人教版八年级数学下册第17章勾股定理-单元测试(1).docx

合集下载

人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第17章勾股定理》单元测试卷(1)一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.54.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c26.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25 7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高米.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了米.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成个直角三角形.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了米.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=,BC=,AC=;(2)试判断△ABC的形状,并说明理由.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?人教新版八年级下册《第17章勾股定理》单元测试卷(1)参考答案与试题解析一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.【考点】勾股定理.【分析】直接利用勾股定理计算得出答案.【解答】解:∵直角三角形的两条直角边的长分别为3和5,∴斜边的长为:=.故选:D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别写出各个命题的逆命题,逐项判断即可.【解答】解:①有两边相等的三角形是等腰三角形的逆命题是等腰三角形的两边相等,正确,有逆定理;②有两边相等的三角形是等腰三角形的逆命题是若两个数的奇次幂互为相反数,这两个数互为相反数,正确,有逆定理;③面积相等的长方形周长也一定相等的逆命题是周长相等的长方形面积也相等,为假命题,无逆定理;④若a=b,则a2=b2的逆命题是若a2=b2,则a=b,为假命题,无逆定理;故有逆定理的个数是2个,故选:B.3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.5【考点】勾股定理.【分析】根据勾股定理即可得到结论.【解答】解:AB==13,故选:A.4.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、【考点】勾股定理的逆定理.【分析】先找出两小边,求出两小边的平方和,求出大边的平方,再根据勾股定理的逆定理判断即可.【解答】解:A、(62)2+(82)2≠(102)2,即组成的三角形不是直角三角形,故本选项错误;B、62+82≠92,即组成的三角形不是直角三角形,故本选项错误;C、22+()2≠()2,即组成的三角形不是直角三角形,故本选项错误;D、()2+()2=()2,即组成的三角形是直角三角形,故本选项正确;故选:D.5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c2【考点】命题与定理.【分析】写出各个命题的逆命题,然后判断正误即可.【解答】解:A、逆命题为:如果a﹣b>0,那么a>b,逆命题成立;B、逆命题为:如果a2=b2,那么a+b=0,逆命题不成立;C、逆命题为:等角对等边,逆命题成立;D、逆命题为:如果三角形三边满足a2+b2=c2,那么该三角形是直角三角形,逆命题成立;故选:B.6.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故A选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:(1)92+802≠812,根据勾股定理的逆定理,故不是直角三角形;(2)102+242≠252,根据勾股定理的逆定理,故不是直角三角形;(3)152+202=252,根据勾股定理的逆定理,故是直角三角形;(4)82+152=172,根据勾股定理的逆定理,故是直角三角形.故选:B.二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】由题意可知长方体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,利用勾股定理求解即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=10.【考点】勾股定理.【分析】由勾股定理得AB2=BC2+AC2,再结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∠ACB=90°,∴AB2=BC2+AC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S3=15,S1=5,∴BC2=5,AB2=15,S3=S1+S2,则S2=S3﹣S1=15﹣5=10,故答案为:10.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高8米.【考点】勾股定理的应用.【分析】如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB,根据勾股定理求出AB即可解决问题.【解答】解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,AB===5(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故答案为:8.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了9米.【考点】勾股定理的应用.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成2个直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】由勾股定理求出线段AD、AC、AB、BC、BD、CD的平方,由勾股定理的逆定理即可得出结果.【解答】解:由勾股定理得:AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,∵AD2+BD2=AB2,AC2+AB2=BC2,∴能够组成2个直角三角形.故答案为:2.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了 2.5米.【考点】勾股定理的应用.【分析】要求小猫在木板上爬动的距离,即求木板长,可以设CD=x,AB=DE=y,则根据木板长不会变这个等量关系列出方程组,即可求BC的长度,在直角△ABC中,根据BC,AC即可求AB.【解答】解:已知AE=1.3米,AC=0.7米,BD=0.9米,设CD=x,AB=DE=y,则BC=0.9+x则在直角△ABC中,y2=(0.9+x)2+0.72,在直角△CDE中,y2=x2+(1.3+0.7)2,解方程组得:x=1.5米,y=2.5米,故答案为 2.5.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.【考点】勾股定理.【分析】在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.【解答】解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?【考点】勾股定理的应用.【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据EC =EB+BC即可求得EC的长度,在直角三角形DEC中,已知DE,EC即可求得DC的长度,根据AD=AC﹣DC即可求得AD的长度.【解答】解:在直角△ABC中,AC==2.4(m),∴EC=BC+BE=1.5m在直角△DEC中,DC===2(m),∴AD=AC﹣DC=0.4(m),答:梯子的顶端沿墙下滑0.4m.16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?【考点】勾股定理的逆定理.【分析】(1)先分别求出两个小组走的路程,再根据勾股定理的逆定理即可作出判断;(2)根据路程和÷速度和=相遇的时间,列式计算即可求解.【解答】解:(1)第一组的路程:30×30=900(米),第二组的路程:40×30=1200(米),∵9002+12002=15002,∴两组同学行走的夹角是直角;(2)1500÷(30+40)=1500÷70=21(分钟).答:经过21分钟后才能相遇.17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC 的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=3,BC=2,AC=;(2)试判断△ABC的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】(1)根据勾股定理即可求得△ABC的三边的长;(2)由勾股定理的逆定理即可作出判断.【解答】解:(1)根据勾股定理即可得到:AB2=62+32=45,BC2=42+22=20,AC2=72+42=65,则AB=3,BC=2,AC=.故答案为3,2,;(2)△ABC是直角三角形,理由如下:∵AB2=45,BC2=20,AC2=65,AB2+BC2=45+20=65,∴AB2+BC2=AC2,∴△ABC是直角三角形.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?【考点】勾股定理的应用.【分析】根据题意结合勾股定理求出答案.【解答】解:设白杨树在离根部x米的位置断裂,根据题意可得:x2+82=(16﹣x)2,解得:x=6.答:白杨树在离根部6米的位置断裂.19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,=AC•CD=×5×12=30.∴S△ACD+S△ACD=6+30=36.∴四边形ABCD的面积=S△ABC20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?【考点】勾股定理的应用.【分析】设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.【解答】解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,,∴CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∴该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?【考点】勾股定理;一元一次不等式的应用.【分析】作PH⊥l,垂足为H,由勾股定理求出MH=500,则MM'=1000,由题意可得5x≤1000,解不等式可得出答案.【解答】解:作PH⊥l,垂足为H,∵PM=1300米,PH=1200米,∠PHM=90°,∴MH===500(米),根据对称性可知,M'H=MH,∴MM'=1000米,即宣传车能够让P点有效听到的距离为1000米,设宣传车时速是x米/分钟,由题意可得5x≤1000,∴x≤200,200米/分钟=12km/h.答:宣传车最高时速是12km/h.。

