2012年第十一届小学“希望杯”全国数学邀请赛答案
第十一届小学“希望杯”全国数学邀请赛 六年级 第Ⅱ试试题 解析版

第十一届小学“希望杯”全国数学邀请赛六年级 第Ⅱ试试题一、填空题(每题5分,共60分)1.计算:()()()()()3243542012201120132012÷⨯÷⨯÷⨯⨯÷⨯÷= 解析:原式3452012201323420112012=⨯⨯⨯⨯⨯ 20132= 110062= 2.计算:11.5 3.1657.0512+++= 解析:原式111.5357.05612=+++ 1.58.257.05=+++16.8=3.地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。
某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点 千米。
(答案取整数) 解析:行程问题,类追及问题。
11.5×3.87÷(5.94-3.87)×5.94≈128km或用方程解,设距离是x ,列方程得:11.53.87 5.94x x -=。
整理得:5.94 3.8711.5 3.87 5.94x x -=⨯⨯,解得:128x =。
4.宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有 袋。
解析:分数应用题。
已售出的占全部的:33134=+; 超市购进的这批食盐有:342040%12004⎛⎫÷-= ⎪⎝⎭(袋)。
5.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。
如:27333,33327=⨯⨯++=+,即27是史密斯数。
那么,在4,32,58,65,94中,史密斯数有 个。
解析:(1)422,224,=⨯+=符合条件; (2)3222222,2222232=⨯⨯⨯⨯++++≠+,不符合条件。
希望杯第4-11届小学六年级全国数学竞赛题及解答

2006年第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×()=________。
2.900000-9=________×99999。
3.=________。
4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。
5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了______%。
6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是____。
9.将一个数A的小数点向右移动两位,得到数B。
那么B+A是B-A的________倍。
(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。
则三个面涂漆的小正方体有________块。
13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。
14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。
B的一个顶点在A的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。
第十一届小学“希望杯”全国数学邀请赛五年级第1试题目及答案

第十一届小学“希望杯”全国数学邀请赛五年级第1试1.计算:5.62×49-5.62×39+43.8= 。
12.规定a△b=a÷(a+b),那么2△1.8=。
53.若干个数的平均数是2013,增加一个数后,平均数仍是2013,则增加的这个数是。
4.如果三位数3□2是4的倍数,那么□里能填的最小的数是,最大的数是。
5.观察下图,?代表的数是。
1 3 5 7 9 8 6 4 22 4 6 8 7 5 33 5 7 6 44 6 5?6.小明在计算一个整除的除法算式时,不小心将除数18看成15,得到的商是24,则正确的商是。
7.将100块糖分成5份,使每一份的数量依次多2,那么最少的一份有糖块,最多的一份有糖块。
8.一件商品,对原价打九折和打七折后的售价相差5.4,那么此商品的原价是元。
9.有26个连续的自然数,如果前13个数的和是247,那么,后13个数的和是。
10.在三位数253,257,523,527中,质数是。
11.14个棱长为1的正方体在地面上堆成如图1所示的几何体,将它的表面(包括与地面接触部分)染成红色,那么红色部分的面积是。
12.如图2,若梯形ABCD的上底AD长16厘米,高BD长21厘米,并且BD=3DE,则三角形ADE的面积是平方厘米,梯形的下底BC长厘米。
