半导体激光器发散角

合集下载

半导体激光器的工作原理及应用

半导体激光器的工作原理及应用

半导体激光器的工作原理及应用摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。

由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。

从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,是半导体激光器开启了激光应用发展的新纪元。

关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器The working principle of semiconductor lasers and applications ABSTRACT: The machanism of lasing by semiconductor laser,which requires set up specially designated reverse of beam of particles among energy stages,and appropriate optical syntonic coelenteronAs the specificity of structure from semiconductor and moving electrons.something interesting happens.On the one hand,the specific process in producing lase,on the other hand,the beam of light has unique advantages。

As the reasons above,we can easily found it all quartersof the society.From homojunction to heterojunction,from informatics to power,the advantages of laser are in evidence,the wide spectrum,the semiconductor open the epoch in the process of laser. Key worlds: stimulated radiation; optical field; homojunction; heterojunction; high-power semiconductor laser 0 前言半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。

激光二极管的特性

激光二极管的特性

激光二极管的特性激光二极管的特性1、伏安特性半导体激光器是半导体二极管,具有单向导电性,其伏安特性与二极管相同。

反向电阻大于正向电阻,可以通过用万用表测正反向电阻确定半导体激光二极管的极性及检查它的PN结好坏。

但在测量时必须用1k以下的档,用大量程档时,激光器二极管的电流太大,容易烧坏。

2、P―I特性激光二极管的出射光功率P与注入电流I的关系曲线称为P-I曲线。

注入电流小于阈值电流Ith时,激光器的输出功率P很小,为自发辐射的荧光,荧光的输出功率随注入电流的增加而缓慢增加。

注入电流大于Ith时,输出功率P随注入电流的增加而急剧增加,这时P―I曲线基本上是线性的。

当I再增大时,P―I曲线开始弯曲呈非线性,这是由于随着注入电流的增大,使结温上升,导致P增加的速度减慢。

判断阈值电流的方法:在P―I特性曲线中,激光输出段曲线的向下延长线与电流轴的交点为激光二极管的阈值电流。

3、光谱特性激光二极管的发射光谱由两个因素决定:谐振腔的参数,有源介质的增益曲线。

腔长L确定纵模间隔,宽W和高H决定横模性质。

如果W和H足够小,将只有单横模TEM00存在。

多模激光二极管在其中心波长附近呈现出多个峰值的光谱输出。

单纵模激光器只有一个峰值。

工作在阈值以上的1mm腔长的增益导引LD的典型发射光谱激光二极管是单模或多模还与泵浦电流有关。

折射率导引LD,在泵浦电流较小、输出光功率较小时为多模输出;在电流较大、输出光功率较大时则变为单模输出。

而增益导引LD,即使在高电流工作下仍为多模。

折射率导引激光器光谱随光功率的变化发射光谱随注入电流而变化。

IIt 发射激光,光谱突然变窄。

因此,从激光二极管发射光谱图上可以确定阈值电流。

当注入电流低于阈值电流时光谱很宽,当注入电流达到阈值电流时,光谱突然变窄,出现明显的峰值,此时的电流就是阈值电流。

IIt 激光辐射4、温度特性半导体激光器的阈值电流随温度的升高而增加,变化关系可表示为:T/T0) Ith(T)?Aexp(式中T0是衡量阈值电流Ith对温度变化敏感程度的参数――叫特征温度,取决于器件的材料和结构等因素,T0值越大,表示Ith对温度变化越不敏感,器件的温度特性越好。

