∥3套精选试卷∥2018年贵阳市某达标中学七年级下学期期末复习能力测试数学试题

合集下载

┃精选3套试卷┃2018届贵阳市七年级下学期数学期末考试试题

┃精选3套试卷┃2018届贵阳市七年级下学期数学期末考试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四种标志图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【解析】根据轴对称图形和中心对称图形的意义逐个分析即可.【详解】解:A 、不是轴对称图形,是中心对称图形;B 、是轴对称图形,是中心对称图形;C 、不是轴对称图形,是中心对称图形;D 、不是轴对称图形,不是中心对称图形.故选B .【点睛】考核知识点:理解轴对称图形和中心对称图形的定义.2.如果21x y =⎧⎨=⎩是关于x ,y 的二元一次方程30+x my =的一个解,则m 等于( ) A .10B .8C .-7D .-6 【答案】D【解析】将21x y =⎧⎨=⎩代入方程即可求出m 的值. 【详解】解: 将21x y =⎧⎨=⎩代入30+x my =得60m +=,解得6m =-. 故选:D【点睛】本题考查了二元一次方程的解,二元一次方程的解满足二元一次方程,正确理解两者间的关系是解题的关键.3.若a b >,则下列不等式变形错误的是( )A .11a b +>+B .33a b -<-C .3131a b ->-D .11a b ->-【答案】D【解析】根据不等式的性质逐项分析即可.【详解】A. ∵a b >,∴11a b +>+,正确;B. ∵a b >,∴33a b -<-,正确;C. ∵a b >,∴33a b >,∴3131a b ->-,正确;D. ∵a b >,∴a b -<-,∴11a b -<-,不正确;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变. 4.已知方程组42x y x y m -=⎧⎨+=⎩中的 x ,y 互为相反数,则m 的值为( ) A .2B .﹣2C .0D .4 【答案】A【解析】∵x 与y 互为相反数,∴x+y=0,y=-x ,又∵42x y x y m-=⎧⎨+=⎩, ∴x=m ,x-(-x)=4, ∴m=x=2.故选A.5.在329-π,227,0223364,0.373773这八个数中,无理数有( ) A .2个B .3个C .4个D .5个 【答案】B【解析】解题根据:无理数:无限不循环小数。

∥3套精选试卷∥2018年贵阳市某达标中学七年级下学期数学期末练兵模拟试题

∥3套精选试卷∥2018年贵阳市某达标中学七年级下学期数学期末练兵模拟试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70° 【答案】A【解析】∵AB ∥CD ,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A .2.把22a a -分解因式,正确的是( )A .()2a a -B .()2a a +C .()222a -D .()2a a -【答案】A【解析】提取公因式a 即可.【详解】解:22=(2)a a a a --,故选:A.【点睛】 本题考查了分解因式,熟练掌握提取公因式法和公式法分解因式是解题关键.3.如图,△ABC ≌△ADE ,且∠B =25°,∠E =105°,∠DAC =10°,则∠EAC 等于( )A .40°B .50°C .55°D .60°【答案】D 【解析】根据全等三角形对应角相等可得∠D=∠B ,再根据三角形的内角和定理求出∠DAE ,然后根据∠EAC=∠EAD+∠DAC,代入数据计算即可得解.【详解】解:∵ABC ADE ≅∴∠D=∠B=25︒ 在ADE 中,∠DAE=180︒-∠D-∠E=180︒-25︒-105︒=50︒∴∠EAC=∠EAD+∠DAC=50︒+10︒=60︒故选D.【点睛】此题主要考查全等三角形对应角相等和三角形的内角和定理,熟练找准对应角是解题关键.4.若关于x 的不等式组5210x x m ->⎧⎨-≥⎩的整数解共有3个,则m 的取值范围是( ) A .10m -≤<B .10m -<≤C .21m ≤<-D .21m -<≤- 【答案】D【解析】分别求出不等式组中不等式的解集,利用确定解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解:5210x x m ->⎧⎨-≥⎩①②, 由①解得:x <2,由②解得:x≥m ,故不等式组的解集为m≤x <2,由不等式组的整数解有3个,得到整数解为1,0,−1,则m 的范围为−2<m≤−1.故选:D .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键. 5.下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得22a b -<-C .由112->-,得2a a ->- D .由ab >,得c a c b -<- 【答案】D【解析】根据不等式的性质,可得答案.【详解】解:A 、当c ≤0时,ac ≤bc ,故A 不符合题意;B 、不等式的两边都减2,不等号的方向不变,故B 不符合题意;C 、当a <0时,112->-,得2a a -<-,故C 不符合题意; D 、不等式的两边都乘−1,不等号的方向改变,故D 符合题意;故选D .【点睛】本题考查了不等式的性质,熟记不等式的性质是解题关键.6.一副直角三角板按如图所示的方式摆放,其中点C 在FD 的延长线上,且AB ∥FC ,则∠CBD 的度数为( )A .30︒B .25︒C .20︒D .15︒【答案】D 【解析】分析: 先根据平行线的性质得出∠ABD 的度数,进而可得出结论.详解: ∵AB ∥CD ,∴∠ABD=∠EDF=45°,∴∠CBD=∠ABD-∠ABC=45°-30°=15°.故选:A.点睛: 本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.对于非零的两个实数a ,b ,规定a ⊕b=am ﹣bn ,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为( )A .﹣13B .13C .2D .﹣2【答案】A【解析】解:根据题意得:3⊕(5)3515m n -=+=,4⊕(7)4728m n -=+= 35154728m n m n +=⎧∴⎨+=⎩,解得:3524m n =-⎧⎨=⎩∴(-1)⊕2=-m-2n=35-48=-13故选A8.下列图形不是轴对称图形的是( )A .B .C .D .【答案】A 【解析】解:A 不是轴对称图形;B 是轴对称图形;C 是轴对称图形;D 是轴对称图形,故选A.9.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是( )A .B .C .D . 【答案】A【解析】根据三角形按角分类的方法一一判断即可.【详解】观察图象可知:选项B ,D 的三角形是钝角三角形,选项C 中的三角形是锐角三角形,选项A 中的三角形无法判定三角形的类型.故选A .【点睛】本题考查了三角形的分类,解题的关键是熟练掌握基本知识,属于中考常考题型.10.已知x y ,()2320x y -+=,则x y 的立方根是( )A .36B .-8C .-2D .2±【答案】C【解析】直接利用非负数的性质得出x ,y 的值,再利用立方根的定义求出答案. ()2320x y -+=,∴x−3=0,y+2=0,解得:x=3,y=−2,则y x =(−2)3=−8的立方根是:−2.故选:C.【点睛】此题考查立方根,算术平方根的非负性,解题关键在于利用非负性求出x,y的值. 二、填空题题11.已知一个等腰三角形的两边长分别为3和5,则这个三角形的周长为________. 【答案】11,1【解析】因为腰长没有明确,所以分①3是腰长,②5是腰长两种情况求解.【详解】解:①3是腰长时,能组成三角形,周长=3+3+5=11;②5是腰长时,能组成三角形,周长=5+5+3=1.所以,它的周长是11或1.故答案为:11或1.【点睛】本题考查了等腰三角形的性质,关键是分①3是腰长,②5是腰长两种情况求解.12.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=___________度.【答案】60【解析】如图所示,可根据邻补角、内错角以及三角形内角和求出∠3的度数.【详解】解:如图所示:∵∠2=110°,∴∠4=70°,∵AB∥CD,∴∠5=∠1=50°,∴∠3=180°−∠4−∠5=60°,故答案为60.【点睛】本题考查了三角形的内角和定理,以及平行线的性质:两直线平行,同旁内角互补.13.已知关于x的不等式组{321x ax-≥-≥-的整数解共有5个,则a的取值范围是.【答案】-3<a≤-1【解析】∵解不等式组得:a≤x≤1,∵不等式组的整数解有5个,∴整数解为:1,1,0,-1,-1,∴-3<a≤-1.故答案为-3<a≤-1.14.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A 等级的扇形的圆心角的大小为 .【答案】108°.【解析】试题分析:根据C 等级的人数与所占的百分比计算出参加中考的人数,再求出A 等级所占的百分比,然后乘以360°计算即可得解.试题解析:参加中考的人数为:60÷20%=300人,A 等级所占的百分比为:90300×100%=30%, 所以,表示A 等级的扇形的圆心角的大小为360°×30%=108°.考点:扇形统计图.15.观察下列等式:39×41=402-12,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,…请你把发现的规律用字母表示出来:m×n =________.【答案】2222m n n m +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭【解析】观察可以发现,4039412+=,141392-=;5048522+=,152482-=;6056642+=,464562-=∴m•n =(2m n +)1﹣(2n m -)1. 【详解】∵4039412+=,141392-=; ∴39×41=401﹣11=(39412+)1﹣(41392-)1; 同理5048522+=,152482-=;6056642+=,464562-= ∴48×51=501﹣11=(48522+)1﹣(52482-)1;56×64=601﹣41=(56642+)1﹣(64562-)1… ∴m•n =(2m n +)1﹣(2n m -)1. 故答案为(2m n +)1﹣(2n m -)1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.有一个正方体小木块,六个面分别标有数字1,2,3,4,5,6,随机投掷一次正方体小木块,出现向上面的数字大于2的概率为_____. 【答案】23 【解析】根据概率的定义,首先判定出随机投掷一次正方体小木块,出现向上面的数字大于2的数字有3,4,5,6四种情况,然后即可求出其概率.【详解】解:根据题意,可得随机投掷一次正方体小木块,出现向上面的数字大于2的数字有3,4,5,6四种情况,则其概率为4263P ==. 【点睛】此题主要考查概率的运用,熟练掌握即可解题.17.如图,//AD BC ,ABD ∆的面积等于2,1AD =,3BC =,则DBC ∆的面积是_______.【答案】6【解析】过D 作DH ⊥BC ,根据三角形的面积公式即可得到结论.【详解】过D 作DH ⊥BC ,∵AD ∥BC ,△ABD 的面积等于2,AD=1,∴DH=4,∵BC=3,∴△DBC 的面积14362=⨯⨯=, 故答案为:1.【点睛】本题考查了三角形的面积,平行线间的距离.正确的识别图形是解题的关键.三、解答题18.规定:{x}表示不小于x 的最小整数,如{4}=4,{-2.6}=-2,{-5}=-5。