13.小丽将一些巧克力装入大,小两种礼盒中的一种礼盒内,如果每个小礼盒装5块巧克力,那么剩下10块;如果每个大礼盒装8块巧克力,那么少2块。
已知小礼盒比大礼盒多3个,则这些巧克力共有块。
14.从甲地到乙地,小张走完全程用2个小时,小李走完全程用1个小时。
如果小张和小李同时从甲地出发去乙地,后来,在某一时刻,小张未走的路程恰好是小李未走的路程的2倍,那么此时他们走了分钟。
15.有16盒饼干,其中15盒的重量(含盒子)相同,另有1盒少了几块,如果用天平称,那么至少称次就一定能找出这盒饼干。
16.编号1~10的10名篮球运动员轮流进行三人传球训练,第1轮由编号(1,2,3)的队员训练,然后依次是编号(4,5,6)(7,8,9)(10,1,2),…的队员训练,当再次轮到编号(1,2,3)的队员时,将要进行的是第轮训练。
第9届至第11届“希望杯”全国数学邀请赛答案

目录四年级 (2)2011年第九届小学“希望杯”全国数学邀请赛四年级第1试试题答案 (2)2011年第九届小学“希望杯”全国数学邀请赛四年级第2试试题答案 (4)2012年第十届小学“希望杯”全国数学邀请赛四年级第1试试题答案 (8)2012年第十届小学“希望杯”全国数学邀请赛四年级第2试试题答案 (11)2013年第十一届小学“希望杯”全国数学邀请赛四年级第1试试题答案 (13)2013年第十一届小学“希望杯”全国数学邀请赛四年级第2试试题答案 (16)五年级 (18)2011年第九届小学“希望杯”全国数学邀请赛五年级第1试试题答案 (18)2011年第九届小学“希望杯”全国数学邀请赛五年级第2试试题答案 (19)2012年第十届小学“希望杯”全国数学邀请赛五年级第1试试题答案 (22)2012年第十届小学“希望杯”全国数学邀请赛五年级第2试试题答案 (25)2013年第十一届小学“希望杯”全国数学邀请赛五年级第1试试题答案 (27)2013年第十一届小学“希望杯”全国数学邀请赛五年级第2试试题答案 (31)六年级 (35)2011年第九届小学“希望杯”全国数学邀请赛六年级第1试试题答案 (35)2011年第九届小学“希望杯”全国数学邀请赛六年级第2试试题答案 (36)2012年第十届小学“希望杯”全国数学邀请赛六年级第1试试题答案 (42)2012年第十届小学“希望杯”全国数学邀请赛六年级第2试试题答案 (44)2013年第十一届小学“希望杯”全国数学邀请赛六年级第1试试题答案 (46)2013年第十一届小学“希望杯”全国数学邀请赛六年级第2试试题答案 (50)四年级2011年第九届小学“希望杯”全国数学邀请赛四年级第1试试题答案2011年第九届小学“希望杯”全国数学邀请赛四年级第2试试题答案2012年第十届小学“希望杯”全国数学邀请赛四年级第1试试题答案2012年第十届小学“希望杯”全国数学邀请赛四年级 第2试试题答案答案:1.【解析】后3个和比前3个和大9,则前3个和为9,所以6数为2,3,4,5,6,7,最大数为7。
希望杯第一届至第十届五年级试题与答案

10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是
。
8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =
,
BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=
。
10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是
第十一届小学“希望杯”全国数学邀请赛参考答案及评分标准六年级第2试

一、填空题(每小题 5 分,其中第 12 题,每空 2.5 分. ) 2 3 4 5 6 7 题号 1 128 1200 3 答案 1 4 1: 3 6 1006 16 2 5 8 40 9 0 10 34 11 36 12 696 : 880
1
(*) 为了叙述方便,不妨给题中正方体编号,如图.
小 希 学 பைடு நூலகம் 学 赛 希 望 ② ③ 赛
在正方体①中, 与“学”相邻的分别是“小”和“希” ; (1) 在正方体③中, 与“学”相邻的分别是“望”和“赛” , (2) 由(1) 、 (2)及(*)可知, 与“学”相对的是“杯” . (6 分) 在正方体①中, 与“希”相邻的分别是“小”和“学” ; 在正方体②中, 与“希”相邻的是“赛” , 所以与“希”相对的只可能是“望”或“杯” , (12 分) 又“杯”与“学”相对, 所以与“希”相对的只能是“望” , 故与“望”相对的只能是“希” . 综上知, “希” , “望” , “杯”三个汉字的对面依次是“望” , “希” , “学” .
二、解答题 13.设快艇顺流行驶 x 小时后到达 C ,则从 C 驶到 B 需要 10 x 小时,依题意,得
40 10 x 40 10 10 x 20 .
