应用时间序列分析
时间序列分析在经济领域中的应用

时间序列分析在经济领域中的应用随着经济全球化和市场化的进程,经济领域的数据越来越多样化和庞杂化,如何从中获取有用的信息和趋势成为了经济学家们的一大挑战。
时间序列分析作为一种重要的经济数据分析方法,正是在这一背景下得到了广泛的应用和推广。
本文将探讨时间序列分析在经济领域中的应用和价值,以及其对经济发展的影响。
一、时间序列分析的基本原理时间序列分析是基于统计学和数学模型的一种数据分析方法。
它通过对一段时间内的数据进行捕捉、识别并建立模型,从而预测未来的趋势和变化。
其中最常见的方法有滑动平均法、指数平滑法、季节性分解法、自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)等。
其中,滑动平均法和指数平滑法是时间序列分析中最为简单和常用的两种方法。
滑动平均法主要是通过对数据进行加权平均,来去除季节性和不规则性的影响,以此达到平滑数据的目的。
而指数平滑法则是与滑动平均法类似,只不过对数据的加权系数进行了指数级别上的调整,以便更好地反映数据的趋势和变化。
二、时间序列分析在经济领域中的应用1. 经济指数预测时间序列分析可以通过建立趋势、季节性和周期性的多种模型,对经济指数进行预测。
例如,可以利用ARMA模型来预测某种经济指数在未来几个月或几年内的趋势和变化,以此来判断当前经济形势的发展和方向,以及制定合理的政策和措施。
2. 市场趋势预测时间序列分析还可以帮助经济学家们对市场趋势进行预测。
例如,可以通过对历史数据进行ARMA或ARCH模型的建立和分析,来判断未来市场的波动性和风险,从而制定有效的投资策略和风险控制措施。
3. 经济循环研究时间序列分析可以衡量经济循环,如繁荣期、衰退期和复苏期等,以及它们之间的时序性和关联性。
这对于经济学家们来说在分析宏观经济的时候是非常重要的。
4. 预测商品价格商品价格是经济领域中一个非常敏感的指标,涉及到生产、销售、价格和利润等多个方面。
时间序列分析可以通过对历史价格的变动进行分析,来预测未来的价格走势和波动性。
时间序列应用范围及作用

时间序列应用范围及作用时间序列分析是一种统计学方法,用于研究数据在不同时间点上的变化规律。
时间序列应用范围广泛,涉及经济学、金融学、气象学、社会学、医学等多个领域。
其主要作用包括趋势分析、季节性分析、周期性分析、异常检测以及预测等。
首先,时间序列可以用于趋势分析。
趋势是数据在长期内呈现的变化方向和幅度。
趋势分析对于经济领域非常重要,可以帮助我们了解经济增长趋势、就业变化趋势等,以制定相关政策。
在金融领域,趋势分析可以帮助投资者判断股票、股指、外汇等投资标的的走势,从而作出更明智的投资决策。
其次,时间序列可以进行季节性分析。
许多数据在不同季节或时间段内都会呈现出特定的周期性变化。
通过季节性分析,我们可以了解并预测这些周期性变化,以制定相应的策略。
例如,气象学家可以通过分析过去几年的气温数据,来预测未来几个月或几个季度的气温变化,以提前采取相应的应对措施。
此外,时间序列可以用于周期性分析。
周期性变化是一种长期周期内数据的波动和反复。
周期性分析可以帮助我们了解这些周期性变化的特征,从而预测未来的变化趋势。
在经济领域,周期性分析可以帮助我们判断经济周期的阶段、繁荣期和衰退期等,以便采取相应的宏观调控措施。
在金融领域,周期性分析可以帮助投资者判断股市、股指、商品价格等的周期性波动,以制定相应的投资策略。
此外,时间序列还可以进行异常检测。
异常是指与一般规律不符的特殊情况或不寻常的事件。
通过异常检测,我们可以发现并分析这些异常,从而了解其原因和影响,以便采取相应的措施。
在金融领域,异常检测可以帮助我们发现潜在的金融风险,以防止金融危机的发生。
在医学领域,异常检测可以帮助医生诊断疾病,发现患者的异常病情,提高治疗效果。
最后,时间序列还可以进行预测。
通过对过去一段时间的数据进行分析,我们可以建立数学模型,并利用这些模型来预测未来的趋势和变化趋势。
预测是决策和规划的基础,无论是经济决策还是个人投资决策,都需要预测未来的走势和趋势。
王燕-应用时间序列分析

