指定区域内,写在本试卷或草稿纸上,其答案一律无效.3.本试卷19小题,满分150分.考试时间120分钟.4.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.百分位数为( ) A .7B .7.5C .8D .8.52.已知集合{}25Ax x=<{}12B x x =∈−<Z,则A B = ( )A .{}1,0,1,2−B .{}1,2C .{}0,1,2D .{}1,0,1,2,3−3.若11i z z+=−,则z =( ) A .1i −− B .I C .1i −D .-i4.已知向量()2,a x = ,(),2b x = ,若()a b a ⊥−,则x =( )A .2B .0C .1D .-25.已知()sin m αβ−=,tan 2tan αβ=,则()sin αβ+=( )A .mB .m −C .3mD .4m6.一个正四面体边长为3,则一个与该正四面体体积相等、高也相等的正三棱柱的侧面积为( ) A.B.C.D.7.已知函数为()()311,1e ln 2,1x x ax x f x x x + ++<− = ++≥− ,在R 上单调递增,则a 的取值范围是( )A .[]3,1−−B .(],3−∞−C .[)3,−+∞D .[)1,−+∞8.函数()cos 2f x x x =在13π0,6上的零点个数为( ) A .3B .4C .5D .6二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多个选项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量X 服从正态分布()2~0,X N σ,当σ变大时,则( ) A .1122P X −<< 变大B .1122P X −<< 变小C .正态分布曲线的最高点上移D .正态分布曲线的最高点下移10.对于正数a ,b ,[)00,x ∃∈+∞,使()00e 1x bx a ++⋅≤,则( )A .e 1b a >B .1eab ≤C .224eab ≤D .1a b +≤11.已知函数()f x 的定义域为R ,若()()()11f x y f x f y ++=+−,且()02f =,则( )A .()11f −=−B .()f x 无最小值C .()401900i f i ==∑D .()f x 的图象关于点()2,0−中心对称三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()2f x x m =−与函数()ln f x x x =+在公共点处的切线相同,则实数m 的值为______.13.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且π4B =,b =,1a =,M 为AB 的中点,则线段CM 的长为______.14.为了回馈长期以来的顾客群体,某健身房在五周年庆活动期间设计出了一种游戏活动,顾客需投掷一枚骰子两次,若两次投掷的数字都是偶数,则该顾客获得该健身房的免费团操券5张,且有2次终极抽奖机会(2次抽奖结果互不影响);若两次投掷的数字之和是5或9,则该顾客获得该健身房的免费团操券5张,且有1次终极抽奖机会;其余情况顾客均获得该健身房的免费团操券3张,不具有终极抽奖机会.已知每次在终极抽奖活动中的奖品和对应的概率如下表所示.则一位参加游戏活动的顾客获得蛋白粉的概率为______.三、解答题15.(本题13分)如图,在直角POA △中,PO AO ⊥,24PO AO ==,将POA △绕边PO 旋转到POB△的位置,使2π3AOB ∠=,得到圆锥的一部分,点C 为 AB 上的点,且 14AC AB =. (1)求点O 到平面P AB 的距离;(2)设直线OC 与平面P AB 所成的角为θ,求sin θ的值.16.(本题15分)已知椭圆C :22221x y a b +=,()0a b >>,离心率e =,且点()2,1A −在椭圆上.(1)求该椭圆的方程;(2)直线l 交椭圆C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0,且π2PAQ ∠=,求PAQ △的面积. 17.(本题15分)函数()ln f x x =,()22g x x x m =−−+.(1)若e m =,求函数()()()F x f x g x =−的最大值;(2)若()()()22e xf xg x x x +≤−−在(]0,2x ∈上恒成立,求实数m 的取值范围.18.(本题17分)甲乙两人参加知识竞赛活动,比赛规则如下:两人轮流随机抽题作答,答对积1分且对方不得分,答错不得分且对方积1分;然后换对方抽题作答,直到有领先2分者晋级,比赛结束.已知甲答对题目的概率为45,乙答对题目的概率为p ,答对与否相互独立,抽签决定首次答题方,已知两次答题后甲乙两人各积1分的概率为25.记甲乙两人的答题总次数为()2n n ≥.(1)求p ;(2)当2n =时,求甲得分X 的分布列及数学期望;(3)若答题的总次数为n 时,甲晋级的概率为()n P A ,证明:()()()2388159n P A P A P A ≤++⋅⋅⋅+<. 19.(本题17分)定义:任取数列{}n a 中相邻的两项,若这两项之差的绝对值为3,则称数列{}n a 具有“性质3”.已知项数为n 的数列{}n a 的所有项的和为n M ,且数列{}n a 具有“性质3”. (1)若4n =,且10a =,43a =,写出所有可能的n M 的值;(2)若12024a =,2023n =,证明:“20234042a =−”是“()11,2,,2022k k a a k +>=⋅⋅⋅”的充要条件; (3)若10a =,2n ≥,0n M =,证明:4n m =或41n m =+,(*m ∈N ).宝安区2025届高三毕业班第一次调研考试数学参考答案一、单项选择题题号 1 2 3 4 5 6 7 8 答案BCBACADC二、多项选择题题号 9 10 11 答案BDBCBCD三、填空题:12.0 13.95576四、解答题:15.