1.1.1集合的含义和概念
1.1.1集合的含义与表示

1.1.1集合的含义与表⽰1.1.1集合的含义与表⽰1. 元素:我们把研究的对象统称为元素;常⽤⼩写字母a , b , c …表⽰元素。
2. 集合:把能够确定的不同元素的全体叫做集合,简称集.常⽤⼤写字母A ,B ,C …表⽰。
3. 集合的性质:(1)确定性:元素必须是确定的。
是否有⼀个明确的客观标准来鉴定这些对象,若有,则能构成集合,否则不能构成集合。
(2)互异性:元素必须是互异不相同的。
(3)⽆序性: 元素是⽆先后顺序的. 如:{1,2},{2,1}为同⼀集合。
4. 集合相等:构成两个集合的元素是⼀样的。
5. 集合与元素的关系:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . 如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ?A . 6. 重要的数集:N :⾃然数集(含0)N+:正整数集(不含0) Z :整数集 Q :有理数集 R :实数集7. 空集(?):把没有元素的集合叫做空集,记作?。
8. 集合的表⽰⽅法:列举法、描述法、区间表⽰列举法:将集合中元素⼀⼀列举出来,元素之间⽤逗号隔开,⽤花括号{ }括起来。
描述法:⽤集合所含元素的共同特征表⽰集合的⽅法,称为描述法。
如:在⼤括号内先写上表⽰这个集合元素的⼀般符号及取值(或变化)范围,再画⼀条竖线,在竖线后写出这个集合中元素所具有的共同特征。
区间表⽰:设a 、b 是两个实数,且a①满⾜不等式a ≤x ≤b 的实数x 的集合, 叫作闭区间,记作 [a,b];②满⾜不等式a③满⾜不等式a ≤x{}|10x R x ∈<{}|∈⼀般符号范围共同特征{x| a练习:⼀、说法正确的是( ) 1. 接近于0的数的全体构成⼀个集合 2. 棱柱的全体构成⼀个集合 3. 未来世界的⾼科技产品构成⼀个集合 4. 不⼤于3的所有⾃然数构成⼀个集合 5. 漂亮的花 6. 正三⾓形全体⼆、集合{1,2}与集合{(1,2)}是否相等?集合{(1,2),(2,1)}与集合{(2,1),(1,2)}是否相等?三、⑴ 0 ? ⑵ {0} ? 四、⽤列举法表⽰下列集合:(1) ⽅程x x =2 的所有实数根组成的集合; (2) ⽅程0)1(2=-x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合。
人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
1.1.1集合的含义与表示

一、集合的含义 1.什么是集合?
一般的,我们把研究对象统称为元素,把一些元 素组成的总体叫做集合(简称为集)。
元素:用小写字母a,b,c...表示 集合:用大写字母A,B,C...表示
2.集合与元素的关系 • 如果a是集合A的元素,就说a属于集合A,记作 a A 如果a不是集合A中的元素,就说a不属于集合A,
• 正整数集:N*或N+ • 整数集:Z
• 有理数集:Q
• 实数集:R
二、集合的表示
• 列举法:把集合的元素一一列举出来,写在大括号内 注:1.元素之间要用逗号隔开 2.元素不能重复
如:地球上的四大洋组成的集合表示为{太平洋,大西洋, 印度洋,北冰洋}
方程(x 1)( x 2) 0 组成的集合表示为{1,-2}
梦 境
集合? 例:(1)1~20内的所有整数 1,2,3,4,5..... • (2)亚洲的所有国家 中国,韩国,日本,印度..... • (3)所有的正方形 • (4)方程x2 3x 2 0 的所有实数根 - 1 , - 2 • (5)化德一中2020年9月入学的所有高一学生
二、集合的表示
• 描述法:用集合所含元素的共同特征表示集合 注:集合的代表元素
如:不等式 x 7 3的解集,共同特征:x R ,且 x 7 3
集合表示为:{x R x 10}
列举法主要针对集合中元素个数较少的情况,而描述法 主要适用于集合中的元素个数无限或不宜一一列举的情况
记作 a A
• 例:1~20内的所有素数记为集合A,则 3 A,4 A
素数:除1和它本身外,不能被其他自然数整除的 数。
判断下列对象能否组成集合: • 1.小于6的正整数 • 2.大于3小于11的偶数 • 3.中国男子足球队中技术很差的队员 • 4.中国的富翁 • 5.爱好足球的人 • 6.世界上所有的高山
1.1.1集合的含义及表示

考点:元素与集合的关系
一、用合适的符号填空 1、已知A表示大于1且小于10的 所有质数,则 1___A; 2___A;4___A;5___A 2、用P表示我国的直辖市,则 广州___P;重庆___P;北京___P
四、常用数集的符号表示(熟记)
N 正整数集: 或N
整数集:Z 自然数集:N
有理数集:Q
{, 12 }与{, 21 }是相同的集合√ { }与{ 是相同的集合 3.14 }
×
二、集合的概念和性质
3、集合相等:两个集合中的元素 完全相同
{, 12 }与{, 21 }是相同的集合 {1 2 , {, }= 2 1 }
三、元素与集合的关系