宽平稳
平稳时间序列的统计定义
满足如下条件的序列称为严平稳序列
正整数m, t1 , t 2 , , t m T, 正整数, 有
Ft1 ,t 2 t m ( x1 , x 2 , , x m ) Ft1 ,t 2 t m ( x1 , x 2 , , x m )
推荐软件——SAS
第二章
时间序列的预处理
本章结构
平稳性检验 纯随机性检验
2.1平稳性检验
特征统计量 平稳时间序列的定义 平稳时间序列的统计性质 平稳时间序列的意义 平稳性的检验
概率分布
概率分布的意义
随机变量族的统计特性完全由它们的联合分布函数 或联合密度函数决定
G.U.Yule
1927年,AR模型 1931年,MA模型,ARMA模型
G.T.Walker
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》 提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要运用于单变 量、同方差场合的线性模型
描述性时序分析案例
德国业余天文学家施瓦尔发现太阳黑子的活动具有11年左右的周期
统计时序分析
频域分析方法 时域分析方法
频域分析方法
原理
假设任何一种无趋势的时间序列都可以分解成若干不同频率 的周期波动 早期的频域分析方法借助富里埃分析从频率的角度揭示时间 序列的规律 后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函 数 20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶 段 非常有用的动态数据分析方法,但是由于分析方法复杂,结 果抽象,有一定的使用局限性
应用时间序列分析考试重点

且
1 1 , 2 1
,可以导出
2 12
<1,
1 2 = 12 1 2
模型的可逆性:
=
1 (1 1 )(1 2 ) <1, 1 2 = 12 1 2 = 1 (1 1 )(1 2 ) <1, 即 为 平 稳 域 。 3 、 MA
1、时间序列:按时间顺序排列的一组随机变量。2、平稳性:序列所有的统计性质都不随着时间的推移而变化时,叫严平稳; 当一个时间序列满足均值为常数,且自协方差函数只与时间长度有关时,叫弱平稳。3、随机过程:是一连串随机事件动态关系 的定量描述。4、白噪声序列:也叫纯随机序列,各项之间没有任何相关关系,且存在方差齐性,服从正态分布,最简单的平稳 序列。5、随机游走:是非平稳的,未来的发展趋势无法预测。6、单整与协整:单整是指时间序列显著平稳,不存在单位根, 则称序列为零阶单整序列;协整是指几个时间序列本身是非平稳的,但具有长期均衡关系,以它们建立的回归模型的残差序列 是平稳的,称这几个时间序列存在协整关系。二、方法、重要模型与公式 1、AR 模型的平稳性检验:a、特征根判别或特征系数判别:所
模 型 model:
,
2 2
2
2 1 12 22
Ex t
,
k 0, k 3 (3)ARMA
0
,自协方差函数:
xt 0 1 xt 1 ... p xt p t 1 t 1 2 t 2 .... q t q
,
可逆 4、ARMA 模型(1) AR 模型:model: xt 0 1 xt 1 2 xt 2 .... p xt p t 性质:均值
中 心 化 后 为 0 方 差 : AR(p) :
应用时间序列分析时间序列分析简介

关键阶段
和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》
提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要利用于单
变量、同方差场合旳线性模型
常用软件
S-plus,Matlab,Gauss,TSP,Eviews, Spss 和SAS
推荐软件——SAS
在SAS系统中有一种专门进行计量经济与时间序列 分析旳模块:SAS/ETS。SAS/ETS编程语言简洁, 输出功能强大,分析成果精确,是进行时间序列分 析与预测旳理想旳软件
因为SAS系统具有全球一流旳数据仓库功能,所以 在进行海量数据旳时间序列分析时它具有其他统计 软件无可比拟旳优势
事件旳发展一般都具有一定旳惯性,这种惯性用统 计旳语言来描述就是序列值之间存在着一定旳有关 关系,这种有关关系一般具有某种统计规律。
目旳
寻找出序列值之间有关关系旳统计规律,并拟合出 合适旳数学模型来描述这种规律,进而利用这个拟 合模型预测序列将来旳走势
特点
理论基础扎实,操作环节规范,分析成果易于解释, 是时间序列分析旳主流措施
x1, x2 , , xn
随机序列和观察值序列旳关系
观察值序列是随机序列旳一种实现 我们研究旳目旳是想揭示随机时序旳性质 实现旳手段都是经过观察值序列旳性质进行推断
1.3 时间序列分析措施
描述性时序分析
统计时序分析
描述性时序分析(直接观察分析法)
经过直观旳数据比较或绘图观察,寻找 序列中蕴含旳发展规律,这种分析措施 就称为描述性时序分析
描述性时序分析措施具有操作简朴、直 观有效旳特点,它一般是人们进行统计 时序分析旳第一步。
时间序列分析的介绍和应用