八年级数学下册第17章勾股定理单元测试题1(含答案)

八年级数学下册第17章勾股定理单元测试题1(含答案)
人教版八下数学勾股定理测试题及答案
一、选择题(共 10 小题;共 30 分)
1. 三角形的三边长 a, b , c 满足 a + b
A. 直角三角形
B. 锐角三角形2 -
2
c
=
2ab ,C.则钝此角三三角角形形是
(
)
D. 等腰三角形
2. 若直角三角形的三边长分别为 2 , 4 , x ,则 x 的可能值有 ( )
A. 3
B. 3.5
C. 2.5
D. 2.8
7. 如图所示,有一块直角三角形纸片, ∠C= 90 , AC = 4 cm,BC = 3 cm ,将斜边 AB 翻折, 使点 B 落在直角边 AC 的延长线上的点 E 处,°折痕为 AD ,则 CE 的长为
A. 1 cm
B. 1.5 cm
C. 2 cm
8. 如图,将 △ABC 放在正方形网格图中 (图中每个小正方形的边长均为
第 6页(共 6 页)
A. 10
B. 16
C. 40
D. 80
二、填空题(共 6 小题;共 18 分)
11. 勾股定理的逆定理是

12. 在 △ABC 中, ∠C= 90 ,c = 10 , a:b = 3:4 ,则 a =
,b =
°
13. 已知 a - 6 + b - 8 + c - 10
2
14. 在底面直径为 2 cm,高为 3 cm 的=圆0柱,体则侧以面a上,,b用,一c 条为无边弹长性的的三丝角带形从是