【解答】(1)证明:由题意知:PO OA ⊥,PO OB ⊥,OA OB O = ,OA ⊂平面AOB ,OB ⊂平面AOB∴PO ⊥平面AOB ,又24POOA ==,所PA PB ==,AB =所以12PABS =×△设点O 到平面P AB 的距离为d ,由O PAB P OAB V V −−=得1112π422sin3323d ×=×××××,解得d =; (2)以O 为原点,OC ,OB ,OP 的方向分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,由题意知π6AOC ∠=,则)1,0A−,则()2,0,0C ,()0,2,0B ,()0,0,4P ,所以()AB =,()4AP =,()2,0,0OC =.设平面P AB 的法向量为(),,n a b c = ,则3040n AB b n AP b c ⋅+= ⋅=++=,不妨取平面P AB的一个法向量为12n =,所以sin cos ,n OC n OC n OCθ⋅===. (利用几何解法相对简单,酌情给分)16.【解答】(1)解:由题22411a b = +=解得:a b = = 故椭圆C :22182x y += (2)设直线AP 的倾斜角为α,由π2PAQ ∠=,2πPAQ α+∠=,得π4α=,1AP k =,1AQ k =− (或0111AP AQ AP AQ AP AQ k k k k k k +== ⇒=−⋅=−) 即AP :3y x =−,AQ :1y x =−+联立3y x =−,及22182x y +=得1145x =,22x =(舍),故141,55P− , 联立1y x =−+,及22182x y +=得125x =−,22x =(舍),故27,55Q−, 故12125x x +=,122825x x =−2−,2AQ =−,故()121214824225PAQ S AP AQ x x x x ==−++=△. 17.【解答】(1)因为()2ln e 2F x x x x =−++−, 可知()F x 的定义域为()0,+∞,且()()()211121x x F x x xx+−′=−+=−,由()0F x ′>,解得01x <<;由()0F x ′<,解得1x >. 可知()F x 在()0,1内单调递增,在()1,+∞内单调递减,所以函数()()()F x f x g x =−的最大值为()1e 2F =−.(2)因为()()()22e xf xg x x x +≤−−在(]0,2x ∈恒成立, 等价于()2e ln 2xm x x x ≥−+−+在(]0,2x ∈恒成立.设()()2e ln 2x h x x x x =−+−+,(]0,2x ∈,则()()()111e 11e x x h x x x xx ′−+−−−,当1x >时,则10x −>,且e e x >,11x <,可得1e e 10x x−>−>,所以()0h x ′>; 当01x <<时,则10x −<,设()1e x u x x=−,01x <<,则()21e 0x u x x ′=+>,可知()u x 在()0,1递增,且1202u=−<,()1e 10u =−>.则01,12x∃∈,使得()00u x =.当()00,x x ∈时,()0u x <;当()0,1x x ∈时,()0u x >. 当()00,x x ∈时,()0h x ′>;当()0,1x x ∈时,()0h x ′<. 可知函数()h x 在()00,x 递增,在()0,1x 递减,在()1,2递增. 由()0001e 0xu x x =−=,得001e x x =,且00ln x x =−.可得()()()0000000000112e ln 222232x h x x x x x x x x x=−+−+=−−+=−+, 且01,12x∈,则()00h x <,又因为()2ln 20h =>,可知当(]0,2x ∈时,()()max 2ln 2h x h ==,所以m 的取值范围是[)ln 2,+∞.18.【解答】(1)记i A =“第i 次答题时为甲”,B =“甲积1分”, 则()112P A =,()4|5i P B A =,()41|155i P B A =−=,()|1i P B A p =−,()|i P B A p =, ()()2141114115255255p p p p=+−+−⋅+⋅, 则23155p +=,解得13p =; (2)由题意可知当2n =时,X 可能的取值为0,1,2,则由(1)可知 ()215P X ==,()11111102533515P X ==×+×= ,()14224822533515P X ==×+×= ,随机变量X 的数学期望为()128220121551515E X =×+×+×=. (3)由答题总次数为n 时甲晋级,不妨设此时甲的积分为x 甲,乙的积分为x 乙, 则2x x −=甲乙,且x x n +=甲乙,所以甲晋级时n 必为偶数,令2n m =,*m ∈N 当n 为奇数时,()0n P A =,则()()()()()()2324n n P A P A P A P A P A P A ++⋅⋅⋅+=++⋅⋅⋅+ 012128282828515515515515m −=⋅+⋅+⋅+⋅⋅⋅+⋅012121158222288212155555159515m m m − − =+++⋅⋅⋅+==−− −又∵1m ≥时,()()()23n P A P A P A ++⋅⋅⋅+随着m 的增大而增大, ∴()()()2388159n P A P A P A ≤++⋅⋅⋅+< 19.