解得 (10 分) x4. 所以 B 、 C 相距 . (15 分) 40 10 4 20 180 (千米) 14.假设甲是乙的 2 倍,乙是丙的 3 倍,且将丙的糖数看作“1 份” ,则可将 200 块糖分为 , 1 3 6 10 (份) 每份糖有 , 200 10 20 (块) 又由题意,知甲比乙的 2 倍还要多,乙比丙的 3 倍还要多,所以丙的糖数小于 20. (7 分) 题目要求:丙的糖最多,甲的糖最少,即要求乙丙的糖数尽可能多. 不妨设丙有糖 19 块,则 甲、乙共有糖 200 19 181 (块) , 已知“甲比乙的 2 倍还要多” , 181 3 60……1 , 所以乙的糖数最多是 60 块,此时,甲的糖数是 , 181 60 121 (块) 当丙有 19 块糖,乙有 60 块糖时,乙丙的糖数都取了最大值,且有 60 19 3 , 121 60 2 ,符合题意. 所以甲最少有 121 块糖,丙最多有 19 块糖. (15 分) 15.欢欢、乐乐的得票比是 3: 2 3,乐乐、洋洋的得票比是 6 : 5 , 由比例的性质,欢欢、乐乐的得票比 3:2 9:6 则欢欢、乐乐、洋洋的得票比是 9 : 6 : 5 , (6 分) 由题设,知欢欢、乐乐、洋洋的得票总数是非所以欢欢得了 9 200 90 (票) ; (9 分) 965 乐乐得了 6 200 60 (票) ; (12 分) 965 洋洋得了 5 200 50 (票) . (15 分) 965 16.在正方体中,与一个面相邻的面(两个面有一条公共边)有 4 个,相对的面有 1 个.
希望杯十一届到十四届试题及答案剖析

第十一届小学“希望杯”全国数学邀请赛六年级第1试试题1.计算:21130%1537⎛⎫÷⨯+ ⎪⎝⎭=________.2.计算:137101100110001248++=________.3.建筑公司建一条隧道.按原定速度建成13时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道.若没有新设备,按原定速度建完,则共需________天.4.如图是根据鸡蛋的三个组成部分的重量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的________%;一枚重60克的鸡蛋中,最接近32克的组成部分是________.5.如图,边长为12cm 的正方形与直径为16cm 的圆部分重叠(圏心是正方形的一个顶点),用1S ,2S 分别表示两块空白部分的面积,则12S S -=________2cm .(圆周率π取3)6.定义运算“⊕”: ()()(),1,a a b a b a b b a b>⎧⎪⊕⎨⎪<⎩若若若==,例如:3.52 3.5⊕=,1 1.2 1.2⊕=,771⊕=,则711.10.13340.85⊕-⊕⊕=________. 7.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m ;将绳子三折后垂到井底,绳子的一端高出井口2m .则绳长 ________m ,井深________m .8.张阿姨和李阿姨每月的工资相同.张阿姨每月把工资的30%存入银行,其余的钱用于日常开支.李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行.这样过了一年,李阿姨发现, 她12个月存入银行的总额比张阿姨少了5880元.则李阿姨的月工资是________元.9.用底面内半径和高分别是12cm ,20cm 的空心圆锥和空心圆柱各一个组合成如图所示竖放 的容器.在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm .若将这个容器倒立,则沙子的高度是________cm .10.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来的两位教是________.11.A ,B 两校的男、女生人数的比分别是8:7和30:31,两校合并后,男、女生人数的比是27:26.则A ,B 两校合并前人数的比是________ .12.有2013名学生参加数学竞赛,共有20道竞赛题.每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分.那么,所有参赛学生得分的总和是________数.(填“奇”或“偶’,)13.从12点开始,经过________分钟,时针与分针第一次成90︒角;12点之后,时针与分针第二次成90︒角的时刻是________.14.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多则向外抽水的抽水机需________台.15.分子与分母的和是2013的最简真分数有________个.15.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是 16.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56.则此长方体的体积是________.17.图中阴影部分的两段圆孤所对应的圆心分别为点A 和点C ,4m AE =,点B 是AE 的中点,那么,阴影部分的周长是________m ,面积是________2m .(圆周率π取3)18.某次数学竞赛,甲、乙、丙3人中只有一人获奖.甲说我获奖了乙说,我没获奖丙说:“甲没获奖他们的话中只有一句是其话,则获奖的是________.19.某小学的六年级有学生152名,从中选男生人数的111和5名女生去参加演出,该年级剩下的男、女生人数恰好相等.