圆和组合图形(1)

合集下载

六年级奥数练习(阴影面积)1

六年级奥数练习(阴影面积)1

六年级奥数练习题(圆和组合图形)1、算出圆内正方形的面积为多少2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是多少平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是多少4.右图中三角形是等腰直角三角形,阴影部分的面积是(平方厘米).5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB长40厘米, BC长厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为 .7.扇形的面积是平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是度.8.图中扇形的半径OA=OB=6厘米.45=∠AOB, AC垂直OB于C,那么图中阴影部分的面积是平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是平方厘米.12.如图,半圆S1的面积是平方厘米,圆S2的面积是平方厘米.那么长方形(阴影部分的面积)是多少平方厘米13.如图,已知圆心是O,半径r=9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米)14.3(≈π13、如图,求阴影部分的面积 .14、大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大平方厘米.212112215、在一个半径是厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取,结果精确到1平方厘米)16、如图所求,圆的周长是厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π17.下图中正方形部分是一个水池,其余部分是草坪,已知正方形的面积是300平方米,草坪的面积是多少平方米17、已知:ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .18、如图:阴影部分的面积是多少四分之一大圆的半径为r .(计算时圆周率取722)19、已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.20.如图{图在下面}两个连在一起的轮轴,已知小轮的半径是3分米,当这个小轮转3圈时,大轮正好转一圈,只蜜蜂分别沿着阴影部分的边缘飞1次,那只蜜蜂飞过的路线最长(3个正方形的边长都为4m )23.将半径分别是3厘米和2厘米的两个半圆如图放置,求阴影部分的周长24.求阴影部分的面积25.一个圆环外直径是内直径的二分之三倍,圆环面积150cm ,求外圆的面积26.一个长方形的面积是20平方厘米,如果在这个长方DCB AGF形里画一个最大的半圆形,这个半圆形是多少平方厘米因为这个半圆的直径是长方形的长,半径是宽,说明长方形的长是宽的2倍。