°
第 4页(共 6 页)
第一部分 1. A 2. B 6. C 7. A
3. B 8. A
4. C 9. C

人教版八年级下册数学《第17章勾股定理》单元检测卷含答案

 人教版八年级下册数学《第17章勾股定理》单元检测卷含答案

人教版八年级下册数学《第17章勾股定理》单元检测卷含答案一、选择题(每小题3分;共33分)1.下列各组数中,属于勾股数的是()A. 2.5,6,6.5B. 5,7,10C. ,,D. 6,8,102.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A. 25B. 14C. 7D. 7或253.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A. 11cmB. 12cmC. 13cmD. 14cm4.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A. (4+)cmB. 9cmC. 4cmD. 6cm5.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4C. 3、4、5D. 4、5、66.如图,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则()A. S1=S2B. S1<S2C. S1>S2D. 无法确定7.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是()A. B. C. D. 28.如图,有一只棱长为20厘米的正方形盒子,一只蚂蚁从A点出发,沿着正方体木箱的外表面爬行到C′D′的中点P的最短路线长为()A. 10厘米B. 50厘米C. 10厘米D. 30厘米9.如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A. 2πB. 3πC. 4πD. 8π10.现有一只蜗牛和一只乌龟从同一点分别沿正东和正南方向爬行,蜗牛的速度为14厘米/分钟,乌龟的速度为48厘米/分钟,5分钟后,蜗牛和乌龟的直线距离为()A. 300厘米B. 250厘米C. 200厘米D. 150厘米11.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A. a=1.5,b=2,c=3B. a=3,b=4,c=5C. a=6,b=8,c=10D. a=7,b=24,c=25二、填空题(共11题;共33分)12.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长 ________13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:________14.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.15.等腰△ABC,其中AB=AC=17cm,BC=16cm,则三角形的面积为________ cm2.16.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.17.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________18.在Rt△ABC中,AC=9,BC=12,则AB=________.19.一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距________千米.20.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为________ 米.21.一个直角三角形的两条直角边分别为3cm,4cm,则这个直角三角形斜边上的高为________ cm.22.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.三、解答题(共4题;共34分)23.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?24.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.25.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2 ,求:(1)AB的长为________;(2)S△ABC=________.26.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?参考答案一、选择题D D C C C A C C A B A二、填空题12. 2 d 13. 13、84、85 14. 415. 120 16. 4.8 17.18. 15或3 19. 10 20. 1521. 22. 12三、解答题23.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.24.解:∵AD⊥AC,AC=20,AD=15,∴CD= =25∴BD=BC﹣CD=32﹣25=725.(1)4(2)2+226.(1)解:由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2﹣BE2,∴AE= =2.4米(2)解:由题意得:EC=2.4﹣0.4=2(米),∵DE2=CD2﹣CE2,∴DE= =1.5(米),∴BD=0.8米。

人教版八年级数学下册 第17章勾股定理 单元测试题(有答案)

人教版八年级数学下册 第17章勾股定理 单元测试题(有答案)