∥3套精选试卷∥2018年贵阳市七年级下学期数学期末质量跟踪监视试题

∥3套精选试卷∥2018年贵阳市七年级下学期数学期末质量跟踪监视试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如果等腰三角形的一个外角等于110°,则它的顶角是( )A .40°B .55°C .70°D .40°或70°【答案】D【解析】(1)当110°角为顶角的外角时,顶角为180°-110°=70°;(2)当110°为底角的外角时,底角为180°-110°=70°,顶角为180°-70°×2=40°;故选D .2.已知'C'B'ABC A ∆≅∆,C ∠与B'∠,B 与'C ∠是对应角,有下列四个结论:①BC C'B'=;②AC A'B'=;③''AB A B =;④ACB A'B'C'∠=∠,其中正确的结论有( )A .1个B .2个C .3个D .4个 【答案】C【解析】判断各选项的正误要根据“全等三角形的对应边相等,对应角相等”对选项逐个验证可得出答案.【详解】解:∵△ABC ≌△A′C′B′,∠B 与∠C′,∠C 与∠B′是对应角,∴BC =C′B′,AC =A′B′,∠ACB =∠A′B′C′,AB 与A′B′不是对应边,不正确.∴①②④共3个正确的结论.故选:C .【点睛】本题考查的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要熟练掌握的内容,找对应边,对应角是解决本题的关键.3.如图,直线l 1∥l 2,则∠α=( )A .150°B .140°C .130°D .120°【答案】D 【解析】试题分析:∵L 1∥L 2,首先根据平行线的性质可得∴∠1=∠3=110°,再根据角之间的和差关系可得∴∠2=110°﹣50°=60°,∵∠2+∠α=180°,∴∠α=120°,故选D .考点:平行线的性质.4.在平面直角坐标系中,已知点P (﹣2,3),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】点P (-2,3)在第二象限,故选B.5.实数8-,3.14 592 65,0,2π,33,211中,无理数的个数是( ) A .4B .3C .2D .1 【答案】C【解析】根据无理数的定义逐一判断即可.【详解】∵-8,3.14 592 65,0,211是有理数,2π,33是无理数; 故答案选:C .【点睛】此题考查无理数的定义:无限不循环小数.6.如图,两只蚂蚁以相同的速度沿甲、乙两条不同的路线,同时从A 出发爬向终点B ,则( )A .按甲路线走的蚂蚁先到终点B .按乙路线走的蚂蚁先到终点C .两只蚂蚁同时到终点D .无法确定 【答案】C 【解析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】∵将甲的路线分别向左侧和下方平移,可发现甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选C.【点睛】本题考查利用平移解决实际问题,熟练掌握平移的性质是解题的关键.7.如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为()A.(2,6)B.(2,5)C.(6,2)D.(3,6)【答案】A【解析】分析:根据A点的坐标为(4,0),C点的坐标为(6,3),可知线段AB向上平移3个单位,向右平移了两个单位.从而由B的点坐标可得出D点的坐标.详解:∵A点的坐标为(4,0),C点的坐标为(6,3),∴段AB向上平移3个单位,向右平移了两个单位,∵B的坐标分别为(0,3),∴D点的坐标为(0+2,3+3),故选:A.点睛:本题考查了直角坐标系-平移问题,“上加下减,右加左减”是解决本题的关键.8.小明为准备体育中考,每天早晨坚持锻炼,某天他慢跑到江边,休息一会后快跑回家,能大致反映小明离家的距离y(m)与时间x(s)的函数关系图象是()A.B.C.D.【答案】A【解析】先根据已知条件,确定出每一时间段的函数图形,再把图象结合起来即可求出结果.【详解】∵他慢跑离家到江边,∴随着时间的增加离家的距离越来越远,∵休息了一会,∴他离家的距离不变,又∵后快跑回家,∴他离家越来越近,直至为0,∵去时快跑,回时慢跑,∴小明离家的距离y与时间x的函数关系的大致图象是A.故选:A.【点睛】考查了函数的图象问题,在解题时要根据实际情况确定出函数的图象是解题的关键.9.下列运算中,不正确的是( )A .m 3+m 3=m 6B .m 4•m =m 5C .m 6÷m 2=m 4D .(m 5)2=m 10【答案】A【解析】分别根据合并同类项的法则、同底数幂的乘法、同底数幂的除法以及幂的乘方逐一判断即可.【详解】解:A .m 3+m 3=2m 3,故选项A 符合题意;B .m 4•m =m 5,故选项B 不合题意;C .m 6÷m 2=m 4,故选项C 不合题意;D .(m 5)2=m 10,故选项D 不合题意.故选:A .【点睛】本题主要考查了幂的运算以及合并同类项的法则,熟练掌握幂的运算性质是解答本题的关键. 10.如图,直线y k x b =+交坐标轴于A 、B 两点,则不等式0k x b +<的解集是( )A .2x <-B .2x <C .3x >-D .3x <-【答案】D 【解析】看在x 轴下方的函数图象所对应的自变量的取值即可.【详解】由图象可以看出,x 轴下方的函数图象所对应自变量的取值为3x <-,故不等式0kx b +<的解集是3x <-.故选:D .【点睛】考查一次函数与一元一次不等式解集的关系;理解函数值小于0的解集是x 轴下方的函数图象所对应的自变量的取值是解决本题的关键.二、填空题题11.若()2a 1b 20-+-=,则以a 、b 为边长的等腰三角形的周长为 .【答案】1.【解析】∵()2a 1b 20-+-=,∴a -1=0,b -2=0,解得a=1,b=2.①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴1、1、2不能组成三角形.②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=1.12.如图,下列4个三角形中,均有AB AC=,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是______(填序号).【答案】②【解析】分析:顶角为:36°,90°,108°,1087︒的四种等腰三角形都可以用一条直线把这四个等腰三角形每个都分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.详解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故答案为②点睛:本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.13.如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC延长线于F,且垂足为E,则下列结论:①AD=BF;②∠BAE=∠FBC;③S△ADB=S△ADC;④AC+CD=AB;⑤AD=2BE.其中正确的结论有______(填写序号)【答案】:①②④⑤.【解析】证△ACD≌△BCF,推出AD=BF,CD=CF,证△AEB≌△AEF推出AB=AF,BE=EF,推出AD=BF=2BE,求出BD>CD,根据三角形面积求出△ACD的面积小于△ADB面积,由CD=CF,AB=AF,即可求出AC+CD=AB.【详解】解:∵∠ACB=90°,BF⊥AE,∴∠BCF=∠ACD=∠BEA=∠AEF=90°,∵∠BDE=∠ADC,∴由三角形内角和定理得:∠CAD=∠CBF,在△ACD和△BCF中,ACD BCF AC BCCAD CBF ∠∠∠⎧⎪⎪⎩∠⎨=== , ∴△ACD ≌△BCF (ASA ),∴AD=BF ,∴①正确;∵AE 平分∠BAC ,∴∠BAE=∠FAE ,∵∠CBF=∠FAE ,∴∠BAE=∠FBC ,∴②正确;过D 作DQ ⊥AB 于Q ,则BD >DQ ,∵AE 平分∠BAC ,BC ⊥AC ,DQ ⊥AB ,∴DC=DQ ,∴BD >CD ,∵△ADB 的边BD 上的高和△ABD 的面积大于△ACD 的面积,∴③错误;∵BF ⊥AE ,∴∠AEB=∠AEF=90°,在△AEB 和△AEF 中,AEB AEF AE AEBAE FAE ∠∠∠⎧⎪⎪⎩∠⎨===, ∴△AEB ≌△AEF (ASA ),∴BE=EF ,∴BF=2BE ,∵AD=BF ,∴AD=2BE ,∴⑤正确;∵△ACD ≌△BCF ,△AEB ≌△AEF∴CD=CF ,AB=AF ,∴AB=AF=AC+CF=AC+CD ,∴④正确;故答案为:①②④⑤.【点睛】本题考查对三角形的内角和定理,全等三角形的性质和判定,角平分线的定义,垂线,综合运用这些性质进行证明是解题的关键.14.算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x ,y 的系数.因此,根据此图可以列出方程:x+10y=1.请你根据图2列出方程组_________.【答案】22218x y x y +=⎧⎨+=⎩【解析】根据题意,图2可得方程组:22218x y x y +=⎧⎨+=⎩, 故答案为22218x y x y +=⎧⎨+=⎩. 15.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头方向,每次移动1个单位长度,依次得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),…,则点A 2018的坐标是_____.【答案】 (1009,1)【解析】根据图形可找出点A 2、A 6、A 10、A 14、…、的坐标,根据点的坐标的变化可找出变化规律“A 4n+2(1+2n ,1)(n 为自然数)”,依此规律即可得出结论.【详解】观察图形可知:A 2(1,1),A 6(3,1),A 10(5,1),A 15(7,1),…,∴A 4n+2(1+2n ,1)(n 为自然数).∵2018=504×4+2,∴n =504,∵1+2×504=1009,∴A 2018(1009,1).故答案为:(1009,1).【点睛】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A 4n+2(1+2n ,1)(n 为自然数)”是解题的关键.16.某种生物的细胞直径约为0.00000006m ,数据“0.00000006”用科学记数法可表示为__________.【答案】-8610⨯【解析】绝对值小于1的数可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000006=-8610⨯.故答案为:-8610⨯.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯ 的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).17.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有___人.【答案】1.【解析】用600乘以第3组和第4组的频率和可估计该校一分钟仰卧起坐的次数不少于25次的人数.【详解】600×125310125++++ =1, 所以估计该校一分钟仰卧起坐的次数不少于25次的有1人.故答案是:1.【点睛】考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.三、解答题18.如图,已知,∠B = 25︒,∠BCD = 45︒,∠CDE = 30︒,∠E = 10︒ .证明AB ∥EF 。

