1.2.3同角三角函数的基本关系第一课时学案
苏教版数学高一《同角三角函数关系》 同步学案

三角函数1.2.2同角三角函数关系第1课时
【教师活动】
【教学目标】
【教学重难点】
同角三角函数关系的应用
【教学准备】
多媒体
【教学活动】
1 问题堂练习
【教学反思】
【学生活动】
【学习目标】
1.能根据三角函数的定义导出同角三角函数的基本关系式;
2.掌握三种基本关系式之间的联系;
3.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
【课时安排】
1课时
【课堂探究】
一、问题情境
当角 确定后, 的正弦、余弦、正切也随之确定,它们之间有何关系?
二、师生互动
三、建构数学
1.同角三角函数关系式:
四、数学应用
例1 已知 ,并且 是第二象限角,求 .
例2已知 ,求 .
练习:已知 ( ),求 .
【当堂练习】课本17页2、3\、4
【课堂小结】
【课后作业】
同角三角函数的基本关系导学案

同角三角函数的基本关系教学目标:1、知识目标:把握同角三角函数的基本关系式;2、能力目标:能用同角三角函数的基本关系式化简或证明三角函数的恒等式;3、情感价值观:通过小组探究合作,体验观察、分析、归纳等数学学习中的基本方法;体验发现规律、运用规律的过程;通过学生自己归纳总结,提高学习兴趣和自信心。
学情分析:1、学生在初中已学习过直角三角形中的三角函数,会求一些特殊角的函数值,这为本节课开头的探讨提供了基础。
2、本班大部分学生学习基础和计算能力一般,而且对新概念的归纳总结能力还有待进一步培养和提高,所以在小组探究时要给予必要的引导。
重点难点:重点:三角函数式的化简或证明;难点:同角三角函数基本关系式的变用、活用、倒用。
一、同一角的三角函数之间存在如下关系:1. 平方关系:2.商数关系:二、公式变形: ①22sin cos 1αα+=cos α=22cos 1sin αα=-a a a cos sin tan=sin α=22sin 1cos αα=-()()1cos sin 22=+a a②aa a cos sin tan =,tan cos sin a a a =.tan sin cos a a a = 的值。
是第三象限角,求,已知例αααtan ,cos 53sin .1a -=的值。
求变式:已知αααtan ,cos ,53sin -=例2,已知tana=2,且a 是第三象限角,求sina ,cosa 的值。
αααααcos sin cos sin ,2tan 3-+=求、已知例变式、已知tana=2,求αααα22cos sin cos sin -变式、已知tana=2,求变式、已知tana=2,求方法总结若已知sina 或cosa,先通过平方关系得出另外一个三角函数值,再用商数关系求得tana ;若已知tana,先通过商数关系确定sina 与cosa 的联系,再用平方关系与其组成方程组,解方程组即可。
同角三角函数的基本关系教学设计

同角三角函数的基本关系教学设计一、引言同角三角函数是初中数学中的重要内容,也是高中数学和大学数学的基础。
本文将介绍同角三角函数的基本关系教学设计。
二、教学目标1. 理解同角三角函数的定义及其意义;2. 掌握正弦、余弦、正切、余切四种同角三角函数的基本关系;3. 能够运用同角三角函数解决实际问题。
三、教学过程1. 同角三角函数的定义及其意义1.1 定义:对于任意一个锐角∠A,其正弦值sinA等于∠A所在直角三角形中对边与斜边之比,余弦值cosA等于邻边与斜边之比,正切值tanA等于对边与邻边之比,余切值cotA等于邻边与对边之比。
1.2 意义:同一锐角所对应的四个函数值互相依赖,其中一个确定时其他三个也随之确定。
因此,在求解某些几何问题时可以通过已知一个函数值来求出其他函数值。
2. 正弦、余弦、正切、余切四种同角三角函数的基本关系2.1 正弦和余弦:sin²A + cos²A = 1证明:根据勾股定理可得sin²A + cos²A = 1 - sin²A,即sin²A + sin²A = 1,故sin²A + cos²A = 1。
2.2 正切和余切:tan A × cot A = 1证明:tan A × cot A = (sin A / cos A) × (cos A / sin A) = 1。
2.3 正弦和余切:sin A × cot A = cos A证明:sin A × cot A = sin A × (cos A / sin A) = cos A。
2.4 余弦和正切:cos A × tan A = sin A证明:cos A × tan A = cos A × (sin A / cos A) = sin A。