组合图形的知识点总结

组合图形的知识点总结

组合图形的知识点总结一、基本图形在讨论组合图形之前,我们需要先了解一些基本的几何图形,包括:正方形、长方形、圆形、三角形等。

1. 正方形:四边相等、四角相等的四边形。

2. 长方形:有两对相等的对边,并且四个角都是直角的四边形。

3. 圆形:平面上全体离中心的距离都相等的点的集合。

4. 三角形:有三条边和三个角的多边形。

这些基本图形是组合图形的组成部分,我们可以通过组合这些基本图形来构造复杂的图形。

二、组合图形的概念组合图形是由基本图形通过一定的方式组合而成的新图形。

在组合图形中,每个基本图形都是组成组合图形的一个部分。

组合图形可以通过平移、旋转、翻转等操作来组合,从而形成新的图形。

例如,我们可以通过两个相同的长方形组合而成一个正方形;或者通过一个长方形和一个三角形组合而成一个复合图形。

这些组合图形可以进一步应用到解决各种几何问题中。

三、组合图形的性质组合图形具有一些特殊的性质,这些性质帮助我们更好地理解和应用组合图形。

1. 组合图形的周长:组合图形的周长等于所有基本图形的周长之和。

例如,一个由两个相同的长方形组合而成的正方形,其周长等于两个长方形的周长之和。

2. 组合图形的面积:组合图形的面积等于所有基本图形的面积之和。

例如,一个由一个长方形和一个三角形组合而成的复合图形,其面积等于长方形的面积加上三角形的面积。

3. 组合图形的对称性:组合图形通常具有一定的对称性,可以通过对称性来简化分析和计算。

例如,一个由两个相同的基本图形组合而成的组合图形,通常具有一定的对称性。

四、组合图形的应用组合图形广泛应用于解决各种几何问题和实际问题中。

下面我们来看几个实际问题的例子。

例1:一个篮球场的形状是一个长方形,上面有一个半圆形的篮球场地,求篮球场地的面积。

解:篮球场地的形状可以分解成一个长方形和一个半圆形的组合图形。

首先计算长方形的面积,然后计算半圆形的面积,最后将两者相加即可得到篮球场地的总面积。

例2:一个房间的地板是一个正方形,中间有一个圆形地毯,求地毯的面积。

5.5_圆、正方形组成的组合图形

5.5_圆、正方形组成的组合图形

=452.16-288
=164.16(cm²)
练习
1.已知正方形面积16平方厘米,求圆面积。
3.14×(4÷2)²=12.56(cm²)
o
分析:根据边长×边长=正方形 面积可求出正方形边长,从外方 内圆组合图形特点可知,圆的直 径=正方形的边长。
o
练习
2.下图中的铜钱直径22.5mm,中间的正方形边长为 6mm。这个铜钱的面积是多少? 3.14×(22.5÷2)²-6×6
4cm
人教版数学六年级(上册)
数学的影子
3
中国建筑中经常能见到“外方内圆”和“外圆内方” 的设计。上图中的两个圆半径都是1m,你能求出正方 形和圆之间部分的面积吗?
“外方内圆”组合图形
正方形的边长=圆的直径=2m 正方形的面积=2×2=4(m²) 圆的面积=3.14×1²=3.14(m²) 阴影部分面积=正方形面积-圆的面积 =4-3.14 =0.86(m²)
“外圆内方”组合图形
圆的直径把正方形平均分成2个三角形
1.三角形的底=圆的直径=2m 2.三角形的高=圆的半径=1m
阴影部分面积=圆的面积-2个三角形面积 1 =3.14×1²-( ×2×1)×2 2 =3.14-2 =1.14(m²)
做一做
下图是一面我国唐代外圆内方的铜镜。铜镜的直径是 24cm。 外面的圆与内部的正方形之间的面积是多少? 3.14×(24÷2)²-24×12÷2×2
=3.14×126.5625-36
=397.40625-36
≈361.41(mm²)
答:这个铜钱的面积是361.41mm²。
求不规则图形面积的思考方法:
1、观察。 不规则图形是由哪些基本图形形成的。 2、分析。 是基本图形面积的和、面积的差。

圆的周长、面积及组合图形面积

圆的周长、面积及组合图形面积
44
培优例题
例4 有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌
装置进行喷灌,现有射程为20米、15米、10米的三种装置。 你认为应选哪种比较合适?安装在什么地方?
培优例题
例4 有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌
装置进行喷灌,现有射程为20米、15米、10米的三种装置。 你认为应选哪种比较合适?安装在什么地方?
培优例题
例5 一个半圆形花坛,周长为10.28米,面积为多少平方米?
培优例题
例6 一张长方形的纸,长25 cm、宽13 cm,最多可以剪几个半径
为3 cm的小圆片?
培优例题
例7 有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌
装置进行喷灌,现有射程为20米、15米、10米的三种装置。 你认为应选哪种比较合适?安装在什么地方?
培优例题
例1 一棵老槐树粗28.26分米,它的横截面的面积是多少 平方分米?
培优例题
例2 在一张周长为24厘米的正方形硬纸板上,剪一个最 大的圆,这个圆的周长和面积各是多少?
培优例题
例3 把一只羊拴在一块长8 m,宽6 m的长方形草地 上,拴羊的绳长2 m,那么这只羊吃到草的最大 面积是多少平方米?如果要使羊吃草的面积最小, 应该将羊拴在这个长方形草地的什么位置?
计算右图半圆的周长。
r=5cm
(1)今天我学习了圆周长的知识。我知 道圆周率是( 周长)和(直径 )的比值, 它用字母(π )表示。
π≈3.14
直径d
(2)我还知道圆的周长总是
直径的( π )倍。已知圆的直 径就可以用公式( C=πd )求 周长;已知圆的半径就可以用公
式( C= 2π r)求周长。

圆的组合图形面积及答案#

圆的组合图形面积及答案#

圆的组合图形面积姓名:【知识与方法】要解决与圆有关的题目,需要注意以下几点:1、熟练掌握有关圆的概念和面试公式:圆的面积= 圆的周长=扇形的面积= 扇形的弧长=(n是圆心角的度数)2、掌握解题技巧和解题方法:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。