人教版八年级数学下册第17章勾股定理单元测试题一.选择题(共10小题)1.如图,线段AB=、CD=,那么,线段EF的长度为()A.B.C.D.2.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8B.4C.6D.无法计算3.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.104.下列长度的三条线段不能组成直角三角形的是()A.3,4,5B.1,,2C.6,8,10D.1.5,2.5,35.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对6.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5B.6,8,10C.5,12,13D.4,5,67.下列各组数中,是勾股数的是()A.1,2,3B.0.3,0.4,0.5C.,,D.7,24,258.已知一直角三角形的木板,三边的平方和为12800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm9.从电线杆离地面6米处向地面拉一条钢缆,钢缆与地面的夹角是60°,则这根钢缆的地面固定点到电线杆底部的距离是()A.2B.2C.3D.610.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是()A.6m B.8m C.10m D.12m二.填空题(共8小题)11.如图,将一根长为15cm的筷子置于底面直径为5cm的装满水的圆柱形水杯中,已知水深为12cm,设筷子露出水面的长为hcm,则h的取值范围是.12.三角形的三边长分别为3,4,5,则这个三角形的面积是.13.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.14.直角三角形的两直角边是3和4,则斜边是15.已知小明和小王从同一地点出发,小明向正东方向走了2km,小王向正南方向走了3km,此时两人之间相距km.16.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.17.小明向东走6m后,沿另一方向又走了8m,再沿第三个方向走了10m回到原地,小明向东走6m 后是向方向走的(填方位).18.在平面直角坐标系中,已知点P的坐标为(1,﹣3),那么点P到原点O的距离OP的长度为.三.解答题(共8小题)19.已知,如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求BC 的长.20.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.21.已知:如图,四边形ABCD中,∠B=90°.AB=2.BC=4,CD=,AD=10,求(1)AC的长;(2)四边形ABCD的面积.22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.如图,东西方向的河道宽2000米,水流自西向东水速为3米/秒,一船从港口A以5米/秒的速度驶向对岸,港口A的正对岸是港口B(1)若船头正对对岸,则船最终停在对岸何处?(2)若要使船正好到达港口B,请画出船头方向,并计算此时到对岸要多长时间?24.如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?25.如图,四边形ABCD中,∠B=90°,∠ACB=30°,AB=2,CD=3,AD=5.(1)求证:AC⊥CD;(2)求四边形ABCD的面积.26.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P运动到AB边上时,连接OP、OQ,若△OPQ的面积为6,求t的值.参考答案与试题解析一.选择题(共10小题)1.解:∵AB==,CD==,∴图形中的网格是由边长为1的小正方形构成的,则EF==.故选:C.2.解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选:A.3.解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,所以ab=[(a2+b2)﹣(a﹣b)2]=(9﹣1)=4,即ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.4.解:A、∵32+42=52,∴此三角形是直角三角形,不符合题意;B、∵12+()2=(2)2,∴此三角形是直角三角形,不符合题意;C、∵62+82=102,∴此三角形是直角三角形,不符合题意;D、∵1.52+2.52≠32,∴此三角形不是直角三角形,符合题意;故选:D.5.解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13,∴△ABC的形状是等腰三角形,故选:C.6.解:∵42+52=41,62=36,41≠36,∴4,5,6不能作为直角三角形的三边长.故选:D.7.解:A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵+≠,∴这组数不是勾股数;D、∵72+242=252,∴这组数是勾股数.故选:D.8.解:设直角三角形的斜边长为x,∵三边的平方和为12800cm2,∴x2=6400cm2,解得x=80cm.故选:A.9.解:如图,已知∠C=60°,AB=6,在Rt△ABC中,设BC=x米,则AC=2x米,由勾股定理得:x2+62=(2x)2,解得:x=2,故选:B.10.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.故选:D.二.填空题(共8小题)11.解:∵将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,h=12,最长时等于杯子斜边长度,即:h==13,∴h的取值范围是:(15﹣13)≤h≤(15﹣12),即2≤h≤3.故答案为:2≤h≤3.12.解:∵三角形的三边长分别为3,4,5,∴52=32+42,∴此三角形为直角三角形,∴这个三角形的面积=×3×4=6.故答案为:6.13.解:设设三角形的两直角边分别为x,y,则,由②得x2+y2﹣2xy=4…③,①﹣③得2xy=48则(x+y)2=x2+y2+2xy=52+48=100,x+y==10.故答案是:10.14.解:在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==5,故答案为5.15.解:如图所示,∠ACB=90°,∴AB===(km).故答案为:.16.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为:17m.17.解:如图,AB=6m,BC=BD=8m,AC=AD=10m,∵602+802=1002,∴∠ABC=∠ABD=90°,故小明向东走6m后是向北或向南走的.故答案为:北或南.18.解:∵点P的坐标为(1,﹣3),点O为坐标原点,∴OP==.答:点P到原点O的距离OP的长度为.故答案为:.三.解答题(共8小题)19.解:∵AD2+BD2=144+25=169,AB2=169,∴AD2+BD2=AB2,∴AD⊥BC,即∠ADC=90°,∴CD===9,∴BC=CD+BD=5+9=14.20.解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.21.解:(1)如图,连接AC,∵∠B=90°,∴△ABC为直角三角形,又∵AB=2,BC=4,∴根据勾股定理得:AC=;(2)又∵CD=,AD=10,∴AD 2=102=100,CD 2+AC 2==80+20=100,∴CD 2+AC 2=AD 2,∴△ACD 为直角三角形,∠ACD =90°,则S 四边形ABCD =S △ABC +S △ACD =AB •BC +AC •CD =×2×4+×× =4+20=24.故四边形ABCD 的面积为24.22.解:(1)∵AB =13,BD =8,∴AD =AB ﹣BD =5,∴AC =13,CD =12,∴AD 2+CD 2=AC 2,∴∠ADC =90°,即△ADC 是直角三角形,∴△ADC 的面积=×AD ×CD =×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°,由勾股定理得:BC ===4,即BC 的长是4. 23.解:(1)2000÷5=400(秒),3×400=1200(米).答:船最终停在港口B 东边的1200米处.(2)在Rt △ACD 中,AC =5米/秒,CD =3米/秒,∴AD ==4(米/秒).2000÷4=500(秒).答:此时到对岸要500秒钟.24.解:(1)∵一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米,∴BC==4(m),答:BC的长为4m;(2)当BD=AE,则设AE=x,故(4﹣x)2+(3+x)2=25解得:x1=1,x2=0(舍去),故AE=1m.25.(1)证明:在Rt△ABC中,∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=4,在△ACD中,AC=4,CD=3,AD=5,∵42+32=52,即AC2+CD2=AD2,∴∠ACD=90°,∴AC⊥CD;(2)解:在Rt△ABC中,∠B=90°,AB=2,AC=4,∴BC==2,∴Rt△ABC的面积为AB•BC=×2×2=2,又∵Rt△ACD的面积为AC•CD=×4×3=6,∴四边形ABCD的面积为:2+6.26.解:(1)设t秒后P,Q相遇.在Rt△AOB中,∵∠BAO=90°,OA=12,OB=20,∴AB===16,由题意:5t+2t=12+16,解得t=4,此时BQ=8.AQ=AB﹣BQ=16﹣8=8,∴P(8,12).(2)当P,Q都在AB边上时,•|16﹣(5t﹣12)﹣2t|×12=6,解得t=或当点Q在OA上时,•16•(28﹣2t)=6,解得t=,综上所述,满足条件的值为或或.。