3. 运用同角三角函数解决实际问题3.1 求解直角三角形的边长对于一个已知锐角∠A及其对边a或邻边b,可以通过正弦、余弦、正切、余切四种函数求出其他两个未知量。
高中数学_1.2.3 同角三角函数的基本关系式教学设计学情分析教材分析课后反思

教学设计(一)自主学习推导公式1、证明公式:(同角三角函数基本关系)(1)平方关系:(2)商的关系:回忆:任意角三角函数的定义?学生回答:设α是一个任意角,它的终边与单位圆交于点P(x,y)则:sinα=y;cosα=x,引导学生注意:单位圆中所以,sin2α+cos2α=1;设计意图:引导学生运用已知知识解决未知知识,体会数学知识的形成过程。
2、辨析讨论—深化公式辨析1思考:上述两个公式成立有什么要求吗?设计意图:注意这些关系式都是对于使它们有意义的角而言的。
如(2)式中辨析2判断下列等式是否成立:设计意图:注意“同角”,至于角的形式无关重要,突破难点。
辨析3思考:你能将两个公式变形么?(师生活动:对于公式变式的认识,强调灵活运用公式的几大要点。
)设计意图:对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用)等(二)小组合作及时训练自然界的万物都有着千丝万缕的联系,大家只要养成善于观察的习惯,也许每天都会有新的发现。
刚才我们发现了同角三角函数的基本关系式,那么这些关系式能用于解决哪些问题呢?[例1] 已知sinα=0.8,且α是第二象限角,求cosα,tanα的值.思考1:条件“α是第二象限的角”有什么作用?思考2:如何建立cosα与sinα的联系?如何建立他们与tanα的联系?设计意图:借助学生对于刚学习的知识所拥有的探求心理,让他们学习使用两个公式来求三角函数值。
变式:α是第四象限角,tanα=-5/12,求sinα.思考:本题与例题一的主要区别在哪儿?如何解决这个问题?设计意图: 对比之前例题,强调他们之间的区别,并且说明解决问题的方法:针对α可能所处的象限分类讨论。
小结:(由学生自己总结,师生共同归纳得出)2.注意:若α所在象限未定,应讨论α所在象限。
设计意图:利用例题与变式,共同总结两类问题的解决方法,培养学生归纳分析能力。
[例2]本题已知正切的值欲求sin α,tan α的值.设计意图:利用商的关系的灵活使用,解法多样,通过对公式正向、逆向、变式使用加深对公式的理解与认识。
《同角三角函数的基本关系》第1课时示范教学方案北师大新课标

第四章三角恒等变换4.1同角三角函数的基本关系第1课时同角三角函数的基本关系1.能根据三角函数定义,利用单位圆,推导出同角三角函数的基本关系.2.理解同角三角函数的基本关系.3.并能运用同角三角函数基本关系进行简单的求值.4.通过本节课的学习,提升逻辑推理、数学运算等核心素养.教学重点:同角三角函数基本关系的推导及应用.教学难点:已知一个角的一个三角函数值,求这个角的其它三角函数值时符号的确定.PPT课件.一、导入新课问题1:阅读课本第137页,回答下列问题:(1)本章将要探究哪些问题?(2)本章要探究的对象在高中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结章引言的内容.预设答案:(1)本章将要探究基本的三角恒等变换公式及其简单的应用,提高数学运算、逻辑推理的核心素养.(2)三角恒等变换是研究三角函数性质的工具,求三角函数最值,三角恒等变换是常用方法之一,也是解三角形的工具之一.设计意图:通过章引言的学习,让学生明晰下一阶段的学习目标,初步构建学习内容的思维框架.问题2:数学是美的,其中一个重要的原因在于数学中存在十分美妙的数量关系,如勾股定理反映了直角三角形的三边之间关系的美妙.若直角三角形斜边为1,锐角α的对边为sin α、邻边为cos α,在这个直角三角中,你能得出什么关系?师生活动:学生思考,举手回答.预设答案:如图,若直角三角形斜边为1,锐角α的对边为sin α、邻边为cos α, 自然将有sin 2α+cos 2α=12,即sin 2α+cos 2α=1,另外还有tan α=sin αcos α.设计意图:通过学生回顾、探究直角三角形的边角关系,引出本节课的研究主题–同角三角函数的基本关系(版书).二、新知探究1.同角三角函数基本关系式问题1:观察单位圆,利用三角函数分析角α的正弦、余弦和正切之间存在什么关系?师生活动:学生独立思考和交流后,举手回答. 预设答案:sin 2α+cos 2α=1和tan α=sin αcos α.设计意图:利用三角函数定义推导基本关系. 