例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

幼儿园大班数学《组合图形》教案

幼儿园大班数学《组合图形》教案

幼儿园大班数学《组合图形》教案一、教学目标1.学生能够识别五种基本图形:正方形、长方形、三角形、圆形、梯形。

2.学生能够利用基本图形组合成新的图形,并能够使用专有名词描述新的图形。

3.学生能够通过观察图形,发现图形元素的相似之处,并能够运用到实际生活中。

二、教学内容1.五种基本图形的识别:正方形、长方形、三角形、圆形、梯形。

2.基本图形的组合:如何将基本图形组合成新的图形。

3.图形元素的相似之处:如何通过观察图形发现图形元素的相似之处。

三、教学重点1.五种基本图形的识别。

2.基本图形的组合。

三、教学难点1.如何将基本图形组合成新的图形。

2.如何通过观察图形发现图形元素的相似之处。

四、教具准备1.五种基本图形的模型。

2.卡片、颜色笔。

3.拼图游戏。

五、教学过程1.导入(1)教师拿出五种基本图形,让学生识别并说出它们的名称。

(2)教师拿出两个卡片,其中一个卡片上有一个基本图形,另一个卡片上没有图形。

教师会问学生为什么这两个卡片不一样,引导学生发现图形元素的重要性。

2.讲授(1)组合新图形教师将基本图形拼接在黑板上,让学生看到新的图形。

然后将黑板上的新图形拆开,让学生动手尝试组合新的图形,让学生动手组合,紧跟着老师进行锻炼。

(2)图形元素的相似之处教师将现实生活中常见的物品进行分类,例如被单、抱枕、手绢等,再让学生注意到这些物品中的形状,可以让学生发现图形元素的相似之处。

3.练习(1)运用语言教师拿出一个拼图游戏让学生进行拼图练习,然后要求学生描述他们的图形拼图经验,让学生从语言上加深对图形的理解。

(2)运用手工教师将五种基本图形的复印件分发给每个学生,让他们根据自己的感觉将基本图形进行组合,让学生动手制作出新的图形,从而加深对图形的理解。

4.总结教师让学生展示自己制作的图形,然后让学生自己总结本节课学到的知识。

六、教学评价1.教师通过教学观察学生是否能够准确识别五种基本图形。

2.教师通过学生的游戏、手工作品以及描述能力是否合理评估学生是否掌握了基本图形的组合。

组合图形(一)

点击关注,学习更多知识!
三角形面积:
S ah 2
阴影部分的面积:
(19.625-12.5)×2=14.25(平方厘米)
答:阴影部分的面积是14.25平方厘米。
点击关注,学习更多知识!
2 2
练习三
主讲:拓老师
已知下面图形的两条线段长2厘米,并互相 垂直,求阴影部分的面积。
正方形的面积: 2×2=4(平方厘米) 四分之一圆面积: 3.14×22÷4=3.14(平方厘米) 阴影部分的面积: 4-3.14=0.86(平方厘米) 答:阴影部分的面积是0.86平方厘米。
主讲:拓老师
组合图形(一)
点击关注,学习更多知识!
例题一
主讲:拓老师
如图,长方形的面积是8平方厘米,长方 形的长宽比是2:1,求这个组合图形的面积。
解:设宽为x厘米,长为2x厘米, 2x×x=8 x=2
·宽为2厘米,长为4厘米,
长方形面积:
S ab
半圆面积:
S r2 2
3.14×(4÷2)2÷2+8 =14.28(平方厘米)
117.75-60°÷360°×3.14×(15-7)2 ≈84.26(平方厘米) 答:阴影部分的面积是84.26平方厘米。
扇形面注,学习更多知识!
主讲:拓老师
总结
先把组合图形分成几个简单的图形,再 把每个简单图形的面积相加或相减,就是所 求的组合图形的面积;或将组合图形添补成 基本图形再进行求解。
半圆面积:
S r2 2
组合图形的面积:
9+14.13=23.13(平方厘米)
答:这个组合图形的面积是23.13
平方厘米。
点击关注,学习更多知识!
例题二
主讲:拓老师
求下面图形阴影部分的面积。(单位:厘米)

小升初圆与组合图形面积专题(含解析)

小学数学圆与组合图形面积专题1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,( )A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断 3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯ B .22166 3.14() 3.1422⨯⨯-⨯ C .2216[6 3.14() 3.14]22⨯⨯-⨯ D .1(62 3.146 3.14)2⨯⨯⨯-⨯ 4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大5.如图,长方形ABCD 的面积是26m ,圆的面积是 2m6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 平方厘米.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 平方厘米.8.如图,这个图形的周长是 厘米.9.如图阴影部分的面积是25cm ,环形的面积是 2cm .三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.11.求如图阴影部分的面积.(单位:厘米)12.计算如图图形中阴影部分的面积.13.求如图阴影部分的面积.14.求图中阴影部分面积.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?cm16.求阴影部分的面积.(单位:)17.求如图阴影部分的面积和周长.面积:.周长:.18.如图,三角形ABC是等腰直角三角形,8C∠=︒,求:==,45AB AC cm(1)弧AD的长度;(2)图中阴影部分的面积.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知==厘米,求阴影部分的面积.AB BC1020.如图,ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)25.一个容积为550mL的水瓶,里面装了一些水,正放时,水面高20cm,倒放时,空气高7.5cm.求水有多少升?26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.27.如图四边形ABCD中,角DAB和角DCB都是直角,边CD和边BC的长度相等,从点C 到边AB的垂线CE长为10厘米,求四边形ABCD的面积.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 平方厘米.29.如图,1S 的面积比2S 的面积大多少?30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.。