时间序列分析时间序列通常是对某一统计指标,按照相等时间间隔测量的一系列数据点,它反映的是某变量在时间上的一系列变化。
大量社会经济统计指标都依年、季、月或日统计其指标值,随着时间的推移,形成了统计指标的时间序列。
例如, 过去每年国内生产总值数据、过去十年内年度增值税收入数据、过去五年内季度关税数据等等。
时间序列分析就是估算和研究某一时间序列在长期变动过程中所存在的统计规律,具体是指,我们只知道需要预测的那个变量(简称预测变量)在历史上的一系列观察值,通过分析这些观察值所显示出来的规律,如长期变动趋势、季节性变动规律、周期变动规律,然后把这个规律外推到预测期,从而获得该预测变量的值或分布,并进一步预测今后的发展和变化。
一、时间序列的变动因素一般认为,一个时间序列中包含四种变动因素:长期趋势变动、季节性变动、周期性变动和不规则变动。
换言之,时间序列通常是上述四种变动因素综合作用的结果。
1、长期变动趋势(T:Secular Trend)长期变动趋势是指变量值在一个长时期内的增或减的一般趋势。
长期变动趋势可能呈现为直线型变动趋势,也可能呈现曲线型变动趋势,依变量不同而异。
2、季节性变动(S:SeasonaI Variation)季节性变动是指变量的时间序列值因受季节变化而产生的变动。
季节变动是一种年年重复出现的一年内的季节性周期变动,即每年随季节替换,时间序列值呈周期变化。
3、周期性变动(C:CyclicaI Variation)周期性变动又称循环变动,它是指变量的时间序列值相隔数年后所呈现的周期变动。
在一个时间序列中,循环变动的周期可以长短不一,变动的幅度也可大可小。
4、不规则变动(I:lrregular Variation)不规则变动是指变量的时间序列值受突发事件,偶然因素或不明原因所引起的非趋势性、非季节性、非周期性的随机变动,因此,不规则变动是一种无法预测的波动。
图1显示的是我国1997年1月至2007年12月的月度消费者价格(CPI )指数(同比)。
时间序列分析的应用

时间序列分析的应用时间序列分析是运用数学、统计学等方法对时间序列资料进行观察、分析和预测的一门学科。
时间序列资料是在时间顺序下观察到的一系列变量值,例如股票收盘价、气候变化指标和销售数据等。
时间序列分析的应用广泛,下面就从不同领域的角度来介绍一些常见的应用及其方法。
1. 经济领域时间序列分析在经济领域的应用较为广泛,主要用于对宏观经济变量进行预测和分析。
主要方法包括趋势分析、季节性分析和周期性分析。
趋势分析可以用于预测经济增长趋势,季节性分析可以用于预测销售数据在不同季节的变化,周期性分析可以用于预测市场波动周期。
此外,时间序列分析还可以用于金融领域的波动率预测和风险管理。
2. 环境领域时间序列分析在环境领域的应用也相当重要。
例如,可以利用时间序列资料来分析气候变化趋势和减缓气候变化的措施效果。
常用的分析方法包括时间序列的平稳性分析、自回归滑动平均模型建立和灰色预测等。
3. 医学领域医学领域中,时间序列分析可用于病发率预测、药物效果评价等方面。
例如,疫情数据的时间序列分析可以用于控制疫情的扩散趋势,肿瘤病发率时间序列分析可用于对病人治疗和康复方案的预测。
4. 社交媒体领域随着社交媒体的普及,时间序列分析在社交媒体领域也有了广泛的应用。
例如,可以分析特定时段用户对某个事件的互动情况,利用时间序列分析挖掘用户对某个品牌的兴趣变化趋势等方面。
常用的分析方法包括自回归模型、指数平滑法等。
总的来说,时间序列分析是一种非常有用的数据分析方法,可以应用于诸多领域并取得良好的预测效果。
使用者需要选择合适的方法,结合实际情况进行分析。
此外,由于时间序列资料具有一定的随机性质,关键在于准确、全面地获取数据、选择合适的模型和算法来进行分析。
时间序列数据分析与应用研究