1、元素与集合的表示 元素:用a,b,c…表示 集合:用A,B,C…表示 2、元素与集合的关系: 属于,不属于 符号表示:a A, a A
一、接触过的集合的概念
垂直平分线:到线段两端点的距 离相等的点的集合
角平分线:到角两边的距离相等的 点的集合 圆:到定点的距离等于定长的点 的集合
学过的数集: 自然数集→ 整数集 →有理数集→ 实数集 → Z → Q → R N
注: 1、正整数集与自然数集的区别 2、研究的每一个对象称为元素; 这些元素的全体则构成一个集合
实数集:R
五、分析与研究
1、给出下列四个关系:
3 R,0.7 Q,0 {0},0 N
其中正确的个数是_______ A、1 B、2 C、3 D、4
2、下列四个命题:
(1)集合N中最小的元素是1
若 (2) a N , 则
小值是2
a N
(3)若a N , b N ,则a+b中的最 (4) x 4 4 x 的解集是{2,2}
高中数学知识点总结第一章

高中数学 知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法 N 表示自然数集,N* 或N + 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B {x A A =∅=∅B A ⊆ B B ⊆B {x A A = A ∅=B A ⊇ B B ⊇A ð{x ()U A =∅ð ()U A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法()()()U U A B A B =痧?()()()U U A B A B =痧?(2)一元二次不等式的解法〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由yxo于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)a f xx a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈, 都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在处有定义,则.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图: ①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位 0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换 01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸 ③对称变换 ()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
1.1.1集合的含义与表示

3
2.集合: 集合常用大写字母表示,元素常用小 写字母表示.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
4
3.集合与元素的关系: 如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA. 例如:A表示方程x2=1的解. 2A,1∈A.
Hale Waihona Puke 12• 例2试分别用列举法和描述法表示下 列集合: • (1)方程x2-2=0的所有实数根组成的集 合; • (2)由大于10小于20的所有整数组成 的集合。 思考题 结合此例,试比较用自然语言、 列举法和描述法表示集合时各自的特点和 适用的对象。
13
• 练习与思考 教材P5练习1、2
14
课堂小结
那么{(1,2)},{(2,1)}是否为同一集合?
7
判断下列例子能否构成集合 中国的直辖市
√
× ×
身材较高的人
著名的数学家
高一(3)班眼睛很近视的同学
×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
8
5.集合的表示方法 1、列举法: 无序 互异
将集合中的元素一一列举出来,并 用花括号{ }括起来的方法叫做列 举法
5
4.常用的数集:
N:自然数集(含0)
N+或N*:正整数集(不含0)
Z:整数集
Q:有理数集
R:实数集
6
5.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
1.1.1集合的含义与表示

1.1.1 集合的含义与表示一.知识解读1. 一般地,把研究对象统称为,把一些元素组成的总体叫,也简称。