【解答】(1)解:依题意, 若n a :0,3,0,3,此时6n M = 若n a :0,-3,0,3,此时0n M = 若n a :0,3,6,3,此时12n M =(2)证明:必要性:因为()11,2,,2022k k a a k +>=⋅⋅⋅, 故数列{}()1,2,3,2023n a n =⋅⋅⋅为等差数列,所以13k k a a +−=−,()1,2,,2022k =⋅⋅⋅,公差为-3, 所以()()()2023202420231340421,2,,2022a k =+−×−=−=⋅⋅⋅,必要性得证 充分性:由于202320223a a −≥−,202220213a a −≥−,…,213a a −≥−, 累加可得,202316066a a −≥−,即2023160664042a a ≥−=−, 因为20234042a =−,故上述不等式的每个等号都取到,所以13k k a a +−=−,()1,2,,2022k =⋅⋅⋅,所以1k k a a +<,()1,2,,2022k =⋅⋅⋅,充分性得证综上所述,“20234042a =−”是“1k k a a +<,()1,2,,2022k =⋅⋅⋅”的充要条件; (3)证明:令()11,2,,1k k k c a a k n +=−=⋅⋅⋅−,依题意,3k c =±, 因为211a a c =+,3112a a c c =++,…,1121n n a a c c c −=+++⋅⋅⋅+, 所以()()()11231123n n M na n c n c n c c −=+−+−+−+⋅⋅⋅+()()()()()()()12112111121n n n c n c n c −=−+−+⋅⋅⋅+−−−−−−−⋅⋅⋅−− ()()()()()()1211111212n n n c n c n c −−−−−+−−+⋅⋅⋅+− , 因为3k c =±,所以1k c −为偶数()1,2,,1k n =⋅⋅⋅−, 所以()()()()()12111121n c n c n c −−−+−−+⋅⋅⋅+−为偶数; 所以要使0n M =,必须使()12n n −为偶数,即4整除()1n n −, 亦即4n m =或()*41n m m =+∈N , 当()*4nm m ∈N 时,比如,41430k k a a −−==,423k a −=−,43k a =()1,2,,k m =⋅⋅⋅ 或41430k k a a −−==,423k a −=,43k a =−()1,2,,k m =⋅⋅⋅时,有10a =,0n M =; 当()*41n m m =+∈N 时,比如41430k k a a −−==,423k a −=−,43k a =,410k a +=()1,2,,k m =⋅⋅⋅, 或41430k k a a −−==,423k a −=,43k a =−,410k a +=()1,2,,k m =⋅⋅⋅,有10a =,0n M =; 当42n m =+或()43n m m =+∈N 时,()1n n −不能被4整除,0n M ≠.。

陕西西工大附中2025届高三第一次调研测试数学试卷含解析

陕西西工大附中2025届高三第一次调研测试数学试卷含解析

陕西西工大附中2025届高三第一次调研测试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数22,0,()1,0,x x x f x x x ⎧-=⎨+<⎩,则((1))f f -=( )A .2B .3C .4D .52.已知集合{}2{|23,},|1=-<<∈=>A x x x N B x x A ,则集合AB =( ) A .{2} B .{1,0,1}-C .{2,2}-D .{1,0,1,2}-3.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为( )A .174πB .214πC .4πD .5π4.已知集合{}|0A x x =<,{}2|120B x x mx =+-=,若{}2A B =-,则m =( )A .4B .-4C .8D .-8 5.已知(1)2i ai bi -=+(i 为虚数单位,,a b ∈R ),则ab 等于( )A .2B .-2C .12D .12- 6.已知集合{}{}2|1,|31x A x x B x ==<,则()R A B =( )A .{|0}x x <B .{|01}x xC .{|10}x x -<D .{|1}x x - 7.已知1011M dx x =+⎰,20cos N xdx π=⎰,由程序框图输出的S 为( )A .1B .0C .2πD .ln 28.复数2(1)i i +的模为( ).A .12B .1C .2D .229.已知实数,x y 满足,10,1,x y x y y ≥⎧⎪+-≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .2B .32C .1D .010.据国家统计局发布的数据,2019年11月全国CPI (居民消费价格指数),同比上涨4.5%,CPI 上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI 上涨3.27个百分点.下图是2019年11月CPI 一篮子商品权重,根据该图,下列结论错误的是( )A .CPI 一篮子商品中所占权重最大的是居住B .CPI 一篮子商品中吃穿住所占权重超过50%C .猪肉在CPI 一篮子商品中所占权重约为2.5%D .猪肉与其他畜肉在CPI 一篮子商品中所占权重约为0.18%11.函数2sin 1x x y x +=+的部分图象大致为( )A .B .C .D .12.某四棱锥的三视图如图所示,该几何体的体积是( )A .8B .83C .4D .43二、填空题:本题共4小题,每小题5分,共20分。

广东省肇庆市高要区第一中学2025届高三第一次调研测试数学试卷含解析