时间序列数据分析与应用研究时间序列数据是指在时间轴上,以一定的时间间隔对某种现象的变化进行观察和记录而得到的一系列数据。
时间序列是一种典型的随机过程,具有趋势、季节性和周期性等特点。
在各个领域,时间序列分析都具有广泛的应用,如经济、金融、医学、气象预测、工业控制等。
本文将从时间序列数据的基础、分析方法和应用三个方面来进行研究。
时间序列数据的基础时间序列数据是指一组按照时间先后顺序排列的数据。
它是一种连续的序列,与横断面数据不同,它涵盖了数据随时间的变化趋势。
时间序列通常包括以下三个基本组成部分:1、趋势成分:是时间序列中表现出来的长期变化趋势,可以是增长或下降趋势。
2、季节成分:是时间序列中重复出现的周期性变化,通常以一年为周期。
3、随机成分:是时间序列中表现出来的不规律波动,反映了其突发性和无法预测性。
时间序列分析的基本方法时间序列分析方法主要包括时间序列模型、频域分析和小波分析三个方面。
1、时间序列模型分析时间序列模型是根据时间序列数据的特点建立的一种代表性模型,可以用来描述该序列的趋势、季节性和随机变化。
在时间序列模型中,ARIMA模型(自回归综合平均移动平均模型)是比较常用的模型之一。
它是将自回归模型和移动平均模型有机结合起来,既能考虑历史数据的影响,又能考虑外部干扰的影响。
2、频域分析频域分析是对时间序列进行傅里叶变换后,根据其正弦波分量的不同对时间序列进行分析的一种方法。
频域分析可以识别出时间序列中各个周期分量的大小和相位,以便更好地描述时间序列的特征。
常用的频域分析方法有基于傅里叶变换的FFT变换、AR 谱分析和扭秤分析。
3、小波分析小波分析是一种时频分析方法,其优势在于能够更好地处理非周期性、非平稳性和非线性等问题。
小波分析通过对时间序列进行一系列小波变换,将时间序列信号分解成不同尺度上的时频分量。
常用的小波分析方法有CWT连续小波变换、DWT离散小波变换和MODWT中小波包变换等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)序列预处理:
下图图1,可以看出澳大利亚常住人口变动过程趋势波动稳定。
x
-100
100
200time 0102030405060708090
图1:澳大利亚常住人口变动过程时序图
自相关如2图所示
图2:自相关图
图3:偏相关图
序列非白噪声序列检验如下:
可以看出该序列属于非白噪声序列。
结合时序图,自相关图,和白噪声检验结果,判定该序列为平稳非白噪声序列
(2)模型定阶:
参数估计:
使用条件最小二乘法,确定ARMA (1,2)的口径为:
2116186.01025.17257.046136.53---+-++=t t t t t x x εεε,其中)26.349(=t Var ε 模型检验:残差白噪声检验显示延迟6阶,12阶,18阶LB 检验统计量的P 值均显著大于0.05,所以该ARMA (1,2)显著有效。
参数显著性检验结果显示四参数t 统计量的P 值均小于0.05,即三参数均显著。
因此ARMA (1,2)模型是该序列的有效拟合模型。
不确定P ,Q 的值,因此用另一个模型ARMA (2,2)来尝试拟合。
从模型检验和参数检验可以看出该模型ARMA (2,2)参数没有通过检验,不是有效的。
因此拟合该序列的模型可以定为ARMA (1,2)模型:
2116186.01025.17257.046136.53---+-++=t t t t t x x εεε,其中)26.349(=t Var ε
(3)预测:
该序列拟合图和未来5年预测序列图如下:。