∥3套精选试卷∥2018年贵州省名校七年级下学期数学期末经典试题

∥3套精选试卷∥2018年贵州省名校七年级下学期数学期末经典试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6【答案】A 【解析】作DE ⊥AB 于E ,∵AB=10,S △ABD =15,∴DE=3,∵AD 平分∠BAC,∠C=90°,DE ⊥AB ,∴DE=CD=3,故选A.2.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为()A .15°B .30°C .45°D .60°【答案】D【解析】因为△ABC 是等边三角形,所以∠ABD=∠BCE=60°,AB=BC.因为BD =CE ,所以△ABD≌△BCE,所以∠1=∠CBE.因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.因为∠2=∠1+∠ABE ,所以∠2=60°.故选D .3.如图,已知12180,3124︒︒∠+∠=∠=, 则4∠= ( )A .46°B .56°C .66°D .124°【答案】B 【解析】先求出15∠=∠,根据平行线的判定求出a ∥b ,根据平行线性质即可求出46∠=∠,再求出6∠即可.【详解】解:如图52180︒∠+∠=,12180︒∠+∠=15∴∠=∠(同角的补角相等)∴a ∥b (同位角相等,两直线平行)46∴∠=∠(两直线平行,内错角相等)3124∠=︒6180356∴∠=︒-∠=︒456∴∠=︒故选B.【点睛】本题考查平行线的判定及性质,熟练掌握平行线相关性质定理是解答本题的关键.4.已知三角形的两边3a =,5b =,第三边是c ,则c 的取值范围是( )A .35c <<B .28c <<C .25c <<D .38c << 【答案】B【解析】根据三角形的三边关系进行求解即可.【详解】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,可知5353c -<<+,即28c <<,故选:B.【点睛】本题主要考查了三角形的三边关系,熟练掌握三边关系的相关计算方法是解决本题的关键.5.下列各数中是无理数的是()A.3B.4C.38D.3.14【答案】A【解析】根据无理数的定义(无理数是指无限不循环小数)进行判断即可.【详解】A. 3是无理数,故本选项正确;B. 4=2不是无理数,是有理数,故本选项错误;C. 38=2,是有理数,不是无理数,故本选项错误;D. 3.14不是无理数,故本选项错误;故选A【点睛】此题考查无理数,难度不大6.如图所示,一块白色正方形板,边长是18cm,上面横竖各有两道彩条,各彩条宽都是2cm,问白色部分面积()A.220cm2B.196cm2C.168cm2D.无法确定【答案】B【解析】根据平移的知识,把横竖各两条彩条平移到正方形的边上,求剩余空白部分的面积即可.【详解】解:由平移,可把白色部分面积看成是边长为14cm的正方形的面积.∴白色部分面积为:14×14=196(cm2).【点睛】此题考查列代数式问题,解答此题的关键是:利用“平移法”,求出剩余的正方形的边长,进而求其面积.7.鸡兔同笼问题是我国古代著名趣题之一,大约在1500 年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有35 个头;从下面数,有94 只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡20 只,兔15 只B.鸡12 只,兔23 只C.鸡15 只,兔20 只D.鸡23 只,兔12 只【答案】D【解析】设笼中有x只鸡,y只兔,根据上有35个头、下有94只脚,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】设笼中有x只鸡,y只兔,根据题意得:解得:.故选D.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.下列各数中最小的数是( )A.π-B.3-C.7-D.0【答案】A【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得-π<-3<7-<0,∴各数中最小的数是-π.故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9.25的平方根是()A.±5 B.5 C.﹣5 D.±25【答案】A【解析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A .【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数. 10.小明将一个大的正方形剪成如图所示的四个图形(两个正方形、两个长方形),并发现该过程可以用-一个等式来表示,则该等式可以是( )A .()2222a b a ab b +=++B .()2222a b a ab b -=-+ C .()22a b a b -=- D .()()22a b a b ab +=-+ 【答案】A【解析】分别用代数式表示出大正方形的面积以及四个图形的面积之和,根据它们的面积相等,即可得到答案.【详解】由题意可知:大的正方形的边长为:a+b ,大的正方形的面积为:(a+b)2,大的正方形剪成的两个长方形和两个小正方形的面积之和=222a ab b ++,∴()2222a b a ab b +=++.故选A .【点睛】本题主要考查完全平方公式与几何图形的面积关系,掌握几何图形的面积公式,是解题的关键.二、填空题题 11.若函数y=()2x 222(2)x x x ⎧+≤⎨>⎩,则当函数值y =8时,自变量x 的值等于_____. 【答案】6- 4【解析】把y =8,分别代入解析式,再解方程,要注意x 的取值范围.【详解】由已知可得x 2+2=8或2x=8,分别解得x 16(不符合题意舍去),x 26,x 3=4 故答案为6或4【点睛】本题考核知识点:求函数值.解题关键点:注意x 的取值范围.12.写出一个解为12x y =⎧⎨=⎩的二元一次方程组________. 【答案】31x y x y +=⎧⎨-=-⎩(答案不唯一) 【解析】先围绕12x y ==⎧⎨⎩列一组算式 如1+2=3,1-2=-1然后用x ,y 代换得+3{--1x y x y ==等.13.我国古代的数学著作《孙子算经》中有这样一道题“鸡兔同笼”:今有鸡兔同笼,上有35头,下有94只脚,问鸡兔各有几何?译文:鸡和兔子圈在一个笼子中,共有头35个,脚94只,问鸡、兔各有多少只?今天我们可以利用二元一次方程组的有关知识解决这个问题.设笼子里有鸡x 只,兔y 只,则可列二元一次方程组______.【答案】352494x y x y +=⎧⎨+=⎩【解析】设有鸡x 只,兔y 只,根据鸡和兔共35只且鸡和兔共有94只脚,即可得出关于x 、y 的二元一次方程组,此题得解.【详解】解:设有鸡x 只,兔y 只,由“共有头35个”知鸡和兔共35只,故35x y +=;由“下有94只脚”且每只2只脚,每只兔4只脚,得2494x y +=;所以列方程组:352494x y x y +=⎧⎨+=⎩. 故答案为:352494x y x y +=⎧⎨+=⎩. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找到实际问题的隐含条件是正确列出二元一次方程组的关键.14.平面直角坐标系中,点A 在第二象限,到x 轴的距离是2,到y 轴的距离是4,则点A 的坐标为_____________;【答案】()4,2-【解析】直接利用点的坐标特点进而分析得出答案.【详解】解:∵点A在第二象限,到x轴的距离是2,到y轴的距离是4,∴点A的坐标为:(-4,2).故答案为:(-4,2).【点睛】此题主要考查了点的坐标,正确把握点的坐标特点是解题关键.15.如图,△ABC 的外角平分线AM 与边BC 平行,则∠B_____∠C(填“>”,“=”,或“<”).【答案】=【解析】依据AM∥BC,即可得到∠DAM=∠B,∠CAM=∠C,再根据AM平分∠DAC,即可得到∠DAM =∠CAM,进而得出∠B=∠C.【详解】解:如图,∵AM∥BC,∴∠DAM=∠B,∠CAM=∠C,∵AM平分∠DAC,∴∠DAM=∠CAM,∴∠B=∠C.故答案为:=.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.16.如图,已知CD⊥DA,DA⊥AB,∠1=∠1.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∵,∴∠CDA=90°,∠DAB=90° ().∴∠1+∠3=90°,∠1+∠4=90°.又∵∠1=∠1,∴(),∴DF∥AE ( ).【答案】CD ⊥DA ,DA ⊥AB ,垂直定义,∠3=∠4,等角的余角相等,内错角相等,两直线平行.【解析】先根据垂直的定义,得到1390∠+∠=︒,2490∠+∠=︒,再根据等角的余角相等,得出34∠=∠,最后根据内错角相等,两直线平行进行判定即可.【详解】证明:∵CD ⊥DA ,DA ⊥AB ,∴∠CDA=90°,∠DAB=90°,(垂直定义)∴∠1+∠3=90°,∠1+∠4=90°.又∵∠1=∠1,∴∠3=∠4,(等角的余角相等)∴DF ∥AE .(内错角相等,两直线平行)【点睛】 本题主要考查了平行线的判定以及垂直的定义,解题时注意:内错角相等,两直线平行.17.