则该小学的六年级共有男生________名.20.甲、乙两人分别从A 、B 两地同时出发,相向而行,两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A 地时,甲距离B 地30km ,那么A 、B 两地相距________km .附加题1.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共25牧,总值为0.60元.则5分的硬币最多有 ________枚.2.A 、B 、C 、D 四个箱子中分别装有一些小球,现将A 箱中的部分小球按如下要求转移到其他三个箱子中;该箱中原有几个小球,就再放入几个小球.此后,按照同样的方法依次把B 、C 、D 箱中的小球转移到其他箱子中,此时,四个箱子中都各有16个中球,那么开始时装有小球最多的是________箱,其中装有小球________个.第十一届小学“希望杯4全国数学邀请赛六年级第2试试题一、填空题1.计算:()()()()()3243542012201120132012÷⨯÷⨯÷⨯⨯÷⨯÷=________.2.计算:11.5 3.1657.0512+++=________. 3.地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒.某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点________千米.(答案取整数)4.宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出420袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食品盐有________袋.5.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数” .如:27333⨯⨯=,33327+++=,即27是史密斯数.那么,在4,32,58,65,94中,史密斯数有________个.6.如图,三个同心圆分别被直径AB ,CD ,EF ,GH 八等份.那么,图中阴影部分面积与非阴影部分面积之比是________.7.有两列火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶, 从两车车头相遇到车尾分开需要________秒.8.老师让小明在400米的环形跑道上按照如下的规律插上一些旗子做标记,从起点开始,沿着 跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止.则小明要准备________面旗子.9.2013201320132013201312345++++除以5,余数是________.(注:2013a 表示2013个a 相乘)10.从1开始的n 个连续的自然数,如果去掉其中的一个数后,余下各数的平均数是1537,那么去掉的数是________.11.若A 、B 、C 三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A ,6个B ,20个C ,则学生最多有________人.12.如图,从棱长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是________,体积是________.(π取3)二、解答题13.快艇从A 码头出发,沿河顺流而下,途经B 码头后继续顺流驶向C 码头,到达C 码头后立即反向驶回到B 码头,共用10小时.若相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B 、C 间的距离.14.王老师将200块糖分给甲、乙、丙三个小朋友,甲的糖比乙的2倍还要多,乙的糖比丙的3倍还要多,那么甲最少有多少块糖?丙最多有多少块糖?15.欢欢、乐乐、洋洋参加希望之星决赛有200位评委为他们投了支持票,每位评委只能投一 票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?16.如图,3个相同的正方体堆成一个“品”字,每个正方体的六个面上都分别标有“小”,“学”, 希”,“望”,“杯”,“赛”六个汉字,并且每个正方体上的汉字的排列顺序完全相同.问正方体中,“希”,“望”,“杯”三个汉字的对面分别是哪个汉字?写出推理过程.第十二届小学“希望杯”全国数学邀请赛六年级第1试试题1.x 比300少30%,y 比x 多30%,则x y +=________.2.如果,,那么,所表示的图形可以是下图中的________.(填序号)3.计算:111114115++++++=________.4.一根绳子,第一次剪去全长的13,第二次剪去余下部分的30%,两次剪去的部分比余下的部分多0.4米,则这根绳子原来长________米.5.根据图中的信息可知,这本故事书有________页.6.已知三个分数的和是1011,并且它们的分母相同,分子的比是2:3:4,那么,这三个分数中最大的是________.7.从12点整开始,至少经过________分钟,时针和分针都与12点整时所在位置的夹角相等(如图中的12∠∠=).8.若三个不同的质数的和是53,则这样的三个质数有________组.9.被11除余7,被7除余5,并且不大于200的所有自然数的和是________.10.在救灾捐款中,某公司有110的人各捐款200元,有34的人各捐款100元,其余人各捐款50元,则该公司人均捐款________元.11.如图,圆P 的直径OA 是圆O 的半径,OA BC ,10OA =,则阴影部分的面积是________.