半导体激光器的远场分布特性

半导体激光器的远场分布特性

如上图所示,则远场光强强度可表示为:
I ( X ,Y , Z ) 2 u 0 A p
A z r
2
2 2
2 2 X
2 y exp 2 2
2

q,
2
p r k 4q r
近年来高功率激光器在军事工业医学等方面有着重要的应用前景如在强激光武器激光引信激光制导跟踪测距精密机械加工光储存光泵浦激光化学激光医学等都已广泛的应用
半导体激光器的远场分布特性
20084560 陈然然
摘要: 由于半导体激光器输出光束的不对称性, 使得它在许多应用过 程中必须采用特殊的光学系统进行光束整形。 在设计光学系统的光学 元件及进行光学耦合时需要了解激光器的远场特性。 通过用量子阱激 光器的解理面上的边界条件解亥姆霍兹方程 , 获得关于远场强度分 布、光束散角, 并用计算机给出各种理论曲线及数据。用自行设计制 作的测试装置测量, 获得激光器的远场分布曲线给出了测试数据。计 算机给出的理论远场分布曲线与实验测试获得的远场分布曲线完全 一致。 引言:近年来, 高功率激光器在军事、工业、医学等方面有着重要的 应用前景, 如在强激光武器、激光引信、激光制导、跟踪、测距、精 密机械加工、光储存、光泵浦、激光化学、激光医学等都已广泛的应 用。但在这些应用过程中, 由于半导体激光器的波导结构特点使输出 光束的发散角很大 , 几乎所有激光器的输出光束都必须通过特殊的 光学系统准直。因此 , 研究半导体激光器光束远场特性具有重要意 义。 一:半导体激光器的远场分布
半导体激光器置于旋转台中心,去掉准直透镜,使半导体激光器的光发散, 并平行与旋转台面。光功率指示仪探头与半导体激光器 LD 的距离为 L,当旋转 台处于不同角度时,记下光功率指示仪所测到的输出值,做出在不同的注入半导 体激光器电流时,其输出值随角度变化的曲线。将半导体激光器旋转 90°再测 量侧横场发散角。 在实验过程中, 由于现场条件所限, 与理论情况有一定的偏差。

半导体激光器ppt课件

半导体激光器ppt课件
Ⅱ、与同质结激光器相比,异质结激光器具有以下优点: 1)阈值电流低,同时阈值电流随温度的变化小; 2)由于界面处的折射率差异,光子被限制在作用区内; 3)能实现室温下的连续振荡。
应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能

同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。

激光器的种类及性能参数总结

激光器的种类及性能参数总结

激光器的种类及性能参数总结半导体激光器——用半导体材料作为工作物质的一类激光器中文名称:半导体激光器英文名称:semiconductor laser定义1:用一定的半导体材料作为工作物质来产生激光的器件。

所属学科:测绘学(一级学科);测绘仪器(二级学科)定义2:以半导体材料为工作物质的激光器。

所属学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科)定义3:一种利用半导体材料PN结制造的激光器。

所属学科:通信科技(一级学科);光纤传输与接入(二级学科)半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。

(1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。

(2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。

(3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。

(4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15˚~40˚左右。

(5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6˚~ 10˚左右。

(6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。

工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。

一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。

准分子激光器——以准分子为工作物质的一类气体激光器件。

中文名称:准分子激光器英文名称:excimer laser定义:以准分子为工作物质的激光器。

所属学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科)在医学领域中使用的激光器种类非常多,常用于眼科治疗的主要有红宝石(rudy)激光、氩离子(Ar+)激光、氪离子(Kr+)、染料(dye)激光、掺钕钇铝石榴石(Nd:Y AG)激光和氟化氩(ArF)准分子激光等固体、气体和液体的激光器,用连续的、脉冲的和调Q的方式,治疗眼底部色素膜和屈光间质等部位的数十种有关眼部疾病。

半导体激光器(PDF)

半导体激光器(PDF)

半导体激光器(济南福来斯光电技术有限公司,**************)1 前言当前人类正进入信息和智能化的时代。

以光电子、微电子为基础的通信和网络技术已成为高技术的核心,正在深刻地影响着国民经济、国防建设的各个领域,成为世界发达国家竞相发展的高新技术,其中以半导体激光器起着举足轻重的作用。

20世纪60年代到20世纪70年代[1-5]经过各国科学家的不懈努力,实现了半导体激光器的室温、连续激射后,开创了半导体激光器的发展的新时期。

以其转换效率高、体积小、重量轻、寿命长、能直接调制等特点成为信息技术的关键器件。

其发展速度之快、应用范围之广、波长覆盖范围之宽都是任何其它类型激光器所不能比拟的。

目前已经是光纤通信、光纤传感、光盘信息存贮、激光打印和印刷、激光分子光谱学以及固体激光器泵浦(DPSSL)和光纤放大器(SLA)泵浦中不可替代的光源。

随着它的输出功率和相干性的不断提高,它也在材料加工、精密测量等方面一展宏图,显示出巨大潜力,正在迅速占领过去由气体和固体激光器占领的一些市场。

据统计国内半导体激光器的市场占有率正逐年递增,从90年代初期的不足10%到目前80%以上。

对于半导体激光器在任何领域的应用,总希望其能长期可靠的工作,例如海底通信系统由于维修更换成本很高,因此要求器件可靠工作20年以上[6],而影响维修周期长短的关键器件就是半导体激光器的工作寿命。