知识点1:同角三角函数基本关系式 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α,2k k Z παπ≠+∈(,). 问题2:同角三角函数的基本关系式对任意角都成立吗? 师生活动:学生思考,举手回答.预设答案:sin 2α+cos 2α=1对一切α∈R 恒成立,而tan α=sin αcos α仅对α≠π2+k π(k ∈Z )成立.设计意图:让学生进一步理解同角三角函数的基本关系式.问题3:sin2α能写成sinα2吗?师生活动:学生思考,举手回答.预设答案:sin2α是(sinα)2的简写,不能写成sinα2.设计意图:理解同角三角函数的基本关系式结构.问题4:“同角”的含义是什么?师生活动:学生思考,举手回答.预设答案:这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)都成立,即与角的表达形式无关,如sin23α+cos23α=1成立,但是sin2α+cos2β=1就不一定成立.设计意图:帮助学生进一步理解同角三角函数的基本关系式.★资源名称:【知识点解析】同角三角函数的基本关系.★使用说明:本资源为《同角三角函数的基本关系》的知识解析,通过讲解相关概念,并结合具体例题,提高知识的应用能力.注:此图片为“微课”缩略图,如需使用资源,请于资源库调用.2.同角三角函数基本关系式的变形问题5:同角三角函数基本关系式的变形有哪些?师生活动:学生思考,写出公式变形,教师补充.预设答案:(1)sin2α+cos2α=1的变形公式sin2α=1-cos2α;cos2α=1-sin2α.(2)tanα=sinαcosα的变形公式sinα=cosαtanα;cosα=sinαtanα.设计意图:进一步理解同角三角函数关系.问题6:已知4sin5α=,角的终边在第二象限,如何求cos,tanαα的值?师生活动:学生思考、求解.预设答案:34 cos,tan53αα=-=-.因为4sin5α=,角的终边在第二象限,所以3sin4 cos,tan5cos3αααα==-==-.设计意图:巩固同角三角函数的基本关系式及其变形.三、巩固练习例1已知12cos13α=-,求sin,tanαα的值.师生活动:学生分析解题思路,找学生板书解题过程.预设答案:①当α在第二象限,则sin0α>,5sin13α===,sin5tancos12ααα==-.②当α在第三象限,则sin0α<,5sin13α===-,sintan12cosααα==.方法总结:若已知sinα或cosα,求其它角的函数值,可以利用平方关系、和商数关系求解,注意角的范围.设计意图:巩固同角三角函数的基本关系式.例2已知tan(0)m mα=≠求sinα和cosα的值.师生活动:学生分析解题思路,教师书写解题过程.预设答案:因为22sin cos1αα+=,sintancosmααα==,αα所以|cos |α=若α在第一象限或第四象限,cos α=,sin α=⎪⎪⎩. 若α在第二象限或第三象限,cos α=,sin α=⎪⎪⎩. 综上所述:cos α=⎪⎪⎩,sin α=⎪⎪⎩. 方法总结:(1)已知tan θ求sin θ(或cos θ)常用以下方式求解.(2)当角θ的范围不确定且涉及开方时,常因三角函数值的符号问题而对角θ分区间(象限)讨论.设计意图:巩固同角三角函数的基本关系式以及分类讨论思想.例3如图,点A ,B 在圆O 上,且点A 位于第一象限,圆O 与正半轴的交点是C ,点B 的坐标为43(,)55-,AOC α∠=,若||1AB =,求sin α的值.师生活动:学生分析解题思路,写出解题过程.x预设答案:半径4||(1r OB ===, 由三角函数定义知,点A 的坐标为(cos α,sin α). ∵点B 的坐标为43(,)55-,||1BC =,1=, ∴整理可得:-6sin α+8cos α=5,又22cos sin 1αα+=,解得3sin 10α-+=或3sin 10α--=, 又∵点A 位于第一象限,∴,∴sin α=方法总结:利用同角三角函数基本关系式求sin α、cos α的值时,易忽视角Α范围,造成sin α、cos α漏解或多解的错误.设计意图:巩固三角函数的定义与同角三角函数的基本关系式的综合应用. 【板书设计】四、归纳小结问题7:回归本节的学习,你有什么收获?可以从以下几个问题归纳. (1)同角三角函数的基本关系的内容是什么? (2)已知三角函数值求其他三角函数值的方法是什么? 师生活动:学生尝试总结,老师适当补充. 预设答案:(1)同一个角的正弦、余弦的平方和等于1,商等于角α的正切.