如图是轰炸机机群的一个飞行队形,若最后两架轰炸机的平面坐标分别为:和 ,则第一架轰炸机 的平面坐标是________.【答案】【解析】由点A 和点B 的坐标可建立坐标系,再结合坐标系可得答案.【详解】由点A 和点B 的坐标可建立如图所示坐标系:由坐标系知,点C 的坐标为(2,1),故答案是:(2,1).【点睛】考查坐标问题,关键是根据点A和点B的坐标建立平面直角坐标系.三、解答题18.“五一”黄金周,小梦一家计划从家B出发,到景点C旅游,由于BC之间是条湖,无法通过,如图所示只有B﹣A﹣C和B﹣P﹣C两条路线,哪一条比较近?为什么?(提示:延长BP交AC于点D)【答案】B﹣P﹣C路线较近,见解析【解析】根据题意延长BP交AC于点D,并依据三角形两边之和大于第三边,进行分析即可得出结论.【详解】解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.【点睛】本题主要考查三角形三边关系,解决问题的关键是延长BP交AC于点D,利用三角形三边关系进行判断.19.已知5a+2的立方根是3,4b+1的算术平方根是3,c13a+b+c的值.【答案】1.【解析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,相加可得结论.【详解】由已知得:5a+2=27,4b+1=9,c=3,解得:a=5,b=2,c=3,所以:a+b+c=1.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.20.探索题:(x-1)((x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1.(1)观察以上各式并猜想:①(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)=________________________;②(x -1)(x n +x n -1+x n -2+…+x 3+x 2+x +1)= ________________________;(2)请利用上面的结论计算:①(-2)50+(-2)49+(-2)48+…+(-2)+1②若x 1007+x 1006+…+x 3+x 2+x +1=0,求x 2016的值.【答案】(1)①71x - ;②11n x +- ;(2)①51213+ ;②1. 【解析】(1)每一个式子的结果等于两项的差,被减数的指数比第二个因式中第一项的指数大1,减数都为1;根据得出的规律直接写出答案;(2)利用得出的规律计算得到结果.【详解】解:(1)①(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)=71x - ;②(x -1)(x n +x n -1+x n -2+…+x 3+x 2+x +1)=11n x +- ; (2)①(-2)50+(-2)49+(-2)48+…+(-2)+1=()5121⎡⎤--⎣⎦÷(-2-1) =51213+ ; ②∵x 1007+x 1006+…+x 3+x 2+x +1=0,∴(x-1)(x 1007+x 1006+…+x 3+x 2+x +1)=10081x - =0,∴10081x = ,∴()220161008211x x === . 【点睛】本题考查整式的混合运算,读懂题目信息,总结规律,并利用规律解决问题是解题的关键.21.(1)2ab •(﹣14b 3) (2)利用整式乘法公式计算:(m+n ﹣3)(m+n+3) (3)先化简,再求值:(2xy )2﹣4xy (xy ﹣1)+(8x 2y+4x )÷4x ,其中x =﹣2,y =﹣12 【答案】(1)﹣12ab 4;(2)m 2+2mn+n 2﹣9;(3)6xy+1,1. 【解析】(1)原式利用单项式乘以单项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果;(3)原式利用积的乘方运算法则,单项式乘以多项式,以及多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:(1)原式=﹣12ab 4; (2)原式=(m+n )2﹣9=m 2+2mn+n 2﹣9;(3)原式=4x 2y 2﹣4x 2y 2+4xy+2xy+1=6xy+1,当x =﹣2,y =﹣12时,原式=6+1=1. 【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.22.在AOB 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E . (1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.【答案】(1)①补图见解析;②45°;(2)图见解析,∠BEC 的度数为45°或135°.【解析】(1)①根据题意作图即可;②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,由三角形外角定理列方程组求BEC ∠的度数;(2)分情况讨论点C 在OA 和AO 延长线上时BEC ∠的度数,结合(1),即点C 在线段OA 上时BEC ∠的度数,可得结论.【详解】(1)①依题意补图如下:②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,∵∠ACB=∠OBC+∠BOC ,∠BCK=∠EBC+∠BEC∴2290y x y x BEC=+︒⎧⎨=+∠⎩ ∴∠BEC=45°(2)如图,当点C 在OA 延长线上时,∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵BE 、CE 分别是OBC ∠和ACB ∠的角平分线,∴∠EBC+∠ECB=90°×12=45°, ∴∠BEC=180°-45°=135°;如图,当点C 在AO 延长线上时,同理,可得∠BEC=135°;由(1)知,当点C 在线段OA 上时,∠BEC=135°.综上可知,当点C 在直线AO 上运动时,BEC ∠的度数为45°或135°.【点睛】本题主要考查角平分线的定义、三角形外角定理,解题关键是熟练掌握基础知识,并根据题意准确画图. 23.如图,A 、B 、C 、O 四点均在每小格单位长度为1的正方形网格的格点上.(1)请画出,使是由向下平移5个单位;(2)判断以O ,A′,B 为顶点的三角形的形状(无须说明理由),并求的面积.【答案】 (1)画图见解析;(2)等腰直角三角形,面积为8.1.【解析】(1)根据平移的性质,即可画出图形;(2)先根据图形,由勾股定理逆定理判断的形状,再根据面积公式计算面积.【详解】解:(1)如图所示:(2)根据图形可知:,,∴OB=OA',∴是等腰直角三角形,∴;【点睛】本题考查了平移的性质,三角形的性质,解题的关键是认真审题,并准确画出图形,求出面积.24.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.(1)下面是小东证明该猜想的部分思路,请补充完整;①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与______全等,判定它们全等的依据是______;②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=______°;(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.【答案】(1)①△BMF,SAS;②60;(2)见解析【解析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC=12∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.【详解】(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:∵BD、CE是△ABC的两条角平分线,∴∠FBE=∠FBM=12∠ABC,在△BEF和△BMF中,BE BMFBE FBMBF BF=⎧⎪∠=∠⎨⎪=⎩,∴△BEF≌△BMF(SAS),故答案为:△BMF,SAS;②∵BD、CE是△ABC的两条角平分线,∴∠FBC+FCB=12(∠ABC+∠ACB),在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,∴∠BFC=180°-(∠FBC+∠FCB)=180°-12(∠ABC+∠ACB)=180°-12×120°=120°,∴∠EFB=60°,故答案为:60;(2)证明:由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵△BEF≌△BMF,∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC-∠BFM=120°-60°=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,CFM CFDCF CFFCM FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE,∴BE+CD=BC.【点睛】本题是三角形综合题,主要考查了角平分线的定义、三角形内角和定理、全等三角形的判定和性质,熟练掌握三角形内角和定理、全等三角形的判定和性质,证明∠CFM=∠CFD是解题的关键.25.如图,AC∥ED,AB∥FD,∠A=64°,求∠EDF的度数。