(π取3)12.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置,在这个过程中,圆面覆盖过的区域(阴影部分)的面积是________平方厘米.(π取3)13.如图,一个长方形的长和宽的比是5:3.如果长方形的长减少5厘米,宽增加3厘米,那么,这个长方形就变成一个正方形.则原长方形的面积是________平方厘米.14.一次智力测试由5道判断对错的题目组成,答对一题得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么,她得60分或60分以上的概率是________%.15.如图,一个底面直径是10厘米的因柱形容器装满水,先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米,则圆锥形铁块高________厘米.16.甲挖一条水渠,第一天挖了水渠总长度的14,第二天挖了剩下水渠长度的521,第三天挖了未挖水渠长度的12,第四天挖完最后剩下的100米水渠.则这条水渠长________米. 17.用1024个棱长是1的小正方体组成体积是1024的一个米方体,将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有________个.18.如图,已知2AB =,3BG =,4GE =,5ED =,BCG △和EFG △的面积和是24,AGF △和CDG △的面积和是51,则ABC △与DEF △的面积和是________.19.甲、乙两人分别从A 、B 两地同时出发,相向而行,甲、乙的速度比是5 : 3,两人相遇后继续行进,甲到达B 地、乙到达A 地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A 、B 两地相距________千米.20.在1,2,3,…,50中,任取10个连续的数,则其中恰有3个质数的概率是________.第十二届小学“希望杯”全国数学邀请赛六年级第2试试题一、填空题1.若0.142857 1.5x +=,则x =________.2.同一款遥控飞机,网上售价为300元,比星星玩具店的售价低20%,则这款遥控飞机在星星玩具店的售价是________元.3.如图所示的老式自行车,前轮的半径是后轮半径的2倍.当前轮转10圈时,后轮转________圈.4.有两组数,第一组数的平均数是15,第二组数的平均数是21.如果这两组数中所有数的平均数是20,那么,第一组数的个数与第二组数的个数的比是________.5.A 、B 、C 三个分数,它们的分子和分母都是自然数,并且分子的比是3:2:1,分母的比是2:3:4,三个分数的和是2960,则A B C --=________.6.如图,将长方形ABCD 沿线段DE 翻折,得到六边形EBCFGD ,若20GDF ∠︒=,则AED ∠=________°.7.如图,在平行四边形ABCD 中,点E 是BC 的中点,2DF FC =.若阴影部分的面积是10,则平行四边形ABCD 的面积是________.8.如图,直角ABC∠︒ABC=.以点B为中心,将ABC△顺时BC=,60△的斜边10AB=,5针旋转120︒,点A、C分别到达点E、D.则AC边扫过的面积(即图中阴影部分的面积)是________.(π取3)9.参加体操、武术、钢琴、书法四个兴趣小组的学生中,每人最多可以参加两个兴趣小组.为了保证所选兴趣小组的情况完全相同的学生不少于6人,则参加兴趣小组的学生至少有________.10.如图,在正六边形ABCDEF中,若ACE△的面积为18,则三个阴影部分的面积和为________.11.小红在上午将近11点时出家门,这时挂钟的时针和分针重合,电天下午将近5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上).则小红共出去了________小时.12.甲、乙二人分别从相距10千米的A、B两地出发,相向而行.若同时出发.他们将在距A、B中点1千米处相遇.若甲晚出发5分钟,则他们将在A、B中点处相遇,此时甲行了________分钟.二、解答题13.超市购进砂糖桔500千克,每千克进价是4.80元,预计重量损耗为10%.若希望销售这批砂糖桔获利20%,则每千克砂糖桔的零售价应定为多少元?14.将边长是7的大正方形分割为边长分别是1,或2,或3的小正方形,其中至少有多少个边长是1的正方形?在图中画出你的分割方法.答:至少有________个边长是1的正方形.(不用写出推算过程)15.如图,ABC△是边长为108厘米的等边三角形,虫子甲和乙分别从A点和C点同时出发,沿△的边爬行,甲顺时针爬行,乙逆时针爬行,速度比是4:5.相遇后,甲在相遇点休息10秒钟,ABC然后继续以原来的速度沿原方向爬行;乙不休息,速度提高20%,仍沿原方向爬行,第二次恰好在BC的中点相遇.求开始时,虫子甲和乙的爬行速度.16.根据图中的信息,求满足条件的五位数的个数.第十三届小学“希望杯”全国数学邀请赛六年级第1试试题1.计算:111112481632++++=________.2.将13999化成小数,小数部分第2015位上的数字是________.3.若四位数27AB 能被13整除,则两位数AB 的最大值是________. 4.若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了________%.5.若111111120112012201320142015a a <<+++++,则自然数a =________. 6.