2. 关于集合的元素的特性有:(1) , (2) , (3) .3.元素与集合的关系-------从属关系;集合常用大写字母表示,元素用小写字母表示;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作(或a A)(举例),(3)集合相等:构成两个集合的元素完全一样.4.常用数集及其记法非负整数集(或自然数集),记作;正整数集,记作或;整数集,记作;有理数集,记作;实数集,记作.5.集合的表示方法(1)列举法:表示集合的方法; (2)描述法:表示集合的方法.二.课堂互动问题1 考查下列每组对象提炼出集合的含义(1)全体高一(3)班的49名学生;(2)1到20以内的所有偶数;(3)2012年伦敦奥运会的所有比赛项目x->的所有解(4)不等式30(5)到顶点A的距离等于定长l的所有的点问题2 判断以下元素的全体是否能构成一个集合,并说明理由(1)高一(1)班所有高个子同学(2)我国的所有小河流问题3 从上面的例子看到,我们可以用自然语言描述一个集合,除此之外,还可以用什么方法表示集合呢?例1、选择适当的方法表示下列集合(1)012=-x 的所有实数根组成的集合(2)welcome 中的所有字母组成的集合(3)直角坐标系内第三象限的点组成的集合(4)所有奇数组成的集合(5)以A 为圆心,r 为半径的圆上的所有点组成的集合跟踪训练:选择适当的方法表示下列集合(1)12的正约数(2)不等式712>+x 的整数解(3)抛物线2x y =上的点例2、已知集合A ={1,-2,x 2-1},B ={1,0,x 2-3x },且A = B ,求x 的值.例3、已知}4,12,3{32---∈-a a a ,求实数a 的值三、课堂练习见教科书第5页练习四、课堂小结1、牢记集合元素的特性2、如何选择适当的方法来表示集合?五、课后作业1、下列说法中能构成集合的是 ( )A.2009年全国的大中专毕业生;B.英德华粤艺术学校高一(1)班个子较高的男生;C.1,1,2三个元素构成的集合;D.与无理数π无限接近的数.2、 下列各项中,不可以组成集合的是 ( )A 、所有的正数B 、等于2的数C 、接近于0的数D 、不等于0的偶数3、以下四种说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C) “我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定4、集合 A={(x ,y )|x >0,y ﹥0}是指………………… …( )A .第一象限内的点集B .第三象限内的点集C .在第一、三象限内的点集D .不在第二、四象限内的点集5、{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形6、设集合A={-2,-1,0,1,2}, },1|{2A x x y y B ∈-==.则B中的元素是_____.7、分别判断下列各组集合是否为同一集合(1)A={x|x+3>2} B={y|y+3>2}(2)A={(1,2)} B={1,2}(3)A={(x,y )|y=x 2+1} B={y| y=x 2+1}8、对于集合A={2,4,6},若A a ∈,则A a ∈-6,那么a 的值是9、选择适当的方法表示下列集合:(1)方程x 2-16=0的解集; (2)不等式3x -1>5的解集.10、设A 表示集合{2,3,a 2+2a-3},B 表示集合{|a +3|,2},已知5∈A 且5∉B ,求a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的含义和概念
在生活中,我们常常把具有相似性质的对象放在一起分析研究,例如,班上所有参加运动会的同学;图书馆中所有的工具书;网袋完好的篮球架。
在数学学习中,我们也接触过一些这样的处理方式,例如:对100进行因数分解,需要列举1-10所有的素数;到定点距离相等的点组成的图形是圆;介于1和3的实数,在数轴上是一条两个单位长的线段。
我们称被研究的个体对象,例如一个同学,2,圆上的一个点,为元素;这些元素组成的整体,例如运动会名单,{2,3,5,7},圆,为集合
显然4不是1到10的素数,圆外的点也不属于圆这个集合
集合中的元素应当是确定的,不能模棱两可。
含混不清的描述会导致在处理一些对象时不知所措,这种抽象便失去了意义。
1.下列每组对象能否构成一个集合:
(1)我们班的所有高个子同学;
(2)不超过20的非负数;
(3)直角坐标平面内第一象限的一些点;
(4)3的近似值的全体.
2.下列所给的对象能构成集合的是________.
(1)所有正三角形;
(2)必修1课本上的所有难题;
(3)比较接近1的正整数全体;
(4)某校高一年级的16岁以下的学生.
元素和集合的关系
也就是说给定一个集合,那么任意一个元素,要么在这个集合中,要么不在,不可能出现既在,又不在的情况,这也是集合的确定性的一种表述。
关系 概念
记法
读法
属于
如果a 是集合A 的元素,就说a 属于集合A
a
∈A
a 属于
集合A
不属于
如果a 不是集合A 中的元素,就说a 不属于集合A
a ?A
a 不属
于 集合A
常用数集及表示符号
名称 自然数集
正整数集 整数集
有理数集
实数集
符号
N N *
或N +
Z Q R
3.设A 表示“中国所有省会城市”组成的集合,则深圳________A ;广州________A (填∈或?). 答案 ? ∈
4.所给下列关系正确的个数是( ) ①-12
∈R ;②2?Q ;③0∈N *;④|-3|?N *
.