★试卷3套精选★贵阳市2018届七年级下学期数学期末达标检测试题

★试卷3套精选★贵阳市2018届七年级下学期数学期末达标检测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.为了解某地区初一年级9000名学生的体重情况,现从中抽测了600名学生的体重,就这个问题来说,下面的说法中正确的是()A.9000名学生是总体B.每个学生是个体C.600名学生是所抽取的一个样本D.样本容量是600【答案】D【解析】根据总体、个体、样本、样本容量的意义逐项分析即可.【详解】解:总体为“某地区初一年级9000名学生的体重情况”因此A不正确,个体为“每个学生的体重情况”故B不正确,样本为“抽测了600名学生的体重”因此C不正确,样本容量为“从总体中抽取个体的数量”因此D正确,故选:D.【点睛】考查总体、个体、样本、样本容量的意义,准确理解和掌握各个统计量的意义是关键,注意表述正确具体.2.若是关于,的二元一次方程,则的值是()A.或B.C.D.【答案】C【解析】二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程.据此分析即可.【详解】若是关于,的二元一次方程,则所以k=-1故选:C【点睛】考核知识点:二元一次方程.理解定义是关键.3.点P(m+3,m+1)在直角坐标系的x轴上,则点P坐标为( )A.(O,-2) B.(O,2) C.(-2,0) D.(2,0)【答案】D【解析】让纵坐标为1得到m的值,计算可得点P的坐标.【详解】∵点P(m+3,m+1)在直角坐标系x轴上,∴m+1=1,解得m=−1,∴点P坐标为(2,1).【点睛】考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为1.4.小亮每天从家去学校上学行走的路程为900m,某天他从家上学时以每分钟30m的速度行走了一半的路程,为了不迟到,他加快了速度,以每分钟45m的速度走完剩下的路程,则小亮距离学校的路程(m)与他行走的时间(min)之间的函数图象表示正确的是()A.B.C.D.【答案】D【解析】根据行程,按照路程的一半分段,先慢后快,图象先平后陡.【详解】小亮距离学校的路程(米)应随他行走的时间t(分)的增大而减小,因而选项A.B一定错误;他从家去上学时以每分30米的速度行走了450米,所用时间应是15分钟,因而选项C错误;行走了450米,为了不迟到,他加快了速度,后面一段图象陡一些,选项D正确.故选:D.【点睛】考查函数的图象,解决问题的关键是理解函数图象反应的是哪两个变量之间的关系以及因变量是随着自变量的增大如何变化的.5.设“●”、“▲”、“■”表示三种不同的物体,现用天平称了两次,情况如下图所示,那么●、▲、■这三种物体按质量从大到小的顺序排列应为()A.●、▲、■B.■、▲、●C.▲、■、●D.■、●、▲【答案】B【解析】本题可先将天平两边相同的物体去掉,比较剩余的数的大小,可知■>▲,2个●=一个▲,即▲>●,由此可得出答案.【详解】解:由图可知1个■的质量大于1个▲的质量,1个▲的质量等于2个●的质量,因此1个▲质量大于1个●的质量,∴■>▲>●故选B.【点睛】本题主要考查了不等式的基本性质.掌握不等式两边减去同一个数(或式子),不等号的方向不变是解题6.如图,把一张长方形纸片ABCD沿EF折叠后,ED与BC交点为G,D、C分别在M、N的位置上,若∠2-∠1=40°,则∠EFC的度数为()A.115°B.125°C.135°D.145°【答案】B【解析】根据平行线的性质可得∠1与∠2之和,又因为∠2-∠1=40°,解二元一次方程组可得∠1与∠2的度数,根据平角求得∠DEM的度数,利用折叠的性质可得∠DEF的度数,最后根据两直线平行,同旁内角互补求得∠EFC即可.【详解】∵四边形ABCD是长方形∴AD∥BC∴∠1+∠2=180°又∵∠2-∠1=40°解得;∠1=70°,∠2=110°∴∠DEM=110°由折叠可知:∠DEF=12∠DEM=55°∵∠DEF+∠EFC=180°∴∠EFC=125°故选;B【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质定理是关键.另需注意,折叠问题中,折叠过去的对应角、对应线段都相等.7.如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,则△BDE的周长为()A.6 B.8 C.12 D.14【答案】C【解析】利用勾股定理求出AB=10,利用翻折不变性可得AE=AC=6,推出BE=4即可解决问题.【详解】在Rt△ABC中,∵AC=6,BC=8,∠C=90°,∴AB22=+=10,68由翻折的性质可知:AE=AC=6,CD=DE,∴BE=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=1.故选:C.【点睛】本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.9.如图,直线a∥b,直线l分别与直线a,b相交于点P,Q,PA垂直于l于点P.若∠1=64°,则∠2的度数为()A.26°B.30°C.36°D.64°【答案】A【解析】解:如图所示:∵a∥b,∴∠3=∠1=64°,∵PA⊥l,∴∠APQ=90°,∴∠2=90°−∠3=90°−64°=26°;故选A10.下列调查中,适合用全面调查的是( )A.调查全班同学观看《域强大脑》的学生人数B.某灯泡厂检测一批灯泡的质量C.了解一批袋装食品是否含有防腐剂D.了解漯河市中学生课外阅读的情况【答案】A【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、人数少,适合全面调查,故正确;B、调查具有破坏性,适合抽样调查,故不正确;C、调查具有破坏性,适合抽样调查,故不正确;D、调查范围大,适合抽样调查,故不正确.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题题11.“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084可以用科学记数法表示为________.【答案】8.4×10﹣1【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000084=8.4×10﹣1.故答案为8.4×10﹣1.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.两个角的两条边分别平行,则这两个角的大小关系是_________.【答案】相等或互补.【解析】首先根据题意作图,然后由平行线的性质与邻补角的定义,即可求得同一平面上的两个角的两条边分别平行,则这两个角相等或互补.【详解】解:∵如图,∠1,∠2,∠3的两边互相平行,∴∠3=∠4,∠4=∠1,∠4+∠2=180°;∴∠3=∠1,∠3+∠2=180°.∴这两个角相等或互补,故答案为:相等或互补.【点睛】本题考查了平行线的性质,如果一个角的两边与另一个角的两边分别平行,则这两个角的关系是相等或互补,本题应分两种情况讨论,注意不要漏掉情况.13.计算:63x x ÷=______.【答案】3x【解析】根据同底数幂的除法法则计算即可.【详解】x 6÷x 3=x 6-3=x 3,故答案为:x 3.【点睛】此题考查同底数幂的除法,关键是根据同底数幂的除法计算.14.如图,若ABC ∆和DEF ∆的面积分别为1S 、2S ,则12:S S =______.【答案】3:4【解析】根据180B DEF ︒∠=-∠,因此ABC ∆的高:DEF ∆的高=BC:DE,再根据图形可知AB=EF,所以12:S S =ABC ∆的高:DEF ∆的高,故可计算的它们的面积比.【详解】解:根据180B DEF ︒∠=-∠∴ ABC ∆的高:DEF ∆的高=BC:DE=6:8=3:4AB=EF,∴ 12:S S =ABC ∆的高:DEF ∆的高=3:4故答案为3:4.【点睛】本题主要考查三角形的高的计算,根据高所对的角相等,可得高的比等于斜边的比.15.已知关于x ,y 的二元一次方程组15ax by ay bx +=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则22a b -=______. 【答案】-8【解析】把21x y =⎧⎨=⎩代入方程组,得出关于a 、b 的方程组,求出+a b 和-a b 即可. 【详解】解:把21x y =⎧⎨=⎩代入15ax by ay bx +=⎧⎨+=⎩得2125a b a b +=⎧⎨+=⎩①②, ①+②得:336a b +=,即2a b +=,①-②得:4a b -=-,∴22()()8a b a b a b -=+-=-,故答案为:-8.【点睛】本题考查了二元一次方程组的解,能得出关于a 、b 的方程组是解此题的关键.16.平面直角坐标系中,点(5,4)A -到x 轴的距离=______.【答案】1【解析】求得A 的纵坐标绝对值即可求得A 点到x 轴的距离.【详解】解:∵|1|=1,∴A 点到x 轴的距离是1,故答案是:1.【点睛】此题主要考查点的坐标;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值.17.如图,点E 在BC 的延长线上,添加条件,使得AB//DC ,你添加的条件是________【答案】5B ∠=∠或34∠=∠(只要答案正确即可)【解析】直接利用平行线的判定方法构造条件即可求解【详解】解:当5B ∠=∠时,根据同位角相等,两直线平行,得到AB//DC.当34∠=∠时,根据内错角相等,两直线平行,得到AB//DC.(答案不唯一)故答案为:5B ∠=∠或34∠=∠(答案不唯一)【点睛】本题主要考察平行线的判定定理,确定好同位角,内错角,同旁内角,熟悉平行线的判定方法是解题的关键.三、解答题18.如图,AB 垂直平分线段CD (AB CD >),点E 是线段CD 延长线上的一点,且BE AB =,连接AC ,过点D 作DG AC ⊥ 于点G ,交AE 的延长线与点F .(1)若CAB α∠= ,则AFG ∠=______(用α的代数式表示);(2)线段AC 与线段DF 相等吗?为什么?(3)若6CD =,求EF 的长.【答案】(1)45°-α;(2)相等,理由见解析;(3)2【解析】(1)根据等腰三角形的性质得到∠BAE=∠AEB=45°,根据三角形的内角和即可得到结论; (2)连接AD ,根据线段垂直平分线的性质得到AC=AD ,求得∠ADC=∠ACB=α,于是得到AC=DF ;(3)根据已知条件得到BD=CB=3,过F 作FH ⊥CE 交CE 的延长线于H ,得到△EHF 是等腰直角三角形,求得FH=HE ,根据全等三角形的性质即可得到结论.