广东省肇庆市高要区第一中学2025届高三第一次调研测试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( ) A .43π B .16πC .163π D .323π 2.在等差数列{}n a 中,若244,8a a ==,则7a =( ) A .8B .12C .14D .103.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为,F O 为坐标原点,以OF 为直径的圆与双 曲线C 的一条渐近线交于点O 及点32A ⎛⎝⎭,则双曲线C 的方程为( ) A .2213y x -=B .22126x y -=C .2213x y -=D .22162x y -=4.已知函数()sin(2)f x x ϕ=+,其中(0,)2πϕ∈,若,()6x R f x f π⎛⎫∀∈≤ ⎪⎝⎭恒成立,则函数()f x 的单调递增区间为( ) A .,()36k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦B .2,()33k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()33k k k z ππππ⎡⎤++∈⎢⎥⎣⎦D .2,()3k k k Z πππ⎡⎤+⎢⎥⎣∈⎦5.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .206.设O 为坐标原点,P 是以F 为焦点的抛物线24y x =上任意一点,M 是线段PF 上的点,且PM MF =,则直线OM 的斜率的最大值为( )A .1B .12C .22D .527.在正项等比数列{a n }中,a 5-a 1=15,a 4-a 2 =6,则a 3=( ) A .2B .4C .12D .88.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠=== 若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A .2116B .32C .2516D .39.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( ) A .18种B .36种C .54种D .72种10.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由6个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设A F F A 2'''=,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )A .21313B .413C 27D .4711.已知平面α,β,直线l 满足l α⊂,则“l β⊥”是“αβ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件12.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3C π=,若()6,m c a b =--,(),6n a b c =-+,且//m n ,则ABC ∆的面积为( ) A .3B .932C .332D .33二、填空题:本题共4小题,每小题5分,共20分。

2025届山东省潍坊市高三第一次调研测试数学试卷含解析

2025届山东省潍坊市高三第一次调研测试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数f (x )=21xx e -的图象大致为()A .B .C .D .2.如图所示的程序框图,若输入4a =,3b =,则输出的结果是( )A .6B .7C .5D .83.根据最小二乘法由一组样本点(),i i x y (其中1,2,,300i =),求得的回归方程是ˆˆˆybx a =+,则下列说法正确的是( )A .至少有一个样本点落在回归直线ˆˆˆybx a =+上 B .若所有样本点都在回归直线ˆˆˆybx a =+上,则变量同的相关系数为1 C .对所有的解释变量i x (1,2,,300i =),ˆˆibx a +的值一定与i y 有误差 D .若回归直线ˆˆˆybx a =+的斜率ˆ0b >,则变量x 与y 正相关 4.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .5.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .786.把函数()sin 2(0)6f x A x A π⎛⎫=-≠ ⎪⎝⎭的图象向右平移4π个单位长度,得到函数()g x 的图象,若函数()()0g x m m ->是偶函数,则实数m 的最小值是( )A .512πB .56π C .6π D .12π7.已知椭圆2222:19x y C a a +=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( ) A .2⎛ ⎝⎭B .2⎫⎪⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭8.已知函数()ln f x x =,若2()()3F x f x kx =-有2个零点,则实数k 的取值范围为( )A .21,06e ⎛⎫-⎪⎝⎭B .1,06e ⎛⎫-⎪⎝⎭C .10,6e ⎛⎫ ⎪⎝⎭D .210,6e ⎛⎫ ⎪⎝⎭9.设函数()22cos 23sin cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()17,22f x ⎡⎤∈⎢⎥⎣⎦,则m =( ) A .12B .32C .1D .7210.设等差数列{}n a 的前n 项和为n S ,若495,81a S ==,则10a =( ) A .23B .25C .28D .2911.已知||3a =,||2b =,若()a ab ⊥-,则向量a b +在向量b 方向的投影为( ) A .12B .72C .12-D .72-12.已知抛物线2:4(0)C y px p =>的焦点为F ,过焦点的直线与抛物线分别交于A 、B 两点,与y 轴的正半轴交于点S ,与准线l 交于点T ,且||2||FA AS =,则||||FB TS =( ) A .25B .2C .72D .3二、填空题:本题共4小题,每小题5分,共20分。

2025届四川绵阳市三台中学高三第一次调研测试数学试卷含解析