(2)①若已知sin α=m ,可以先应用公式cos α=±1-sin 2α求得cos α的值,再由公式02πα<<tan α=sin αcos α求得tan α的值.②若已知cos α=m ,可以先应用公式sin α=±1-cos 2α求得sin α的值,再由公式tan α=sin αcos α求得tan α的值. 设计意图:通过梳理本节课的内容,能让学生更加明确同角三角函数基本关系及其应用. 布置作业:教科书第142页,A 组第1,2题. 五、目标检测设计1.已知α是第四象限角,cos α=1213,则sin α等于( )A .513B .-513C .512D .-512设计意图:检查学生对同角三角函数的基本关系掌握的情况. 2.已知cos θ=45,且3π2<θ<2π,则1tan θ的值为( )A .34B .-34C .43D .-43设计意图:检查学生对同角三角函数的基本关系掌握的情况. 3.已知sin θ=1213,且sin θ-cos θ>1,则tan θ等于 .设计意图:检查学生对同角三角函数的基本关系掌握的情况. 4.若sin(180°+α)=-1010,0°<α<90°.求sin (-α)+sin (-90°-α)cos (540°-α)+cos (-270°-α)的值. 设计意图:检查学生对同角三角函数的基本关系掌握的情况. 【参考答案】 1.答案:B .解析:∵sin 2θ+cos 2θ=1,∴sin 2θ=1-cos 2θ=1-144169=25169,又∵α是第四象限角,∴sin α<0,即sin θ=-513.2.答案:D .解析:由于cos θ=45,且3π2<θ<2π.所以sin θ=-=-35,所以tan θ=-34,故1tan θ=-43.3.答案:-125.解析:因为sin θ-cos θ>1,所以cos θ<0,所以cos θ=-1-sin 2θ=-513,所以tan θ==-125.4.解析:由sin(180°+α)=-1010,α∈(0°,90°), 可得sin α=1010,cos α=31010, ∴原式=-sin α-sin(90°+α)cos(360°+180°-α)+cos(270°+α)=-sin α-cos α-cos α+sin α=-1010-31010-31010+1010=2.。
人教版高中数学必修四第一章1-2-2同角三角函数的基本关系式《学案》

班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语在年轻人的颈项上,没有什么东西能比事业心这颗灿烂的宝珠更迷人的了。
——哈菲兹学习目标1.理解同角三角函数的基本关系.2.会利用同角三角函数的基本关系化简、求值、证明恒等式.学习重点同角三角函数的基本关系式的推导,会利用同角三角函数的基本关系式进行三角函数的化简与证明学习难点会用同角三角函数的基本关系式进行三角函数的化简与证明自主学习同角三角函数的基本关系平方关系: .商的关系:.tanα=预习评价1.已知θ是第一象限角且,则cosθ=.2.化简:= .3.已知3sinα+cosα=0,则t a n = .♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.同角三角函数基本关系设角是一个任意象限角,点P(x,y)为角α终边上任意一点,它与原点的距离为r(r= >0),那么:,请根据三角函数的定义思考下面问题:(1)从以上三角函数的定义,试计算sin2α+cos2α与的值,并根据你计算的结果,写出sin ,cos ,t a n 之间的关系式.(2)同角三角函数的两个基本关系成立的条件各是什么?2.利用同角三角函数关系可以解决哪些问题?教师点拨对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将换成或2α也成立,如.(3)商的关系中要注意公式中的隐含条件,cos ≠0,即交流展示——利用基本关系求值1.已知( )A. B. C. D.2.已知,则等于A. B. C. D.3.______.4.已知是第二象限角,,则变式训练1.(2011·山东省潍坊市月考)已知cos α-sin α=-,则sin αcos α的值为()A. B.± C. D.±2.已知tan α=-2,且<α<π,则cos α+sin α=.交流展示——三角函数式的化简5.若,则sinαcosα=A. B. C. D.6.当角α的终边在直线3x+4y=0上时,sin α+cos α=B. C. D.±7.(2012·聊城测试)已知tan α,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<π,则cos α+sin α=.