定义:符号{}x 表示x 的小数部分,如:{}3.140.14=,{}0.50.5=.那么,2015315412345⎧⎫⎧⎫⎧⎫++⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭=________.(结果用小数表示) 7.甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4. 已知丙制作了20件,则甲制作了________件.8.已知9x ,15y ,14z 都是最简真分数,并且它们的乘积是16,则x y z ++=________.9.如图,有3只老鼠发现一堆花生米,商量好第二天来平分.第二天,第一只老鼠最早来到,它发现花生米无法平分,就吃了一粒,余下的恰好可以分成3份,它拿了自己的一份走了.第二只、第三只老鼠随后依次来到,遇到同样的问题,也采取了同样的方法,都是吃掉一粒后,把花生米分成3份,拿走其中的一份.那么,这堆花生米至少有________粒.10.如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作14圆,若图中 的两个阴影部分的面积相等,则此长方形的长与宽的比值是________.11.六年级甲班的女生人数是男生人数的109倍.新年联欢会中,25的女生和13的男生参加了演出,则参加演出的人数占全班人数的________.12.有80颗珠子.5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差________颗.13.如图,分别以B,C圆心的两个半圆的半径都是1厘米,则阴影部分的周长是________厘米.(π取3)14.一个100升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出与第一次所倒出体积相等的液体,再注满水,此时容器内水的体积是纯酒精体积的3倍,则第一次倒出的纯酒精是________升.15.如图,甲,乙两个圆柱形容器的底面半後分别是2厘米和3厘米.已知甲容器装满水,乙容器是空的.现将甲容器中的水全部倒入乙容器,水面的高比甲容器高的23少6厘米,则甲容器的高是________厘米.16.如图,《经典童话》一书共有382页,则这本书的页码中数字0共有________个.17.如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米):1,2,3,4,5,6,7,则图中阴影部分的面积是________平方米.(π取3)18.将一个棱长为6的正方体切割成若千个相同的棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的2倍,则切割成的小正方体的棱长是________.19.有长度分别是1厘米,2厘米,3厘米,4厘米,5厘米的小木棍各若干根,从中任取3根组成一个三角形,则最多可以组成不同的三角形________个.20.一条路有上坡、平路、下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图7.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了________小时.1.816第十三届小学“希望杯”全国数学邀请赛六年级第2试试题一、填空题1.计算:11112123123410+++++++++++,得________. 2.某商品单价先上调后,再下降20%才能降回原价.该商品单价上调了________ %.3.请你想好一个数,将它加5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是________.4.若111315242412n +++>(n 是大于0的自然数),则满足题意的n 的值最小是________.5.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有________页.6.2015减去它的12,再减去余下的13,再减去余下的14,…,最后一次减去余下的12015,最后得到的数是________.7.已知两位数ab 与ba 的比是5:6,则ab =________.8.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,则第4个角上的小长方形的面积等于________.9.某项工程,开始由6人用35天完成了全部工程的13,此后,增加了6人一起来完成这项工程.则完成这项工程共用________天.10.将1至2015这2015个自然数依次写出,得到一个多位数12345678920142015,这个多位 数除以9,余数是________ .11.如图,向装有13水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球, 且水面上升到容器高度的25处,则圆柱形容器最多可以装水________立方分米.(π取3.14)12.王老师开车从家出发去A 地,去时,前12的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前13的路程以50千米/小时的速度行驶,余下的路程行驶速度提高32%,结果返回时比去时少用31分钟,则王老师家与A 地相距________千米.二、解答题13.