2025届四川绵阳市三台中学高三第一次调研测试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设等差数列{}n a 的前n 项和为n S ,若5632a a a +=+,则7S =( ) A .28 B .14 C .7D .22.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( ) A .36πB .64πC .144πD .256π3.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不修要条件4.已知实数集R ,集合{|13}A x x =<<,集合|2B x y x ⎧==⎨-⎩,则()R A C B ⋂=( ) A .{|12}x x <≤B .{|13}x x <<C .{|23}x x ≤<D .{|12}x x <<5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( ) A .96里B .72里C .48里D .24里6.设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =,且1OQ AB ⋅=,则点P 的轨迹方程是( )A .()223310,02x y x y +=>> B .()223310,02x y x y -=>> C .()223310,02x y x y -=>>D .()223310,02x y x y +=>>7.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e ,设地球半径为R ,该卫星近地点离地面的距离为r ,则该卫星远地点离地面的距离为( )A .1211e er R e e ++-- B .111e er R e e ++-- C .1211e er R e e-+++ D .111e er R e e-+++ 8.已知实数0a >,1a ≠,函数()2,14ln ,1x a x f x x a x x x ⎧<⎪=⎨++≥⎪⎩在R 上单调递增,则实数a 的取值范围是( )A .12a <≤B .5a <C .35a <<D .25a ≤≤9.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点()1,2P ,则cos2θ=( ) A .35B .45-C .35D .4510. “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( ) A .15B .25C .35D .4511.如图,在ABC ∆中,点M ,N 分别为CA ,CB 的中点,若5AB =,1CB =,且满足223AG MB CA CB ⋅=+,则AG AC ⋅等于( )A .2B 5C .23D .8312.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为( )A .22n n -B .212n -C .212n (-)D .22n二、填空题:本题共4小题,每小题5分,共20分。

江苏省南通市2023-2024学年高三第一次调研测试数学(解析版)

南通市2024届高三第一次调研测试数学2024.01.24注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上指定位置上,在其他位置作答一律无效。

3.本卷满分为150分,考试时间为120分钟。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|-2<x<3},B={0,1,2,3},则A∩B=A.{-2,-1} B.{0,1} C.{0,1,2} D.{0,1,2,3}2.已知z+z=8,z-z=6i,则z z=A.25 B.16 C.9 D.53.若向量a=(λ,4),b=(2,μ),则“λμ=8”是“a∥b”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设{a n}为等比数列,a2=2a4+3a6,则a4-a7 a2-a5=A.19B.13C.3 D.95.从正方体的八个顶点中选择四个顶点构成空间四面体,则该四面体不可能A.每个面都是等边三角形B.每个面都是直角三角形C.有一个面是等边三角形,另外三个面都是直角三角形D.有两个面是等边三角形,另外两个面是直角三角形6.已知直线y=x-1与抛物线C:x2=2py(p>0)相切于M点,则M到C的焦点距离为A.1 B.2 C.3 D.4直线与抛物线相切,则4p2-8p=0,7.已知函数f(x)及其导函数f′(x)的定义域均为(0,+∞),若xf′(x)<2f(x),则A.4e2f(2)<16f(e)<e2f(4) B.e2f(4)<4e2f(2)<16f(e)C.e2f(4)<16f(e)<4e2f(2) D.16f(e)<e2f(4)<4e2f(2)8.某中学开展劳动实习,学生制作一个矩形框架的工艺品.要求将一个边长分别为10cm 和20cm的矩形零件的四个顶点分别焊接在矩形框架的四条边上,则矩形框架周长的最小值为A.202cm B.305cm C.405cm D.602cm二、选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南通市高三第一次调研测试一、填空题:本大题共14小题,每小题5分,共70分. 1. 已知集合U ={1, 2, 3, 4},M ={1, 2},N ={2, 3},则U(M ∪N ) = ▲ .2.复数21i(1i)-+(i 是虚数单位)的虚部为 ▲ .3.设向量a ,b 满足:3||1,2=⋅=a ab ,22+=a b ,则||=b ▲ . 4.在平面直角坐标系xOy 中,直线(1)2x m y m ++=-与直线28mx y +=-互相垂直的充要条件是m = .5.函数()cos (sin cos )()f x x x x x =+∈R 的最小正周期是 ▲ . 6.在数列{a n }中,若对于n ∈N *,总有1nkk a=∑=2n -1,则21nkk a=∑= ▲ .7.