变式训练已知,求(1);(2)的值.交流展示——三角恒等式的证明8.求证:.9.证明:(1-tan4A)cos2A+tan2A=1.变式训练求证:学习小结1.三角函数求值的常用方法若已知tan =m,求其他三角函数值,其方法是解方程组求出sin a和cos a的值.若已知tan =m,求形如的值,其方法是将分子、分母同除以co s a(或cos2a)转化为tan 的代数式,再求值.形如a sin2 +bsin •cos +c•cos2 通常把分母看作1,然后用sin2 +cos2 代换,分子分母同除以cos2 再求解.提醒:在应用平方关系求sin 或cos 时,函数值的正、负是由角的终边所在的象限决定的,切不可不加分析,凭想象乱写结果.2.三角函数式化简的本质及关注点(1)本质:三角函数式化简的本质是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.(2)关注点:不仅要熟悉和灵活运用同角三角函数的基本关系式,还要熟悉并灵活应用这些公式的等价变形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα•cosα,cosα= .3.对三角函数式化简的原则(1)使三角函数式的次数尽量低.(2)使式中的项数尽量少.(3)使三角函数的种类尽量少.(4)使式中的分母尽量不含有三角函数.(5)使式中尽量不含有根号和绝对值符号.(6)能求值的要求出具体的值,否则就用三角函数式来表示.4.证明三角恒等式的常用方法证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.当堂检测1.已知A为三角形的一个内角,且,则cos A−sin A的值为A. B. C. D.2.化简(1+tan2α)·cos2α=__________.3.已知在△ABC中,.(1)求sin A·cos A的值.(2)判断△ABC是锐角三角形还是钝角三角形.(3)求tan A的值.知识拓展在中,,求的值.详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】(1)sin2α+cos2α=1(2)【预习评价】1.2.cos20°3.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)sin2α+co s2α= + = =1,由以上计算结果可得出以下结论;sin2α+cos2α=1及tanα= .(2)对于平方关系只需同角即可;对于商的关系第一保证是同角,第二保证α≠kπ+ (k∈Z).2.(1)求值:已知一个角的三角函数值,求这个角的其他三角函数的值;(2)化简三角函数式;(3)证明三角恒等式.【交流展示——利用基本关系求值】1.C.【备注】对于与之间的关系,通过平方可以表达出来.2.A,结合可得,所以3.1【解析】本题主要考查同角三角函数基本关系.原式.4.【解析】本题考查同角三角函数基本关系式的应用.利用同角三角函数基本关系式,已知一个角的一个三角函数值可求这个角的其它三角函数值.,又,∴【变式训练】1.A【解析】由已知得(cos α-sin α)2=sin2α+cos2α-2sin αcos α=1-2sin αcos α=,解得sin αcos α=,故选A.2.【解析】本题主要考查了三角函数的概念,意在考查考生对基本概念的理解和应用能力由tan α=-2,得=-2,又sin2α+cos2α=1,且<α<π,解得sin α=,cos α=-,则sin α+cos α==.【交流展示——三角函数式的化简】5.B【解析】由,得,即t a nα.故选B.6.D【解析】在角α的终边上取点P(4t,-3t)(t≠0),则|OP|=5|t|.根据任意角的三角函数的定义,当t>0时,sin α==-,cos α==,sin α+cos α=;当t<0时,sin α==,cos α==-,sin α+cos α=-. 7.-【解析】∵tan α·=k2-3=1,∴k=±2,而3π<α<π,则tan α+=k=2,得tan α=1,则sin α=cos α=-,∴cos α+sin α=-.【变式训练】(1);(2).的一次或二次齐次式,所以可将分子和分母同除以或,然后将代入求解即可.【备注】注意到的应用.【交流展示——三角恒等式的证明】8.证明: 因为1cos sin sin 1cos x x x x+--(1cos )(1cos )sin sin sin (1cos )x x x x x x +--=- 22221cos sin sin sin 0sin (1cos )sin (1cos )x x x xx x x x ---===--,所以1cos sin =sin 1cos x x x x+-. 