【详解】(1)∵AB ⊥CD ,∴∠ABE=90°,∵AB=BE ,∴∠BAE=∠AEB=45°,∵∠CAB=α,∠CDG=90°-(90°-α)=α=∠EDF .∴∠AFG=∠AED-∠EDF=45°-α;故答案为:45°-α;(2)相等,证明:连接AD ,∵AB垂直平分线段CD,∴AC=AD,∴∠ADC=∠ACB=90°-α,∴∠DAE=∠ADC-45°=45°-α,∴∠DAE=∠AFD,∴AD=DF,∴AC=DF;(3)∵CD=6,∴BD=CB=3,过F作FH⊥CE交CE的延长线于H,则△EHF是等腰直角三角形,∴FH=HE,∵∠H=∠ABC=90°,∠CAB=∠CDG=∠FDH,AC=AD=DF,∴△ACB≌△DFH(AAS),∴FH=CB=3,∴22.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.19.已知:如图,平面直角坐标系中,A(﹣4,3),B(﹣2,﹣1).(1)求△AOB 的面积;(2)将△AOB 向上平移2个单位,右移3个单位,得到△A′O′B',画出△A′O′B′并写出A′、O'、B′的坐标.【答案】(1)5;(2)见解析,A'(﹣1,5),O'(3,2),B'(1,1)【解析】(1)利用△AOB 所在的矩形的面积减去四周三个小直角三角形的面积,计算即可得解;(2)找出平移后点A 、B 、O 的对应点A′、B′、O′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标.【详解】解:(1)△AOB 的面积111442421345222=⨯-⨯⨯-⨯⨯-⨯⨯=; (2)如图所示:A'(﹣1,5)、O'(3,2)、B'(1,1)【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握坐标,准确找出对应点的位置是解题的关键. 20.已知:在ABC △和DEF 中,40A ∠=,100E F +=∠∠,将DEF 如图摆放,使得D ∠的两条边分别经过点B 和点C .(1)当将DEF 如图1摆放时,则ABD ACD +=∠∠_________度.(2)当将DEF 如图2摆放时,请求出ABD ACD ∠+∠的度数,并说明理由.(3)能否将DEF 摆放到某个位置时,使得BD 、CD 同时平分ABC ∠和ACB ∠?直接写出结论_______(填“能”或“不能”)【答案】(1)240;(2)40ABD ACD ∠+∠=理由见解析;(3)不能【解析】(1)要求∠ABD+∠ACD 的度数,只要求出∠ABC+∠CBD+∠ACB+∠BCD ,利用三角形内角和定理得出∠ABC+∠ACB=180°-∠A=180°-40°=140°;根据三角形内角和定理,∠CBD+∠BCD=∠E+∠F=100°,得出∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°;(2)要求∠ABD+∠ACD 的度数,只要求出∠ABC+∠ACB-(∠BCD+∠CBD )的度数.根据三角形内角和定理,∠CBD+∠BCD=∠E+∠F=100°;根据三角形内角和定理得,∠ABC+∠ACB=180°-∠A=140°,得出∠ABD+∠ACD=∠ABC+∠ACB-(∠BCD+∠CBD )=140°-100°=40°;(3)不能.假设能将△DEF 摆放到某个位置时,使得BD 、CD 同时平分∠ABC 和∠ACB .则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能.【详解】(1)在△ABC 中,∠A+∠ABC+∠ACB=180°,∠A=40°∴∠ABC+∠ACB=180°−∠A=180°−40°=140°在△BCD 中,∠D+∠BCD+∠CBD=180°∴∠BCD+∠CBD=180°−∠D在△DEF 中,∠D+∠E+∠F=180°∴∠E+∠F=180°−∠D∴∠CBD+∠BCD=∠E+∠F=100°∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°.(2)∠ABD+∠ACD=40°;理由如下:∵∠E+∠F=100°∴∠D=180°−(∠E+∠F)=80°∴∠ABD+∠ACD=180°−∠A−∠DBC−∠DCB=180°−40°−(180°−80°)=40°;(3)不能.假设能将△DEF 摆放到某个位置时,使得BD 、CD 同时平分∠ABC 和∠ACB.则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能.【点睛】此题考查三角形的外角性质,三角形内角和定理,解题关键在于掌握掌握其定义性质.21.由多项式乘法得:2()()()x a x b x a b x ab ++=+++,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++如,分解因式:2256(23)23(2)(3)x x x x x x ++=+++⨯=++(1)分解因式:256x x -+(2)分解因式:221216x x ++(3)如果0⋅=a b ,那么a=0或b=0,根据这个原理可以求出某些一元二次方程的根,如:2560x x ++=解:(2)(3)0x x ++=∴x+2=0或x+3=0解得12x =-,23x =-请根据这种方法解方程22680x x +-=【答案】(1)(x-3)(x-2);(2)2(x+2)(x+4);(3)2(x+4)(x-1)=0,解得11x =,24x =-【解析】(1)根据题中阅读材料中的方法分解即可;(2)先提取公因式2,然后再根据题中阅读材料中的方法分解即可;(3)先提取公因式2,然后根据示例将方程左边因式分解后求解可得.【详解】解:(1)256x x -+()()()23232x x =+--+--()()32x x =--. (2)()2221216268x x x x ++=++()()224x x =++. (3)22680x x +-=()22340x x +-=()()2140x x -+=10x ∴-=或40x +=121,4x x ∴==-【点睛】此题考查了因式分解———十字相乘法,解一元二次方程,弄清阅读材料中的方法是解本题的关键. 22.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.【答案】见详解【解析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨=== ∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.23.越来越多的人在用微信付款、转账.把微信账户里的钱转到银行卡叫做提现,自2016年3月1日起,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%,(1)小明用自己的微信账户第一次提现金额为1500元,需支付手续费 元.(2)小丽使用微信至今,用自己的微信账户共提现三次,提现金额和手续费如下:求小丽前两次提现的金额分别为多少元.【答案】(1)0.5;(2)小丽前两次提现的金额分别为500元、700元【解析】(1)利用手续费=(提现金额−1000)×0.1%,即可求出结果;(2)根据表格中的数据结合手续费为超出金额的0.1%,即可得出关于a ,b 的二元一次方程组,解方程组即可得出结果.【详解】解:(1)(1500﹣1000)×0.1%=0.5(元).故答案为:0.5;(2)由题意得:(1000)0.1%0.2(23)0.1% 3.1a b a b +-⨯=⎧⎨+⨯=⎩, 解得:500700a b =⎧⎨=⎩, ∴小丽前两次提现的金额分别为500元、700元.答:小丽前两次提现的金额分别为500元、700元.【点睛】本题考查了二元一次方程组的应用;解题的关键是:(1)根据数量之间的关系,列式计算;(2)找准等量关系,列出二元一次方程组.24.计算或求x 的值:(1)39366416-+ (2)2(x ﹣13)2=18 【答案】 (1)324;(2) 12108,33x x ==- . 【解析】根据是实数的性质即可进行求解.【详解】解:(1)39366416-+ =6﹣4+34=234; (2)2(x ﹣13)2=18 x ﹣13=±9, 即x ﹣13=±3, 解得12108,33x x ==- 【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质及运算法则.25.已知,如图,AB ∥CD ,∠ABE =80°,EF 平分∠BEC ,EF ⊥EG ,求∠DEG 的度数.【答案】∠DEG =40°.【解析】已知AB ∥CD ,∠ABE =80°,根据平行线的性质求得∠BEC =100°,又因EF 平分∠BEC ,根据角平分线的定义可得∠CEF =12∠BEC =50°,根据垂直的定义求得∠FEG =90°,再由平角的定义即可求得∠DEG =40°.【详解】∵AB ∥CD ,∠ABE =80°,∴∠BEC =180°﹣∠ABE =100°,∵EF 平分∠BEC ,∴∠CEF=12∠BEC=50°,∵EF⊥EG,∴∠FEG=90°,∴∠DEG=180°﹣∠CEF﹣∠FEG=40°.【点睛】本题考查了平行线的性质、角平分线的定义、垂直的定义及平角的定义,熟练运用相关知识是解决问题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A.90°B.110°C.108°D.100°【答案】D【解析】依据l1∥l2,即可得到∠1=∠3=50°,再根据∠4=30°,即可得出从∠2=180°-∠3-∠4=100°.【详解】如图,∵l1∥l2,∴∠1=∠3=50°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-50°-30°=100°,故选:D.【点睛】考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.2.下列说法正确的是A.无限小数都是无理数B.9的立方根是3C.数轴上的每一个点都对应一个有理数D.平方根等于本身的数是0【答案】D【解析】根据无理数的定义判断A,根据立方根与平方根判断B,D,根据数轴与实数判断C.【详解】解:A. 无限不循环小数都是无理数,故本选项错误;B. 939,故本选项错误;C. 数轴上的每一个点都对应一个实数,故本选项错误;D. 平方根等于本身的数是0,正确.故选D.【点睛】本题主要考查实数有关的知识点,解此题的关键在于熟练掌握掌握无理数,立方根,平方根,实数与数轴的关系等知识点.3.