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y为整数的概率是 ▲ . 8.为了解高中生用电脑输入汉字的水平,随机抽取了部分学生进行每分钟输入汉字个数测试,下图是根据抽样测试后的数据绘制的频率分布直方图,其中每分钟输入汉字个数的范围是[50,150],样本数据分组为[50,70),[70,90), [90,110),[110,130),[130,150],已知样本中每分钟输入汉字个数小于90的人数是36,则样本中每分钟输入汉字个数大于或等于70个并且小于130个的人数是 ▲ .9.运行如图所示程序框图后,输出的结果是 ▲ .10.关于直线,m n 和平面,αβ,有以下四个命题:∈若//,//,//m n αβαβ,则//m n ;∈若//,,m n m n αβ⊂⊥,则αβ⊥;∈若,//m m n αβ=,则//n α且//n β;∈若,m n m αβ⊥=,则n α⊥或n β⊥.其中假命题的序号是 ▲ .(第8题字数/分频率组距0.0050.0070.0100.0120.01550 70 90 110 130 150 k ≥-3开始 k 1 SS S – 2k kk -1结束输出S YN (第9题图)11.已知函数2220()20x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,,,,若2(2)()f a f a ->,则实数a 的取值范围是 ▲ . 12.已知椭圆的中心在坐标原点,焦点在x 轴上,以其两个焦点和短轴的两个端点为顶点的四边形是一个面积为4的正方形,设P 为该椭圆上的动点,C 、D 的坐标分别是())0,0,则PC ·PD 的最大值为 ▲ .13.设面积为S 的平面四边形的第i 条边的边长记为a i (i =1,2,3,4),P 是该四边形内任意一点,P 点到第i 条边的距离记为h i ,若31241234a a a a k ====, 则412()i i S ih k ==∑.类比上述结论,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),Q 是该三棱锥内的任意一点,Q 点到第i 个面的距离记为H i ,则相应的正确命题是:若31241234S S S S k ====,则 ▲ .14.在平面直角坐标系xOy 中,设直线2m y =+和圆222x y n +=相切,其中m ,*0||1n m n ∈<-≤N ,,若函数1()x f x m n +=- 的零点0(,1),x k k k ∈+∈Z ,则k = ▲ .【填空题答案】1.{4}; 2.12-; 3.2; 4.23-; 5.π;6.()1413n-; 7.12; 8.90; 9.10; 10.∈∈∈ ;11.(21)-,; 12.4; 13.413()ii ViH k==∑; 14.0.二、解答题:本大题共6小题,共90分. 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在∈ABC 中,a ,b ,c 分别是角A 、B 、C 所对的边,且b 2=ac ,向量()cos()1A C =-,m 和(1cos )B =,n 满足32⋅=m n .(1)求sin sin A C 的值;(2)求证:三角形ABC 为等边三角形. 【解】(1)由32⋅=m n 得,3cos()cos 2A CB -+=, ……………………2分 又B =π-(A +C ),得cos(A -C )-cos(A +C )=32, ……………………4分 即cos A cos C +sin A sin C -(cos A cos C -sin A sin C )=32,所以sin A sin C =34. ……………6分 【证明】(2)由b 2=ac 及正弦定理得2sin sin sin B A C =,故23sin 4B =. ……………8分 于是231cos 144B =-=,所以 1cos 2B =或12-. 因为cos B =32-cos(A -C )>0, 所以 1cos 2B =,故π3B =. ………………… 11分由余弦定理得2222cos b a c ac B =+-,即222b a c ac =+-,又b 2=ac ,所以22ac a c ac =+-, 得a =c .因为π3B =,所以三角形ABC 为等边三角形. ………………… 14分 16.(本小题满分14分)如图,已知AB ∈平面ACD ,DE ∈平面ACD ,AC =AD ,DE =2AB ,F 为CD 的中点.(1) 求证:AF ∈平面BCE ;(2) 求证:平面BCE ∈平面CDE . 【证明】(1)因为AB ∈平面ACD ,DE ∈平面ACD ,所以AB ∈DE .取CE 的中点G ,连结BG 、GF ,因为F 为CD 的中点,所以GF ∈ED ∈BA , GF =12ED =BA ,从而ABGF 是平行四边形,于是AF ∈BG . ……………………4分 因为AF ⊄平面BCE ,BG ⊂平面BCE ,所以AF ∈平面BCE . ……………………7分(2)因为AB ∈平面ACD ,AF ⊂平面ACD ,所以AB ∈AF ,即ABGF 是矩形,所以AF ∈GF . ……………………9分 又AC =AD ,所以AF ∈CD . ………………… 11分 而CD ∩GF =F ,所以AF ∈平面GCD ,即AF ∈平面CDE . 因为AF ∈BG ,所以BG ∈平面CDE . 因为BG ⊂平面BCE ,所以平面BCE ∈平面CDE . ………………… 14分 17.(本小题满分15分)设等差数列{}n a 的前n 项和为n S ,且5133349a a S +==,.(1)求数列{}n a 的通项公式及前n 项和公式; (2)设数列{}n b 的通项公式为nn n a b a t=+,问: 是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.【解】(1)设等差数列{}n a 的公差为d . 由已知得51323439a a a +=⎧⎨=⎩,, ……………………2分即118173a d a d +=⎧⎨+=⎩,,解得112.a d =⎧⎨=⎩,……………………4分.