因此从90年代初发达国家开始对半导体激光器的可靠性和寿命测试方法开始研究。

这些研究归纳起来有两种:第一、加速寿命测量法:如热应力加速测量法[7-9]、电应力加速测量法(包括大电流加速[10]和静电冲击[11])等等。

第二、激光器参数测量法[12]:如电导数测量法、热阻测量法。

确定器件的可靠性和寿命原则上应在特定的工作条件下(电流、功率、温度等)对器件进行考核,直至器件失效。

对于高可靠性的电子元器件进行长时间的寿命试验,无论从成本还是时间上来看,都是不合算的,甚至是不可能的。

半导体激光器光学特性测量实验报告

半导体激光器光学特性测量实验报告

半导体激光器光学特性测量实验学号:姓名:班级:日期:【摘要】激光器的三个基本组成部分是:增益介质、谐振腔、激励能源。

本实验通过测量半导体激光器的输出特性、偏振度和光谱特性,进一步了解半导体激光器的发光原理,并掌握半导体激光器性能的测试方法。

【关键词】半导体激光器、偏振度、阈值、光谱特性一、实验背景激光是在有理论准备和实际需要的背景下应运而生的。

光电子器件和技术是当今和未来高技术的基础之一。

受激辐射的概念是爱因斯坦于1916年在推导普朗克的黑体辐射公式时提出来的, 从理论上预言了原子发生受激辐射的可能性,这是激光的理论基础。

直到1960年激光才被首次成功制造(红宝石激光器)。

半导体激光(Semiconductor laser)在1962年被成功发明,在1970年实现室温下连续输出。

半导体激光器的结构从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式,制作方法从扩散法发展到液相外延(LPE)、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE) 等多种工艺。

由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制及价格低廉等优点, 使得它目前在各个领域中应用非常广泛。

半导体激光器已经成功地用于光通讯和光学唱片系统,还可以作为红外高分辨率光谱仪光源,用于大气检测和同位素分离等;同时半导体激光器成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。

半导体激光器与调频器、放大器集成在一起的集成光路将进一步促进光通讯和光计算机的发展。

半导体激光器主要发展方向有两类,一类是以传递信息为目的的信息型激光器,另一类是以提高光功率为目的的功率型激光器。

本实验旨在使学生掌握半导体激光器的基本原理和光学特性,利用光功率探测仪和CCD光学多道分析器,测量可见光半导体激光器输出特性、不同方向的发散角、偏振度,以及光谱特性,并熟悉光路的耦合调节及CCD光学多道分析器等现代光学分析仪器的使用,同时进一步了解半导体激光器在光电子领域的广泛应用。

浅谈半导体激光器

浅谈半导体激光器

浅谈半导体激光器【摘要】半导体激光器具有体积小、寿命长和可采用简单注入电流的方式等优点,目前的半导体激光器已经可以做到单模输出,所以平行性、单色性等性能大幅提升,在实际应用中成为最重要的一类激光器。

【关键词】半导体激光器;平行性;谐振腔;基横模一、半导体激光器的种类从半导体激光器的结构来看,可以分为边发射激光器和表面发射激光器。

已经大量投入商业应用的边发射激光器有法布里一帕罗激光器和DFB(分布反馈)激光器等不同种类,表面发射激光器有垂直腔表面发射激光器(VCSELs)和广面激光器等不同种类。

二、半导体激光的发射半导体激光器以半导体材料为工作物质,其能带结构由价带、禁带和导带组成。

热平衡状态下,电子基本处于价带中,导带几乎是空的。

给予某个电子适当的能量,电子就能进入导带,而在价带中留下一个空穴,如果有一个能量适当的光子入射到半导体介质中,这个处于导带中的电子便会在光子作用下跃迁到价带中空穴占据的能级上而与空穴复合,同时发出一个与入射光子状态相同的受激辐射光子。

半导体激光器就是利用导带中的电子和价带中的空穴复合来产生受激辐射的。

为使半导体激光器具有光放大能力,就要求半导体激光器发生粒子数反转。

在热平衡状态被破坏的情况下,导带的准费米能级与价带的准费米能级之间的距离大于介质的禁带宽度,从而使半导体介质具有增益作用。

而且,要使半导体激光器产生激光,还必须考虑衰减,即只有在增益等于或大干衰减的情况下,激光器才能输出激光。

激光器的衰减主要包括因发生受激辐射而减少的载流子(即处于激发态的粒子)数、少量自发辐射而减少的载流子数和与介质发生非辐射碰撞而减少的载流子数等。

所以一般半导体激光器需要一定大小的注入电流才能发出激光,这种电流叫做阈值电流。

一般激光器都有一个谐振腔,谐振腔通过迫使光子在介质中往复传播而减短工作物质长度,并且可以选择激光器的输出模式和调整光向。

但是随着谐振腔的介入,相应的几何偏折损耗、衍射损耗、腔镜反射不完全引起的损耗(包括镜的吸收、散射以及透射)和材料中的非激活吸收、散射等损耗因素也引进来了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档