平面直角坐标中,点M (0,﹣3)在( )A .第二象限B .第四象限C .x 轴上D .y 轴上 【答案】D【解析】根据y 轴上的点的横坐标为0解答即可.【详解】∵点M (0,﹣3)的横坐标为0,∴点M 在y 轴上.故选D .【点睛】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.4.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与 点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM=x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致 是( )A .B .C .D .【答案】B【解析】不妨设BC=2a ,∠B=∠C=α,BM=x ,则CN=a-x ,根据二次函数即可解决问题.【详解】不妨设BC=2a ,∠B=∠C=α,BM=m ,则CN=a −x ,则有S 阴=y=12⋅x ⋅xtanα+12(a −x)⋅(a −x)tanα =12tanα(m 2+a 2−2ax+x 2)=12tanα(2x2−2ax+a2)∴S阴的值先变小后变大,故选:B【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.5.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE 的长为()A.32B.32C.256D.2【答案】B【解析】设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt三角形ACE中,利用勾股定理即可求出CE的长度.解:设CE=x,连接AE,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt三角形ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.故答案为B6.下列计算正确的是()A.(ab3)2= ab6B.(3xy)2= 6x2y2C.(-2a3)2=-4a6D.(-x2yz)3=-x6y3z3【答案】D【解析】利用积的乘方计算即可.【详解】A、(ab3 )2= a2b6,故选项错误;B、(3xy)2= 9x2 y2,故选项错误;C、(-2a3 )2= 4a6,故选项错误;D、(-x2 yz)3=-x6 y3 z3,故选项D正确.故选D.【点睛】本题考查了积的乘方,熟练掌握积的乘方的运算法则是正确解题的关键.7.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( )A .1和2B .2和3C .3和4D .4和5【答案】C【解析】试题解析:∵4<19<5,∴3<19-1<4,∴这两个连续整数是3和4,故选C .8.如图所示,直线AB 与CD 相交形成了1∠、2∠、3∠和4∠中,若要确定这四个角的度数,至少要测量其中的( )A .1个角B .2个角C .3个角D .4个角【答案】A 【解析】根据对顶角的定义解答即可.【详解】根据题意可得13∠=∠,24∠∠=,12180∠+∠=∴要确定这四个角的度数,至少要测量其中的1个角即可.故选A【点睛】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键.9.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A→B→C→D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合).在这个运动过程中,△APD 的面积S(cm 2)随时间t(s )的变化关系用图象表示,正确的为( )A .B .C .D .【答案】B【解析】点P 在AB 上运动时,△APD 的面积S 将随着时间的增多而不断增大,排除C .点P 在BC 上运动时,△APD 的面积S 将随着时间的增多而不再变化,应排除A ,D .故选B .10.若a <b ,则下列结论不一定成立的是( )A .a-1<b-1B .2a <2bC .33a b <D .22a b < 【答案】D【解析】根据不等式的性质逐项进行判断即可得答案.【详解】A.∵a <b ,∴ a-1<b-1,正确,故A 不符合题意;B.∵a <b ,∴ 2a <2b ,正确,故B 不符合题意;C.∵a <b ,∴ a b 33<,正确,故C 不符合题意; D.当a <b <0时,a 2>b 2,故D 选项错误,符合题意,故选D.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的性质是解题的关键.不等式性质1:不等式两边同时加上(或减去)同一个数,不等号方向不变;不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等号方向不变;不等式性质3:不等式两边同时乘以(或除以)同一个负数,不等号方向改变.二、填空题题11.写出一个解为x ≤1不等式__________________.【答案】答案不唯一(正确即可).【解析】试题分析:根据不等式的性质,在x≤1的两边同时乘以或除以一个正数,或者在x≤1的两边同时加上或者减去一个数,比如,2x≤2,5x≤5,x+2≤3,x-6≤-5,这些不等式的解集都是x≤1,答案不唯一. 故答案为2x≤2…(答案不唯一,正确即可).考点:不等式的性质.12.某地发生车祸,A 、B 、C 三名司机中有一位司机肇事,警察找了A 、B 、C 三个司机询问,A 说:“是B 肇事.”,B 说:“不是我肇事.”,C 说:“不是我肇事.”,这三个司机中只有一人说的话正确,请问,聪明的同学,你可以推断出是司机_______肇事.【答案】C【解析】分析:分别假设“A 、B 、C 是肇事者”,然后根据三人的说法用反证法的思路结合已知条件进行分析判断即可.详解:(1)假设A是肇事者,则题中B、C的说法都是正确的,这与已知“三人中只有一人的话正确”矛盾,故假设不成立,所以A不是肇事者;(2)假设B是肇事者,则题中A、C的说法都是正确的,这与已知“三人中只有一人的话正确”矛盾,故假设不成立,所以B不是肇事者;(3)假设C是肇事者,则题中只有B的说法正确,这与已知“三人中只有一人的话正确”是一致的,故假设成立,所以C是肇事者;综上所述,司机C是肇事者.故答案为:C.点睛:“通过分别假设A、B、C是肇事者,然后结合题意用反证法的思路进行分析推断”是解答本题的关键.13.已知:如图,在△ABC中,∠A=55,H是高BD、CE的交点,则∠BHC=______.【答案】125°【解析】试题分析:根据三角形的高的性质及四边形的内角和定理求解即可.∵∠A=55°,BD、CE是高∴∠BHC=360°-90°-90°-55°=125°.考点:三角形的高的性质,四边形的内角和定理点评:本题属于基础应用题,只需学生熟练掌握三角形的高的性质,即可完成.14.如图①,在长方形ABCD中,E点在AD上,并且∠ABE=30°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=n°,则∠BCE的度数为_____°(用含n的代数式表示).【答案】602n【解析】解:∵BE=2AE=2A′E,∠A=∠A′=90°,∴△ABE、△A′BE都为30°、60°、90°的三角形,∴∠1=∠AEB=60°,∴∠AED′=180°-∠1-∠AEB=180°-60°-60°=60°,∴∠DED′=∠AED+∠AED′=n°+60°=(n+60)°,∴∠2=12∠DED′=12(n+60)°, ∵A′D′∥BC ,∴∠BCE=∠2=12(n+60)°, 故答案为602n +15.如图,AE 平分∠BAC ,CE 平分∠ACD ,要使AE ⊥CE ,则应添加的条件是_____(填一个即可).【答案】AB ∥CD【解析】添加的条件AB ∥CD ,根据平行线的性质得出∠BAC+∠ACD =180°,根据角平分线的定义可得∠EAC =12∠BAC ,∠ECA =12ACD ,即可求出∠EAC+∠ECA =90°,由此求出∠E =90°,即可判定AE ⊥CE . 【详解】添加的条件为:AB ∥CD ,理由是:∵AB ∥CD ,∴∠BAC+∠ACD =180°,∵AE 平分∠BAC ,CE 平分∠ACD ,∴∠EAC =12∠BAC ,∠ECA =12∠ACD , ∴∠EAC+∠ECA =90°,∴∠E =180°﹣(∠EAC+∠ECA)=90°,∴AE ⊥CE .故答案为AB ∥CD【点睛】本题考查了三角形内角和定理,平行线的性质,角平分线的定义等知识点,能求出∠E 的度数是解此题的关键.16.已知32y x -=,请用含x 的表达式表示y ,y =__________.【答案】3-2x【解析】把方程3-y=2x 写成含x 的表达式表示y 的形式,需要把含有y 的项移到方程的左边,其他的项移到方程的右边,就可以得到用含x 的表达式表示y 的形式.【详解】解:32y x -=移项,得 y=3-2x.故答案为3-2x.【点睛】本题考查了解二元一次方程.其中把方程写成含x 的表达式表示y 的形式,需要把含有y 的项移到方程的左边,其他的项移到方程的右边.17.一元一次不等式5100x +≥的负整数解是______.【答案】2-,1-.【解析】移项,化系数为1,得到不等式的解集,再找到其负整数解即可.【详解】解:移项得:510x ≥-,化系数为1得:2x ≥-,所以不等式5100x +≥的负整数解是:-2,-1.【点睛】本题考查了解一元一次不等式及求不等式的负整数解,熟练掌握解不等式的方法是解题关键.三、解答题18.(1)解方程组1231x y y x =-⎧⎨-=⎩(2)计算()201731--.【答案】(1)12x y =⎧⎨=⎩;(2)-5. 【解析】(1)运用代入消元法求解即可;(2)利用绝对值的意义,立方根的意义、二次根式的化简以及有理数的乘方分别化简得出答案.【详解】(1)1231x y y x =-⎧⎨-=⎩①② 把①代入②得,2y-3(y-1)=1,解得,y=2,把y=2代入①得,x=1,所以,原方程组的解为12x y =⎧⎨=⎩; (2)()201731-+-.=3-3-4-1=-5.本题主要考查了解二次一次方程组以及实数的混合运算,解二元一次方程组的解法有:代入消元法和加减消元法.19.为鼓励创业,某市政府制定了小型企业的优惠政策,许多小型企业应运而生,某社区统计了该社区今年1~6月份新注册小型企业的数量,并将结果绘制成如下的条形统计图和扇形统计图:根据以上信息解答下列问题:(1)该社区1~6月新注册小型企业一共有__________家;(2)补全条形统计图。