故221n n a n S n =-=,. ………6分 (2)由(1)知2121n n b n t-=-+ .要使12m b b b ,,成等差数列,必须212m b b b =+,即312123121m t t m t -⨯=+++-+,……8分.整理得431m t =+-, …………… 11分 因为m ,t 为正整数,所以t 只能取2,3,5.当2t =时,7m =;当3t =时,5m =;当5t =时,4m =.AB CDEF(第16故存在正整数t ,使得12m b b b ,,成等差数列. ………………… 15分18.(本小题满分15分)某地有三个村庄,分别位于等腰直角三角形ABC 的三个顶点处,已知AB =AC =6km ,现计划在BC 边的高AO 上一点P 处建造一个变电站. 记P 到三个村庄的距离之和为y . (1)设PBO α∠=,把y 表示成α的函数关系式; (2)变电站建于何处时,它到三个小区的距离之和最小? 【解】(1)在Rt AOB ∆中,6AB =,所以OB =OA =32.所以π4ABC ∠=由题意知π04α≤≤. ……………………2分所以点P 到A 、B 、C 的距离之和为 322sin 22(3232tan )3232cos y PB PA ααα-=+=⨯+-=+⨯. ……………………6分 故所求函数关系式为()2sin π32320cos 4y ααα-=+⨯≤≤. ……………………7分(2)由(1)得22sin 132cos y αα-'=⨯,令0y '=即1sin 2α=,又π04α≤≤,从而π6α=. ……………………9分.当π06α≤<时,0y '<;当ππ64α<≤时, 0y '>. 所以当π6α=时,2sin 432cos y αα-=+⨯取得最小值, ………………… 13分 此时π32tan66OP ==(km ),即点P 在OA 上距O 点6km 处. 【答】变电站建于距O 点6km 处时,它到三个小区的距离之和最小. ………… 15分19.(本小题满分16分)已知椭圆()22220y x C a b a b:+=1>>的离心率为6,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440x mx y y m -+++-=与D 有公共点,试求实数m 的最小值.OBCAP(第18题图)【解】(1)由离心率6e =,得226a b -=,即223a b =. ∈ ………………2分 又点(13)B --,在椭圆2222:1y x C a b =+上,即2222(3)(1)1a b--=+.∈ ………………4分解 ∈∈得22124a b ==,,故所求椭圆方程为221124y x +=. …………………6分由(20)(13)A B --,,,得直线l 的方程为2y x =-. ………8分 (2)曲线2222440x mx y y m -+++-=,即圆22()(2)8x m y -++=,其圆心坐标为(2)G m -,,半径22r =,表示圆心在直线2y =-上,半径为22的动圆. ………………… 10分由于要求实数m 的最小值,由图可知,只须考虑0m <的情形. 设G 与直线l 相切于点T ,则由222=,得4m =±,………………… 12分当4m =-时,过点(42)G --,与直线l 垂直的直线l '的方程为60x y ++=,解方程组6020x y x y ++=⎧⎨--=⎩,得(24)T --,. ………………… 14分因为区域D 内的点的横坐标的最小值与最大值分别为12-,,所以切点T D ∉,由图可知当G 过点B 时,m 取得最小值,即22(1)(32)8m --+-+=,解得min 71m =--. ………………… 16分 (说明:若不说理由,直接由圆过点B 时,求得m 的最小值,扣4分) 20.(本小题满分16分)已知二次函数g (x )对任意实数x 都满足()()21121g x g x x x -+-=--,且()11g =-.令()19()ln (,0)28f xg x m x m x =+++∈>R .(1)求 g (x )的表达式;(2)若0x ∃>使()0f x ≤成立,求实数m 的取值范围;(3)设1e m <≤,()()(1)H x f x m x =-+,证明:对12[1]x x m ∀∈,,,恒有12|()()| 1.H x H x -<【解】 (1)设()2g x ax bx c =++,于是()()()()2211212212g x g x a x c x -+-=-+=--,所以121.a c ⎧=⎪⎨⎪=-⎩, 又()11g =-,则12b =-.所以()211122g x x x =--. ……………………4分(2)()2191()ln ln (0).282f xg x m x x m x m x =+++=+∈>R ,当m >0时,由对数函数性质,f (x )的值域为R ;当m =0时,2()02x f x =>对0x ∀>,()0f x >恒成立; ……………………6分当m <0时,由()0mf x x x x'=+=⇒=[]min ()2mf x f m ==-+这时, []min0()0e<0.20mm f x m m ⎧-+>⎪>⇔⇒-<⎨⎪<⎩, ……………………8分 所以若0x ∀>,()0f x >恒成立,则实数m 的取值范围是(e 0]-,. 故0x ∃>使()0f x ≤成立,实数m 的取值范围()(,e]0-∞-+∞,.……………… 10分(3)因为对[1]x m ∀∈,,(1)()()0x x m H x x --'=≤,所以()H x 在[1,]m 内单调递减.于是21211|()()|(1)()ln .22H x H x H H m m m m -≤-=--2121113|()()|1ln 1ln 0.2222H x H x m m m m m m -<⇐--<⇔--< ………………… 12分记13()ln (1e)22h m m m m m=--<≤, 则()221133111()022332h'm m m m =-+=-+>,所以函数13()ln 22h m m m m=--在(1e],是单调增函数, ………………… 14分 所以()()e 3e 1e 3()(e)1022e 2eh m h -+≤=--=<,故命题成立. ………………… 16分ABCD F O附加题部分21.