二进制是计算技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下: ()()2102101011202125⨯+⨯+⨯==;()()4321021011011121202121227⨯+⨯+⨯+⨯+⨯==;()()6543210210111011112121202121212119⨯+⨯+⨯+⨯+⨯+⨯+⨯==;()8765432102111101111121212120212121212⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()10495=那么,将二进制数11111011111转化为十进制数,是多少? (注:22222n n ⨯⨯⨯个=,021=)14.如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A 、B 、C 为某传动机械的一部分,A 匀速转动后带动B 匀速转动,而后带动C 勾速转动,请问:(1)当A 勾速顺时针转动,C 是顺时针转动还是逆时针转动? (2)当A 转动一圈时,C 转动了几圈?15.一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的103倍,求切割成的小正方体中,棱长为1的小正方体的个数.16.如图,点M 、N 分别是边长为4米的正方形ABCD 的一组对边AD 、BC 的中点,P 、Q 两个动点同时从M 出发,P 沿正方形的边逆时针方向运动,速度是1米/秒;Q 沿正方形的边顺时针方向运动,速度是2米/秒.求:(1)第1秒时NPQ △的面积; (2)第15秒时NPQ △妁面积; (3)第2015秒时NPQ △的面积.题号 1 23 4 5 6 7 8答案 911 25 33100 1 45 20 题号 9101112131415 16答案700 188.43302015顺时针;356,24,42,或606;6;6。
希望杯 数学答案

40
3
题号
16
17
18
19
20
答案
11
2;8
11;8
7
6030
题号
附加题1
附加题2
答案
58
60
评分标准:第1~20题,每题6分(其中,第4,7,12,17,18题,每空3分);附加题,每题10分。
六年级
题号
1
2
3
4
5
答案
180
15;蛋白
48
题号
6
7
8
9
10
答案
2
42;12
7000
79
题号
11
12
13
14
15
答案
45:61
奇
;12点49 分
1
600
题号
16
17
18
19
20
答案
64
13;7
乙
77
90
题号
附加题1
附加题2
答案
8
A;33
评分标准:第1~20题,每题6分(其中,第4,7,13,17题,每空3分);
附加题,每题10分(其中,附加题2,每空5分)。
题号
附加题1
附加题2
答案
10067
21
评分标准:第1~20题,每题6分(其中,第6,10,16题,每空3分;第9,19题,每空2分);
附加题,每题10分。
五年级
题号
1
2
3
4
5
答案
100
0.55
2013
1;9
5
题号
6
7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
希望杯四年级答案
2012年第十届小学“希望杯”
1.解析:左走15,右走23,相当于右走23-15=8
2.解析:长方形,梯形,三角形。
考虑所有情况即可
3.解析:最大三位数999,最小三位数100,最大两位数99,最小两位数,10 a+b最大为999+100=1098,最小为100+10=110
a-b最大为999-10=989,最小为100-99=1
4.解析:一共至少需要96×4=384分,已经得了95+97+94=286分,还差384-286=98分
5.解析:57÷7=8…….1,相当于+1天,周五过1天到周六
6.解析:看个位知道B=5或者0,A只能为1,所以只能为15×5=75或者10×5=50
7.解析:枚举即可
5+5+5+5+5+5;5+5+5+5+5+10,5+5+5+5+10+10;5+5+5+10+10+10;5+5+10+10+10+10;5+10+10+10+10+10
8.解析:8=5+3=6+2=7+1,所以是1,2,3
9.解析:41,43,47;97
10.解析:20;1。
四周小正方形每个里有4个共16个,四周还有4个,共16+4=20;
11.解析:互不相交会成为4部分,两两相交找规律得到1+(1+2+3)=7
12.解析:1+2+4+8+16+32+64+128+5=260 甲1 4 16 64 5 乙2 8 32 128
13.解析:只用给1.5杯的钱=13.5元,13.5÷1.5=9
14.解析:借2个来,就是4的倍数,6的倍数,8的倍数,也是24的倍数
120到150中24的倍数有144,还2个还剩144-2=142个
15.解析:2+4+6+8+..+90=2070,多了58
16.解析:6,找规律
8 6 3 1; 7 5 2 4; 6 4 5 3;5 3 4 6;
4 6 3 5; 3
5
6 4 ;6 4 5 3;5 3 4 6
然后四个一周期50÷4=12……2;第二次变成6 4 5 3,;A中是6
17.解析:周长可以看出DE+DC+BE+BC,而DE=AD=BC=12,BE=DC=AB=14,
周长是12+14+12+14=52
18.解析:小王可以开10+30×2=70次;所以小李可以开70次;70-14=56,奖励了56÷4=14次
19.解析:2012年1月11到3月11过了31+29=60天,刚好一个小时,所以到6点13分
20.解析:AB:CD:EF A只能为1,或者2
① A=2,B只能为1,3有2种可能,C,E必须在1-5,有3×2种,剩下D,F有2
×1种
共2×3×2×2×1=24种
② A=1,C,E必须在1-5,有4×3种,剩下B,D,F有3×2×1种
共1×4×3×3×2×1=72种
一共有24+72=96种。