精品解析:人教版八年级数学下册第17章勾股定理单元同步检测试题(解析版).docx

精品解析:人教版八年级数学下册第17章勾股定理单元同步检测试题(解析版).docx

人教版八年级数学第17章《勾股定理》单元同步检测试题时间:120分钟满分:150分一、选择题(本大题10小题,每小题4分,共40分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.&胡,点B. 1, & &C. 6, 7, 8D. 2, 3, 4【答案】B【解析】试题解析:A.(不)2+ (訴)V (厉)2,故该选项错误;B.I2+ (迈)2=(乔)1故该选项正确;C.62+7M2,故该选项错误;D.22+32#4\故该选项错误.故选B.考点:勾股定理.(■ {视频))2.如图,一根垂直于地面的旗杆在离地面5 m处折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是()【答案】D【解析】试题分析:由题意得:AABC是直角三角形,所以AB= 7A C2+BC2=7122+52=13,所以旗杆折断之前的高度=“AB+BC=5+13=18.“故选:D.考点:勾股定理.3.__________ 如图,学校有一块长方形花I甫I,有极少数人为了避开拐角走“捷径",在花铺内走出了一条“路\他们仅仅少走了步路(假设2步为1 m),却踩伤了花草()A.4B. 6C. 7D. 8【答案】D【解析】根据勾股定理可得斜边长是+ 82=10m.则少走的距离是6+8-10=4m,T2步为1米,・・・少走了 8步,故答案为:D.4. 如图,数轴上点A, B 分别对应1, 2,过点B 作PQ 丄AB,以点B 为圆心,AB 长为半径画弧,交PQ 于 点C,以原点O 为圆心,OC 长为半径画弧,交数轴于点M,则点M 对应的数是()如图所示:连接OC, 由题意可得:°A2,处=1, 贝 9 AC = ^22 + I 2 = &, 故戊M 对应的数是:& 故选:B. 5. 如图,已知AB 丄CD, A ABD, A BCE 都是等腰直角三角形.如果CD=7, BE=3,那么AC 的长为()AA. 8B. 5C. 3D.4■—F B CW % ■ I 1 10 1 2 女3【解析】试题解析: 6 m【答案】B & D.力【答案】B【解析】・・・△〃£>, △BCE都是等腰直角三角形,:・BD=BA, BE二BC=3, VCZ>7,・•・BM4B=4,4 C=^AB2 + BC2=5.故选B.点睛:熟练掌握勾股定理的运用.6.如图,在厶ABC 中,AD丄BC 于D, AB=17, BD=15, DC = 6,则AC 的长为()A. 11B. 10C. 9D. 8【答案】B【解析】本题主要考查了勾股定理.利用两次勾股定理即可解答.解:VAD1BC・•・ ZADC=ZADB=90°VAB=17, BD=15,AD U J AB S D S•・・DC=6AC=^AD2 + CD2= 1 o故选B7.如图,每个小正方形的边长为1, A, B, C是小正方形的顶点,则ZABC的度数为()A. 90°B. 60°C. 45°D. 30°【答案】C【解析】试题分析:根据勾股定理即可得到AB, BC, AC的长度,进行判断即可. 解:根据勾股左理可以得到:AC=BCW,AB=V10.•・・(V5)2+(V5)2=(V10)2.AAC2+BC2=AB2.A A ABC是等腰直角三角形.A ZABC=45°.故选C.A _______c—~~8.如图,--艘轮船位于灯塔。

人教版八年级下册《第17章 勾股定理》单元测试试卷及答案(共五套)

人教版八年级下册《第17章 勾股定理》单元测试试卷及答案(共五套)