9.∵左边=·cos 2A+=+=+==1=右边,∴原等式成立. 【变式训练】右边左边.【解析】通过“切割化弦”将右边分子、分母中的正切化为再进行通分求解.【备注】在三角恒等式的证明中化异为同是基本思想,“1”的代换要灵活运用. 【当堂检测】 1.D【解析】由A 为三角形的内角且,可知,,∴cosA −,.故选D. 2.13.(1)由1sin cos 5A A +=,两边平方,得112sin cos 25A A +⋅=,所以12sin cos 25A A ⋅=-. (2)由(1)得12sin cos 025A A ⋅=-<.又0A π<<,所以cos 0A <, 所以A 为钝角.所以ABC ∆是钝角三角形.(3)因为12sin cos 25A A ⋅=-, 所以22449(sin cos )12sin cos 12525A A A A -=-⋅=+=, 又sin 0,cos 0A A ><,所以sin cos 0A A ->,所以7sin cos 5A A -=. 又1sin cos 5A A +=,所以43sin ,cos 55A A ==-. 所以4sin 45tan 3cos 35A A A ===--. 【知识拓展】解:∵,①∴,即,∴.∵,∴,.∴.∵,∴.②①+②,得.①−②,得.∴.【解析】本题主要考查同角三角函数基本关系以及三角形中函数符号的判定。
同角三角函数的基本关系_学案

人教A 版必修四 同角三角函数的基本关系 学案要点一 利用同角基本关系式求值例1 已知cos α=-817,求sin α,tan α的值. 跟踪演练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值. 要点二 三角函数代数式的化简例2 化简下列各式: (1) 1-2sin 10°cos 10°sin 10°-1-sin 2 10°; (2) 1-sin α1+sin α+ 1+sin α1-sin α,其中sin α²tan α<0. 跟踪演练2 已知tan α=3,则(1)2sin α-3cos α4sin α-9cos α= ; (2)sin 2α-3sin αcos α+1= .答案 (1)1 (2)1要点三 三角函数恒等式的证明 例3 求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α. 跟踪演练3 已知2cos 4θ+5cos 2θ-7=asin 4θ+bsin 2θ+c 是恒等式.求a 、b 、c 的值.1.化简1-2sin 40°cos 40°= .2.已知α是第三象限角,sin α=-13,则tan α= . 3.若α是第三象限角,化简 1+cos α1-cos α+1-cos α1+cos α. 4.求证:tan θ²sin θtan θ-sin θ=1+cos θsin θ.一、基础达标1.已知α是第二象限角,sin α=513,则cos α等于 ( ) A .-1213B .-513 C.513 D.12132.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.353.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-3104.若sin α+sin 2 α=1,则cos 2 α+cos 4 α等于( )A .0B .1C .2D .35.化简:sin 2 α+sin 2 β-sin 2 αsin 2 β+cos 2 αcos 2 β= .6.已知α∈R ,sin α+2cos α=102,则tan α= . 7.(1)化简1-sin 2100°;(2)用tan α表示sin α+cos α2sin α-cos α,sin 2α+sin αcos α+3cos 2α. 二、能力提升8.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C .-34 D.459.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .810.已知直线l 的倾斜角是θ,且sin θ=513,则直线l 的斜率k = . 答案 ±51211.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.12.求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α. 三、探究与创新13.已知sin α+cos α=-13,其中0<α<π,求sin α-cos α的值.。