圆的周长和面积(组合图形)--六年级上册数学计算大通关(北师大版)(答案解析)

专题01 圆的周长和面积(组合图形)答案解析一.计算题(共20小题)1.计算下面图形阴影部分的周长和面积。

(单位:厘米)【分析】根据题意,圆的直径为(4×3)厘米,阴影部分的周长等于圆的周长的一半加上5条4厘米长的线段之和,利用圆的周长公式:C=πd,代入数据即可求出阴影部分的周长;阴影部分的面积等于圆的面积的一半减去边长为4厘米的正方形面积,分别利用圆的面积和正方形的面积公式求出这两个图形的面积,再相减即可得解。

××÷+×【解答】3.14(43)245×÷+=3.1412220+=18.8420=38.84(厘米)2××÷÷−×3.14(432)244=2×÷−3.146216×÷−=3.1436216−=56.5216=40.52(平方厘米)即阴影部分的周长是38.84厘米,面积是40.52平方厘米。

2.如图中,大圆的半径等于小圆的直径。

请计算阴影部分的周长。

【分析】观察图形可知,阴影部分的周长=大圆的周长+小圆的周长,再根据圆的周长公式:C=πd或C =2πr,据此进行计算即可。

【解答】3.14×2×4+3.14×4=6.28×4+3.14×4=25.12+12.56=37.68(cm)则阴影部分的周长为37.68cm。

3.计算下面图形的周长与面积。

【分析】周长等于大圆周长的一半加上两个半圆的周长(即一个小圆的周长);面积等于大圆面积的一半减去两个小圆面积的一半(即一个小圆的面积),据此解答。

【解答】周长:3.14×40÷2+3.14×(40÷2)=125.6÷2+3.14×20=62.8+62.8=125.6(cm)面积:3.14×(40÷2) 2÷2-3.14×(40÷4) 2=3.14×202÷2-3.14×10 2=3.14×400÷2-3.14×100=1256÷2-314=628-314=314(cm2)4.计算下边图形的周长和面积。

圆的组合图形面积及答案

圆的组合图形面积姓名:【知识与方法】要解决与圆有关的题目,需要注意以下几点:1、熟练掌握有关圆的概念和面试公式:圆的面积=圆的周长=扇形的面积= 扇形的弧长=(n是圆心角的度数)2、掌握解题技巧和解题方法:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。

例1.求阴影部分的面积。

(单位:厘米)ﻫ解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)ﻫﻫﻫ例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)ﻫ解:这也是一种最基本的方法用正方形的面积减去圆的面积。

ﻫ设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米ﻫﻫ例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

ﻫ例4.求阴影部分的面积。

(单位:厘米)ﻫ解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米ﻫﻫ例5.求阴影部分的面积。

(单位:厘米)ﻫ解:这是一个用最常用的方法解最常见的题,为方便起见,ﻫ我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形, π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

ﻫ例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?ﻫ解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米ﻫ(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)ﻫ解:正方形面积可用(对角线长×对角线长÷2,求)ﻫ正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米ﻫ(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)ﻫ例8.求阴影部分的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天道酬勤
1
E
D C B A

圆和组合图形(1)
一、填空题
1.算出圆内正方形的面积为 .

2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是
平方厘米.

3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面
积是120平方厘米.这个扇形面积是 .

4.如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长
是 厘米.(保留两位小数)

5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方
厘米. AB长40厘米, BC长 厘米.

6厘米
2

C


A
B
天道酬勤
2

6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积
为 .

7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形
的圆心角是 度.

8.图中扇形的半径OA=OB=6厘米.45AOB, AC垂直OB于C,那么图
中阴影部分的面积是 平方厘米.)14.3(

9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.
10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.

6
C
B

A

O
45

12
15
20
天道酬勤
3

二、解答题
11. ABC是等腰直角三角形. D是半圆周的中点, BC是半圆的直径,已知:
AB=BC=10,那么阴影部分的面积是多少?(圆周率14.3)

12.如图,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.
那么长方形(阴影部分的面积)是多少平方厘米?

13.如图,已知圆心是O,半径r=9厘米,1521,那么阴影部分的面积
是多少平方厘米?)14.3(

14.右图中4个圆的圆心是正方形的4个顶点,它
们的公共点是该正方形的中心.如果每个圆的半径都
是1厘米,那么阴影部分的总面积是多少平方

C
B

A
0
1 2

A
10
D
C

B

S
1

S
2

相关文档
最新文档