A .1
B .2
C .3
D .4 答案 B
5.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为 2或4
集合A 中的元素x 满足
6
3-x
∈N ,x ∈N ,则集合A 中元素有__________. 答案 0,1,2
6.若x ∈N ,则满足2x -5<0的元素组成的集合中所有元素之和为________. 3 解析 由2x -5<0,得x <5
2,又x ∈N ,
∴x =0,1,2,故所有元素之和为3.
7.已知集合P 中元素x 满足:x ∈N ,且2<x <a ,又集合P 中恰有三个元素,则a 的取值范围是________.57a <<
8.集合A 由方程2
10103x x -
+=的解组成,求A 中所有元素之和________. 103
9.已知圆O,圆O 上所有的点构成的集合为集合A,圆内所有点构成的集合为集合B,圆外所有点构成的集合为集合C ,又已知三点P,R,Q,其中P 到圆心的距离等于圆的半径,R 到圆心的距离小于圆的半径,Q 到圆心的距离大于圆的半径,写出元素P,R,Q 和集合A,B,C 的关系
互异性(唯一性)
讲解:还是以运动会为例,肯定有同学报了2个,甚至更多项目,但在简单统计与会人员时,并不会重复对其进行登记,也就是说在抽象的过程中,重复的元素被省略掉,集合中的元素不会重复出现,既然如此,一个集合中的元素自然也是互不相同的。
10.1,,32,1
2
组成的集合含有____个元素 3个
11.若一个集合中的三个元素a ,b ,c 是△ABC 的三边长,则此三角形一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 D
12.已知1∈{a 2
,a },则a =________ -1
13.已知集合A 中只含有1,a 2
两个元素,则实数a 不能取的值为________. 答案 ±1
14.由2
11
,,||,,||,022
a a a a a a -+组成的集合,最多有几个元素,最少有几个元素 最多3个,最少0个
集合性质综合问题
15.已知集合A 是由0,m ,m 2
-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为 3 16.已知集合A 是由a -2,2a 2
+5a,12三个元素组成的,且-3∈A ,求实数a . a =-32
.
17.设a ,b ∈R ,集合A 中有三个元素1,a +b ,a ,集合B 中含有三个元素0,b a
,b ,且A =B ,则a +b =________ 0
18.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2
,且M =N .求a ,b 的值
19.由2
4,21,a a --可以构成一个有三个元素的集合A ,则a 不能取哪些值 20.由9,5,1a a --可以构成一个有三个元素的集合B ,则a 不能取哪些值 21.已知9A ∈,试求满足满足条件的所有a
5要排除 3要排除 -3可以留下
22.设A 为实数集,且满足条件:若a ∈A ,则1
1-a ∈A (a ≠1).
求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能只有一个元素
集合的笛卡尔积
23.{(,)|,}A B x y x A y B ⨯=∈∈定义集合间的运算,
已知集合{1,2,3}A =,{1,2,3}B =,用列举法表示A B ⨯
已知集合A 中有10个元素,集合B 中有20个元素,则A B ⨯中有____个元素 如果认为数轴上的点是R 中的元素,那么R R ⨯中的元素是_____ 中的点
24.运算的封闭
如果某种二元运算,对于集合S ,任取集合S 中的两个元素进行该运算得到的结果仍然是集合S 的元素,则称这种运算在集合S 上是封闭的。
例如加法在正整数集上是封闭的,任意两个正整数之和仍然是正整数,而减法对于正整数集就不是封闭的。
试判断下列运算在给定集合上是否是封闭的
(1).加法 {|21,}S x x k k Z ==+∈ (2).乘法 {|21,}S x x k k Z ==+∈
(3).除法 Z (4).除法 Q
类似的,如果某种一元运算,对于集合S ,任取集合S 中的一个元素进行该运算得到的结果仍然是集合S 的元素,则称这种运算在集合S 上是封闭的
试判断下列运算在给定集合上是否是封闭的
(1)平方 N (2)开平方取正平方根 2
{|,}S x x k k Z ==∈ (3)开平方取正平方根 N +
(4)开平方取正平方根 Q
25.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集。
给出平面上4个点集的图形如下(阴影区域及其边界),其中为凸集的是(??? )(写出所有凸集相应图形的序号)
悖论:
26.罗素悖论:在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。
我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。
可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢
27.谎话悖论:假设世界上只有假话和真话,我说:现在我说的这句话是谎话,那么这句话是谎话还是真话呢。