人教版八年级下册《第17章勾股定理》单元测试试卷(一)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( ) A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( )A.52B.3C.3+2D.334,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B. 800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( ) A.L 1 B.L 2 C.L 3 D.L 47,如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线ABABC图25m BCAD图1BCED图3左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( ) A.1 B.2 C.3 D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________. 14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________.16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm. 17,如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .图5图418,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里.三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.图620,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm ,宽为2cm 的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.A B 小河东北 牧童小屋 图7图8图924,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A 处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt△ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE2;10,A . 二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形. 20,15m.北A图1021,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt△A ′DB 中,由勾股定理求得A ′B =17km.22,( 1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab =6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM人教版八年级下册《第17章勾股定理》单元测试试卷(二)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的,斜边长为10,则它的面积为( )A.10B.15C.20D.303. 如图,已知正方形的面积为144,正方形的面积为169,那么正方形的面积是( )A.313B.144C.169D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△中,∠°,所以222c b a =+D.在Rt△中,∠°,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.5cm C.5.5 cmD.1 cm6.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A. B. C. D.7. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B. 3+1 C. 5-1 D. 5+1 8. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm. A.6 B.8 C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( )A.6B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A.B.3C.1D.二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm, cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC ,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C 2.B 3.A 4.A 5.A6.C7.C8.D9.D 10.A二、11.37012.直角;24 分析:解方程得x1=6,x2=8.∵+=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.4 cm 分析:过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.易得△ABE≌△ADF,所以AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等,则AE==2(cm),所以AC=AE=×2=4 (cm).14.略15.分析:如图,设这一束光与x轴交于点C,作点B关于x轴的对称点B',过B'作B'D⊥y轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.=·BC·AD≈×7×5.8=20.3≈20.所以S△ABC17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC== =10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C 作CE⊥AD 于点E,由题意得AB=30 m,∠CAD=30°,∠C BD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m. 在Rt△BCE 中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15 m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =ab,S △C'A'D'=ab,S 直角梯形A'D'BA =(a+b)(a+b)=(a+b)2,S △ACA'=c 2. (2)由题意可知S △ACA'=S 直角梯形A'D'BA-S △ABC -S △C'A'D'=(a+b)2-ab-ab=(a 2+b 2),而S △ACA'=c 2.所以a 2+b 2=c 2.21.解:(1)MN 不会穿过原始森林保护区.理由如下: 过点C 作CH⊥AB 于点H. 设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°. 在Rt△ACH 中,AH=CH=x m,在Rt△HBC 中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN 不会穿过原始森林保护区.(2)设原计划完成这项工程需要y 天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.人教版八年级下册《第17章勾股定理》单元测试试卷(三)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5. 设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B. C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC 的形状,并说明理由.14.(12分)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分) 在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC 为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L.27.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S=×3h+×4h=×△ABC5×,解得h=,S=×3×=BD·,△ABD解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S=BP·BQ=×6×6=18(cm2).△PBQ答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵A D平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10,=AB·DE=×10×3=15.∴S△ADB15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得:BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边,∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形,∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.人教版八年级下册《第17章勾股定理》单元测试试卷(四)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.△ABC,∠C=90°,a=9,b=12,则c=__________.2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.6.等腰三角形的顶角为120° ,底边上的高为3,则它的周长为__________.7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.8.等腰三角形的两边长为2和4,则底边上的高为__________.9.若等腰直角三角形斜边长为2,则它的直角边长为_______.10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC 是三角三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.14.若一个三角形的三边长分别为3,4,x ,则使此三角形是直角三角形的x 的值是___ _.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是( ) A .1,2,B .1,2,C .3,4,5D .6,8,1216.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于( ) A .6B .C .D .417.已知三角形的三边长之比为1∶1∶,则此三角形一定是( ) A .锐角三角形 B .钝角三角形 C .等边三角形D .等腰直角三角形18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ) A .4 cmB .8 cmC .10 cmD .12 cm三、解答题(共60分)19.(5分)如图,每个小正方形的边长是1. ①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.A B C D53652 第13题 第16题第19题②第19题①20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面米处吹断,倒下的旗杆的顶端落在离旗杆底部米处,那么这根旗杆被吹断裂前至少有多高?21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD =150°,∠D =60°,BD =32 k m ,请根据上述数据,求出隧道BC 的长(精确到0.1 k m).22.(6分)如图,△ABC 中,AB =15 cm , AC =24 cm ,∠A =60°.求BC 的长.8.26.9 2.8米9.6米23.(6分)如图,△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD .24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方米B 处,过了秒后,测得小汽车C 与车速检测仪A 间距离为米,这辆小汽车超速了吗?25.(6分)如图,△ABC 中,CD ⊥AB 于D . (1)图中有__________个直角三角形; A .0B .1C .2D .3(2)若AD =12,AC =13则CD =__________. (3)若CD 2=AD ·DB , 求证:△ABC 是直角三角形.26.(6分)小明把一根长为160 cm 的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC ,已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?BC AD 703025027.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:.参考答案 一、填空题1.15 2.10 3.3cm 4.1∶∶2 5. 6.12+6 7. 96 8.910.30cm 2 11.直角 12.A A 不是直角三角形,B、C 、D 是直角三角形 13.2+2 14. 5或 二、选择题15.D 16.B 17.D 18.C 三、解答题19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²新人教版八年级下册《第17章勾股定理》单元测试试卷(五)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)33136031537 (1) (2)1.已知直角三角形的两边分别为3、4,则第三边为___ __.2.如图所示,某风景名胜区为了方便游人参观,计划从主峰A 处架设一条缆车线路到另一山峰C 处,若在A 处测得∠EAC =30°,两山峰的底部BD 相距900米,则缆车线路AC 的长为_______米.3.已知,如图所示,Rt△ABC 的周长为4+2,斜边AB 的长为2,则Rt△ABC •的面积为_____. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.5.在△ABC 中,∠C=90°, AB =5,则++=_______. 6.已知三角形三边长为正整数,则此三角形是________三角形.7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________.8.如图,是北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .332AB 2AC 2BC n n n n n n ,122,22,1222++++第2题 第3题第4题3220A第7题9.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 10.直角三角形的三边长为连续偶数,则这三个数分别为__________. 11.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有___米.12.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .13.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 . 14.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .二、选择题(共4小题,每题3分,共12分)15.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5B .25C .D .5或16.已知Rt△ABC 中,∠C=90°,若a +b =14cm ,c =10cm ,则Rt△ABC 的面积是 ( ) A .24cm 2B .36cm 2C .48cm 2D .60cm 217.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121B .120C .90D .不能确定18.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小7760 12014060BAC第8题第11题第12题第13题图红和小颖家的直线距离为 ( )A .600米 B. 800米 C. 1000米 D. 不能确定 三、解答题(共60分)19.(5分)如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?20.(5分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(5分)已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB =8cm ,BC =10cm ,求EC 的长.22.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?23.(6分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?24.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB =90°,AC =80米,BC =60米,若线段CD 是一条小渠,且D 点在边AB 上,已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?25.(6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河26.(6分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.27.(7分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?28.(8分)如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?。