【选做题】在A ,B ,C ,D 四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤. A .选修4—1 几何证明选讲如图,AB 是∈O 的直径,C 、F 为∈O 上的点,且CA 平分∈BAF ,过点C 作CD ∈AF 交AF 的延长线于点D . 求证:DC 是∈O 的切线. 【证明】连结OC ,所以∈OAC =∈OCA . 又因为CA 平分∈BAF ,所以∈OAC =∈F AC , 于是∈F AC =∈OCA ,所以OC //AD . 又因为CD ∈AF ,所以CD ∈OC ,故DC 是∈O 的切线. ………………… 10分 B .选修4—2 矩阵与变换变换T 是绕坐标原点逆时针旋转π2的旋转变换,求曲线22221x xy y -+=在变换T 作用下所得的曲线方程.【解】变换T 所对应变换矩阵为0110-⎡⎤=⎢⎥⎣⎦M ,设x y ⎡⎤⎢⎥⎣⎦是变换后图像上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦,则00x x y y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦M ,即00,,y x x y =-⎧⎨=⎩,代入220000221x x y y -+=, 即22221x xy y ++=,所以变换后的曲线方程为22221x xy y ++=. ………………… 10分C .选修4—4 参数方程与极坐标(本题满分10分)已知圆1O 和圆2O 的极坐标方程分别为2ρ=,2π22cos()24ρρθ--=. (1)把圆1O 和圆2O 的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.【解】(1)224ρρ=⇒=,所以224x y +=;因为()2π22cos24ρρθ--=,所以()2ππ22cos cos sin sin244ρρθθ-+=,所以222220x y x y +---=. ………5分(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为1x y +=. 化为极坐标方程为cos sin 1ρθρθ+=,即()2πsin 42ρθ+=. ………………… 10分D .选修4—5 不等式证明选讲(本题满分10分)已知0m a b >∈R ,,,求证:()22211a mb a mb mm++≤++.【解】因为0m >,所以10m +>,所以要证()22211a mb a mb mm ++≤++,即证222()(1)()a mb m a mb +≤++, 即证22(2)0m a ab b -+≥,即证2()0a b -≥,而2()0a b -≥显然成立,故()22211a mb a mb mm++≤++.…………… 10分【必做题】第22题、第23题,每题10分,共计20分.解答应写出文字说明、证明过程或演算步骤. 22.动点P 在x 轴与直线l :y =3之间的区域(含边界)上运动,且到点F (0,1)和直线l 的距离之和为4.(1)求点P 的轨迹C 的方程;(2)过点(0,1)Q -作曲线C 的切线,求所作的切线与曲线C 所围成区域的面积. 【解】(1)设P (x ,y ),根据题意,得22(1)x y +-+3-y =4,化简,得y =14x 2(y ≤3). …………………4分(2)设过Q 的直线方程为y =kx -1,代入抛物线方程,整理得x 2-4kx +4=0. 由∈=16k 2-16=0.解得k =±1.于是所求切线方程为y =±x -1(亦可用导数求得切线方程). 切点的坐标为(2,1),(-2,1). 由对称性知所求的区域的面积为S =220132(1)d .44x x x ⎡⎤--=⎢⎥⎣⎦⎰………………… 10分23.如图,直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,AB =BC =2,BB 1=3,D 为A 1C 1的中点,F 在线段AA 1上.(1)AF 为何值时,CF ∈平面B 1DF ?(2)设AF =1,求平面B 1CF 与平面ABC 所成的锐二面角的余弦值.B CC 1B 1A 1 FD【解】 (1)因为直三棱柱ABC -A 1B 1C 1中, BB 1∈面ABC ,∈ABC =π2. 以B 点为原点,BA 、BC 、BB 1分别为x 、y 、z 轴建立如图所示空间直角坐标系. 因为AC =2,∈ABC =90º,所以AB =BC =2, 从而B (0,0,0),A()200,,,C ()020,,,B 1(0,0,3),A 1()203,,,C 1()023,,,D22322⎛⎫ ⎪⎝⎭,,,E 23022⎛⎫ ⎪⎝⎭,,.所以()1223CA =-,,,设AF =x ,则F (2,0,x ),()()112222203022CF x B F x B D ⎛⎫=-=-= ⎪⎝⎭,,,,,,,,.1222(2)0022CF B D x ⋅=⋅+-⋅+⋅=,所以1.CF B D ⊥ 要使CF ∈平面B 1DF ,只需CF ∈B 1F .由1CF B F ⋅=2+x (x -3)=0,得x =1或x =2, 故当AF =1或2时,CF ∈平面B 1DF .……………… 5分 (2)由(1)知平面ABC 的法向量为n 1=(0,0,1).设平面B 1CF 的法向量为(,,)x y z =n ,则由100CF B F ⎧⋅=⎪⎨⋅=⎪⎩,,n n 得220220x y z x z ⎧-+=⎪⎨-=⎪⎩,,令z =1得()32212=,,n ,所以平面B 1CF 与平面ABC 所成的锐二面角的余弦值1301cos .1591212〈〉==⨯++,n n ………………… 10分AB C C 1B 1A 1FDxyz。

相关文档
最新文档