高中数学_《同角三角函数的基本关系》教学设计学情分析教材分析课后反思

1.2任意角的三角函数1.2.2同角三角函数的基本关系1(教学设计)一、教学目标:1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)掌握同角三角函数的关系式并能灵活运用于解题,提高学生分析,解决问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高变形能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.2、过程与方法由特殊角的三角函数值引出基本关系式,从任意角的定义出发,利用三角函数线,证明同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点:重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具:利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化简三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、多媒体.四、教学过程:【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】1. 探究:填表,先利用特殊角找规律,再通过单位圆上点的坐标与三角函数的关系去证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.3同角三角函数的基本关系(第1课时) 高考要求 1 掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式 2 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明
课前自主学习 1倒数关系:sin csc αα⋅= ,cos sec αα⋅= ,tan cot αα⋅= 。
2商数关系:sin cos αα= ,cos sin αα
= 。
3平方关系:22sin cos αα+= ,21tan α+= ,21cot α+= 。
反馈体验41.cos ,(0,),tan 5
ααπα=∈若则的值等于 。
2222222sin sin sin sin cos cos αβαβαβ+-+= 。
题型排雷
题型一:求值问题
例1已知8cos ,17α=-
求sin ,tan .αα
跟踪练习1(1)α是第四象限角,5tan 12α=-
,则sin α=( ) A .15 B .15- C .513
D .513- 例2已知tan 3.α=
(1) 求sin α和cos α的值。
(2) 求3sin cos 2cos sin αααα
-+的值。
(3) 求2sin
3sin cos 1ααα-+的值。
跟踪练习2已知tan 2.α=求下列各式的值。
(1)sin cos sin cos αααα
+-(2)221sin sin cos cos αααα--
跟踪练习3已知1sin cos ,(0),5x x x π-=
≤≤则tan x = 。
跟踪练习4已知1sin cos ,(0,),5
θθθπ+=∈则sin cos θθ-= 。
题型二:三角函数式的化简问题
例3
化简
)2πα+<<
跟踪练习5(1
2;cos101cos 10
-- (2)cos sin tan θθθ+。
1.2.2单位圆中的三角函数线(第二课时) (参考答案)反馈体验:1.(略);2.(,)()33
k k k Z ππππ-+∈(成才之路11页例3);牛刀小试:1.D ;2.5(,)44ππ;3.22,2k k k Z πθπθππ⎧⎫+<<+∈⎨⎬⎩⎭
; 4.提示:(1)当角的终边落在坐标轴上时;(2)当角的终边落在四个象限时,利用三角形性质:
两边之和大于第三边。
5.成才之路12
页跟踪练习3; 6.当α为第一象限角时sin 2;
ααα=
=当α为第三象限角时s i n ,c o ,t a n 2.ααα===(课后强化作业104页16题);能力挑战:
13{,}44x k x k k Z ππππ+<<+∈ 2 A 3 三4{}322,64x k x k k Z π
πππ-≤<+∈ 5
,()33k k k Z ππππ⎡⎤-+∈⎢⎥⎣
⎦新课标第一网。