新人教版八年级数学(下)《第17章 勾股定理》单元测试卷

新人教版八年级数学(下)《第17章 勾股定理》单元测试卷

折断之前有
ห้องสมุดไป่ตู้米.
三.做一做(8 分) 14.(8 分)如图是由 16 个边长为 1 的小正方形拼成的,任意连结这些小正方形
的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一 条长度是无理数的线段,并写出这两条线段的长度.
四.解答题(1 题 4 分,2、3 题各 6 分,4、5、6 各 8 分,共 40 分) 15.(4 分)如图:带阴影部分的半圆的面积是多少?(π 取 3)
第4页(共4页)
是( )
A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形
8.(4 分)如图,将一个边长分别为 4,8 的长方形纸片 ABCD 折叠,使 C 点与 A
点重合,则 BE 的长是( )
第1页(共4页)
A.3
B.4
C.5
D.6
二.填空题(每小题 4 分,共 20 分)
9.(4 分)在直角三角形中,若两直角边的长分别为 1cm,2cm,则斜边长


10.(4 分)在△ABC 中,∠C=90°,AB=5,则 AB2+AC2+BC2=

11.(4 分)正方形的对角线为 4,则它的边长 AB=

12.(4 分)直角三角形有一条直角边为 6,另两条边长是连续偶数,则该三角形
周长为

13.(4 分)如图,一根树在离地面 9 米处断裂,树的顶部落在离底部 12 米处.树
第3页(共4页)
新人教版八年级数学下册《第 17 章 勾股定理》单元测 试卷
参考答案
一.选择题(每小题 4 分,共 32 分) 1.A; 2.D; 3.C; 4.D; 5.B; 6.D; 7.C; 8.A; 二.填空题(每小题 4 分,共 20 分) 9. cm; 10.50; 11.2 ; 12.24; 13.24;

人教版八年级下数学《第17章勾股定理》单元测试(含答案)

人教版八年级下数学《第17章勾股定理》单元测试(含答案)

人教版八年级下数学《第17章勾股定理》单元测试(含答案)第17 章勾股定理一、选择题1.以下列各组数为边长,能构成直角三角形的是()A. 5、6、7B. 10、8、4C. 7、24、25D. 9、15、172.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A. 14B. 4C. 14或4D. 以上都不对3.下列四组数中,其中有一组与其他三组规律不同,这一组是()A. 3,4,5B. 6,8,10C. 5,12,13D. 4,5,74.在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为()A. 32B. 42C. 32或42D. 以上都不对5.如图,正方形ABCD的边长为9.将正方形折叠.使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是( )A. 3B. 4C. 5D. 66.如图,正方形小方格边长为1,则网格中的△ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上答案都不对7.给出下列长度的四组线段:①1,2,2;②5,12,13;③6,7,8;④3m,4m,5m(m>0).其中能组成直角三角形的有()A. ①②B. ②④C. ②③D. ③④8.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑()A. 9分米B. 15分米C. 5分米D. 8分米9.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. ,,B. 2,3,4C. 3,4,5D. 6,8,1210.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A. 8B. 4C. 6D. 无法计算11.在Rt△ABC中,∠ACB=90°,AC= ,BC=2,则AB的长为()A. B. C. D. 612.已知△ABC的三边长分别为a,b,c,且满足(a﹣5)2+|b﹣12|+ =0,则△ABC()A. 不是直角三角形B. 是以a为斜边的直角三角形C. 是以b为斜边的直角三角形D. 是以c为斜边的直角三角形二、填空题13.如图,Rt△ABC的周长为cm,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是________cm2.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=________ ,b=________ ,c=________15.一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为________米(答案可保留根号)16.平面直角坐标系内点P(﹣2,0),与点Q(0,3)之间的距离是________.17.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于________18.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长 ________19.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:________.(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为________和________,请用所学知识说明它们是一组勾股数.20.四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,则△BDC为________三角形.21.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=________.三、解答题22.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.23.如图,在四边形ABCD中,已知AB=4cm,BC=3cm,AD=12cm,DC=13cm,∠B=90°,求四边形ABCD的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
马鸣风萧萧
八年级数学·17章·勾股定理单元质量检测
八( )班 号 姓名 成绩
本试卷分问卷和答卷。

问卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分。

考试时间80分钟。

注意事项:1. 答题前,务必在答卷上规定的地方填写自己的年级、班级、学号、姓名等。

2. 答非选择题时,必须用黑色字迹钢笔或签字笔在答卷的各题目指定区域内的相应位置上书
写,在问卷上作答无效。

如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。

不按以上要求作答的,答案无效。

3、考试结束后,考生只需上交答卷,问卷自行收回保管。

一、选择题:(每小题3分,共30分)
1、以下面各组数为边长,能构成直角三角形的一组是……………………………( )
A 、 5, 8, 13
B 、 1.5, 2, 2.5
C 、6, 7, 8
D 、 21, 28, 35 2、下列说法正确的是( )
A. 若a 、b 、c 是△ABC 的三边,则2
2
2
a b c += B. 若a 、b 、c 是Rt △ABC 的三边,则2
2
2
a b c +=
C. 若a 、b 、c 是Rt △ABC 的三边,90A ∠=︒, 则222
a b c += D. 若a 、b 、c 是Rt △ABC 的三边,90C ∠=︒ ,则2
2
2
a b c +=
3、已知三角形的三边长之比为1∶1∶2,则此三角形一定是………………( ) A .锐角三角形 B .钝角三角形 C .等边三角形 D .等腰直角三角形
4、如图,三个正方形中的两个的面积为:S1=25,S2=144,
则另一个的面积S3为.( )
A 、12
B 、13
C 、169
D 、194
5、正方形的面积是4,则它的对角线长是…………………………………………( )
A 、2
B 、2
C 、22
D 、4
6、已知,等边三角形ΔABC 中,边长为2,则面积为.…………………………( )
A 、1
B 、2
C 、2
D 、3
7、如图,在△ABC 中,AD ⊥BC 于D ,AB=3,BD=2,DC=1,则AC=………………( )
A 、6
B 、
6
C、5
D、4
8、已知直角三角形两边的长为3和4,则此三角形的周长为……………………()
A.12 B.7+7C.12或7+7D.以上都不对
9、直角三角形的斜边比一直角边长2cm,另一直角边长为6 cm,则它的斜边长…()
A.4cm B.8cm C.10cm D.12cm
10、在△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积
为……………………………………………………………………………………()A.16πB.12πC.10πD.8π
二、填空题:(每小题3分,共30分)
11、若直角三角形两直角边分别为6和8,则斜边为 ___________ ;
12、若等腰直角三角形斜边长为2,则它的直角边长为__ _____.
13、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设
筷子露在杯子外面的长度为hcm,则h的取值范围是 .
14、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需_____ ___米.
/
(第12题图)(第13题图)
15、“同位角相等,两直线平行”的逆命题为:;
16、有两棵树,一棵高6米,另一棵高2米,两树相距3米.一只小鸟从一棵树的树梢飞到
另一棵树的树梢,至少飞了米.
17、已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC是三角三
角形.
18、直角三角形的两直角边的长为3和4,则斜边上的高的长为。

19、如图数轴上表示点A的数为
20、某三角形铁皮余料的三边长为9cm,12cm,15cm,则这余料的面积为cm2.
三、解答题:(共40分)
21、(5分)下面是证明勾股定理的一种方法:用4个全等的直角三角形,拼成一个图形,请你利用面积证明勾股定理的真实性。

22、(5分)如图,每个小正方形的边长是1.请你在图中画出一个面积是5的正方形.
23、(6分)如图,一根旗杆原有8米,一次“台风”过后,旗杆被台风吹断,倒下的旗杆的顶端落在离旗
杆底部4米处,那么这根旗杆被台风吹断处离地面多高?
24、(6分)如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9. (1)求DC 的长; (2)求AB 的长;
(3)求证:△ABC 是直角三角形.
25、(6分)“道路交通管理条例”规定:小汽车在城街上行驶速度不得超过70千米/小时,如图,一辆小
汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方30米B 处,过了2秒后,测得小汽车C 与车速检测仪A 间距离为50米,这辆小汽车超速了吗?

4

26、(6分)如图,∠B=90°,AB=3,BC=4,AD=12,BD=13,求四边
形ABCD的面积。

27、(6分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.
(1)记正方形ABCD的边长为a1=1,按上述方法所作的正方形的边长依次为a2,a3,a4,……,a n,请求出a
2,a3,a4的值;
(2)根据以上规律,用含n的式子表示a n.
广东墨江中学2014-2015学年第二学期单元质量检测
八年级数学·17章·勾股定理(参考答案)
一、选择题:(每小题3分,共24分)
题号 1 2 3 4 5 6 7 8 9 10 答案
B
D
D
C
C
D
A
C
C
D
第Ⅱ卷(非选择题 共76分)
二、填空题:(每小题4分,共24分)
11、10 12、2 13、167≤≤h 14、)322(+ 15、两直线平行,同位角相等 16、5, 17、直角 18、 5
12
19、-5 20、54; 三、解答题:(共52分) 21、22
2
1
4)(c ab b a =⨯
-+ 222c b a =+
22、答案不唯一(略)
23、3米
24、解:ABD ∆是直角三角形
因为在直角三角形ABC 中,∠C=90°,AC=3,BC=4 , 所以AB=5(勾股定理) 因为AD=12,BD=13,
所以AB 2+AD 2=BD
2
所以ABD ∆是直角三角形(勾股定理逆定理) 25、70千米/小时≈17米/秒;
在直角三角形ABC 中,AB=30,AC=50,所以BC=40 所以小汽车的速度:40/2=20m/s 所以小汽车超速了 26、36
27、(1)22,2,2 (2)12-=
n n a。

相关文档
最新文档