┃精选3套试卷┃2018届贵阳市某达标中学七年级下学期数学期末学业质量检查模拟试题

┃精选3套试卷┃2018届贵阳市某达标中学七年级下学期数学期末学业质量检查模拟试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列算式计算结果为6a 的是A .33a a +B .23a a ⋅C .122a a ÷D .()23a 【答案】D【解析】根据合并同类项、同底数幂乘法、同底数幂的除法、幂的乘方逐项计算即可.【详解】A. 33a a +=23a ,故不符合题意;B. 235a a a ⋅= ,故不符合题意;C. 12210a a a ÷= ,故不符合题意;D. ()236a a =,故符合题意;故选D.【点睛】本题考查了整式的有关运算,熟练掌握合并同类项、同底数幂乘法、同底数幂的除法、幂的乘方运算法则是解答本题的关键.2.下列图案中不是轴对称图形的是( )A .B .C .D .【答案】C【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A 、是轴对称图形,故此选项错误;B 、是轴对称图形,故此选项错误;C 、不是轴对称图形,故此选项正确;D 、是轴对称图形,故此选项错误;故选C .【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.3.下列说法正确的是( )A .有且只有一条直线与已知直线平行B .垂直于同一条直线的两条直线互相垂直C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D.在平面内过一点有且只有一条直线与已知直线垂直【答案】D【解析】掌握两条直线之间的关系,点到直线距离的概念.【详解】A、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、垂直于同一条直线的两条直线互相平行,故本选项错误;C、从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故本选项错误;D、在平面内过一点有且只有一条直线与已知直线垂直符合垂直的性质,故本选项正确.故选D.【点睛】本题考查的是点到直线的距离,熟知从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离是解答此题的关键.4.如图,将ABC沿BC方向平移1cm得到DEF,若ABC的周长为8cm,则四边形ABFD的周长为()A.8cm B.9cm C.10cm D.11cm【答案】C【解析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC沿BC方向平移1cm得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10cm.故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.5.如图,以Rt△ABC的三边分别向外作正方形,则以AC为边的正方形的面积S2等于()A.6B.4C.24D.26【答案】B【解析】分析:根据勾股定理和正方形的面积计算即可.详解:∵△ABC是直角三角形,∴AC2+BC2=AB2,即S1+S2=S3,∴S2=S3-S1=5-1=4.故选B.点睛:本题考查了正方形的面积和勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.6.如图是常见的安全标记,其中是轴对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见的安全标记图形进行判断.【详解】解:A、有一条对称轴,是轴对称图形,符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037用科学记数法表示为()A.3.7x10-5B.3.7x10-6C.3.7x10-7D.37x10-5【答案】A【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值时,是正数;当原数的绝对值,是负数.【详解】数据0.000037可用科学记数法表示为:故选A【点睛】本题主要考查了科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数.能正确确定的值以及的值是解题关键.8.下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:B.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.9.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)【答案】D【解析】根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【详解】∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B (0,3)的对应点为B′,∴B′的坐标为(1,2).故选D .【点睛】本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.10.某班级为了奖励在期中考试中取得好成绩的同学,花了900元钱购买甲、乙两种奖品共50件,其中甲种奖品每件15元,乙种奖品每件20元,若设购买甲种奖品x 件,乙种奖品y 元,则所列方程组正确的是( )A .501520900x y x y +=⎧⎨+=⎩B .502015900x y x y +=⎧⎨+=⎩ C .152050900x y x y +=⎧⎨+=⎩D .201550900x y x y +=⎧⎨+=⎩【答案】A 【解析】设购买甲种奖品x 件,乙种奖品y 件,根据等量关系:①甲、乙两种奖品共50件;②甲、乙两种奖品花了900元钱,列方程组即可求解.【详解】解:设购买甲种奖品x 件,乙种奖品y 件,由题意得501520900x y x y +=⎧⎨+=⎩. 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.二、填空题题11.已知|345|0+-=x y ,则式子4x y -的值为__________.【答案】13【解析】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【详解】∵|345|0+-=x y ,∴3450x y +-=,56210x y --=,解得:31x y ==-,.∴()443113x y -=⨯--=.故答案为:13.【点睛】本题考查了非负数的性质:几个非负数的和为1时,这几个非负数都为1.12.已知方程组23325x y m x y m-=+⎧⎨+=-⎩①无论m 和y 取何值,x 的值一定等于2;②当3m =时,x 与y 互为相反数;③当方程组的解满足25x y +=时,1m =;④方程组的解不可能为24x y =-⎧⎨=⎩,以上四个结论正确的是_________(填序号).【答案】①②④【解析】把m 看做已知数求出x 的值,进而表示出y ,进而逐一判断即可.【详解】解:23325x y m x y m -=+⎧⎨+=-⎩①②, ①+②得48x =,2x ∴=,∴①正确;当2x =时,12m y --=. ②当3m =时,3122y --==-.x ,y 互为相反数.∴②正确; ③25x y +=时,即12252m --⨯+=,解得3m =-,∴③错误; ④2x =是确定值,24x y =-⎧∴⎨=⎩不可能是方程的解∴④正确. 综上所述,正确的有①②④,故答案为:①②④.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.13.如果a <b ,则-3a+1______-3b+1.【答案】>【解析】已知不等式利用不等式的基本性质变形即可做出判断.【详解】解:∵a <b ,∴-3a >-3b ,则-3a+1>-3b+1.故答案为:>.【点睛】本题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.14.如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即→→→,…,且每秒移动一个单位........,到用时2秒,到点用时6秒,到点用时12秒,…,那么到点用时________秒,第931秒时这个点所在位置坐标是_________.【答案】42,(29,30)【解析】由题目中所给的点运动的特点找出规律,即可解答.【详解】解:由题意可知这点移动的速度是1个单位长度/秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,∵30×30=900∴第931秒时这个点所在位置的坐标为(29,30)故答案为:42,(29,30).【点睛】本题主要考查了点坐标的变化规律,得出运动变化的规律是解决问题的关键.15.已知a,b为两个连续的整数,且a33b,则a+b=______.【答案】11=<<=, a33b,可推出a和b,再求a+b.【解析】由52533366【详解】因为a,b为两个连续的整数,且a33b,=<=,又因为52533366所以,a=5,b=6.所以,a+b=5+6=11.故答案为:11 【点睛】本题考核知识点:2 (0)a a a =≥. 根据题意,由52533366=<<=便可推出a 和b 的值.16.如图,在平面直角坐标系xOy ,(1,0)A -,(3,3)B --,若//BC OA ,且BC=4OA .(1)点C 的坐标为______;(2)ABC 的面积等于_____.【答案】 (1,-3)或(-7,-3) 1【解析】(1)先由//BC OA ,确定C 点纵坐标与B 点相同,再根据BC=4OA ,确定BC 的长,然后分别求出C 点在B 点左侧和右侧的横坐标,即可得解;(2)由三角形面积公式求解即可.【详解】(1)∵//BC OA ,∴点C 纵坐标为-3,又∵BC=4OA=4∴当点C 在点B 右边,点C 横坐标为-3+4=1,故C(1,-3),当点C 在点B 左边,点C 横坐标为-3-4=-7,故C(-7,-3),故答案为:(1,-3)或(-7,-3);(2)S △ABC =12BC ×3=12×4×3=1 故答案为:1.【点睛】本题结合坐标系考查平行和三角形面积,关键是由平行确定C 点纵坐标,并对C点横坐标进行分情况讨论. 17.若||1m m =+,则2011(41)m +=________.【答案】1-【解析】根据条件|m|=m+1进行分析,m 的取值可分三种条件讨论,m 为正数,m 为负数,m 为0,讨论可得m 的值,代入计算即可.【详解】解:根据题意,可得m 的取值有三种,分别是:当m >0时,则||1m m =+可转换为m=m+1,此种情况不成立.当m=0时,则||1m m =+可转换为0=0+1,此种情况不成立.当m <0时,则||1m m =+可转换为-m=m+1,解得,m=12-. 将m 的值代入,则可得(4m+1)2011=[4×(12-)+1]2011=-1. 故答案为:-1.【点睛】 本题考查了含绝对值符号的一元一次方程和代数式的求值.解题时,要注意采用分类讨论的数学思想.三、解答题18.计算(1)()22315a a a a +⋅-⋅.(2)()2232246()x y x y xy -÷.【答案】(1)32a a -;(2)46x -【解析】(1)原式利用单项式乘以多项式,以及单项式乘以单项式法则计算,合并即可得到结果; (2)原式先计算乘方运算,再利用多项式除以单项式法则计算即可求出值.【详解】解:(1) 原式3335a a a =+-32a a =-;(2)原式()22322246x y x yx y =-÷46x =-.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.19.某商场计划购进A 、B 两种商品,若购进A 种商品2件和B 种商品1件需45元;若购进A 种商品3件和B 种商品2件需70元.(1)A 、B 两种商品每件的进价分别是多少元?(2)若购进A 、B 两种商品共100件,总费用不超过1000元,最多能购进A 种商品多少件?【答案】(1)A 商品的进价是20元,B 商品的进价是5元;(2)最多能购进A 种商品33件.【解析】【试题分析】(1)列二元一次方程组求解;(2)列一元一次不等式求解即可.【试题解析】(1)设A 商品的进价是a 元,B 商品的进价是b 元,根据题意得:, 解得:, 答:A 商品的进价是20元,B 商品的进价是5元;(2)设购进A 种商品x 件,则购进B 种商品(100﹣x )件,根据题意得:20x+5(100﹣x )≤1000,解得:x≤33,∵x为整数,∴x的最大整数解为33,∴最多能购进A种商品33件.20.如图是由几个小立方块所搭成几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图。

┃精选3套试卷┃2018届贵阳市七年级下学期数学期末达标测试试题

┃精选3套试卷┃2018届贵阳市七年级下学期数学期末达标测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若点A(2,m)在x轴上,则点B(m-1,m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由点A(2,m)在x轴上,确定m的值,进而确定点B的坐标,从而确定其所在的象限.【详解】解:∵点A(2,m)在x轴上∴m=0∴点B的坐标为(-1,1),即在第二象限.故答案为B.【点睛】本题考查了平面直角坐标系内点的特点,根据坐标轴上点的特点确定m的值是解答本题的关键.2.如图,在四边形ABCD中,动点P从点A开始沿A B C D→→→的路径匀速前进到D为止,在这个过程中,APD∆的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.【答案】C【解析】根据点P的运动过程可知:APD∆的底边为AD,而且AD始终不变,点P到直线AD的距离为APD∆的高,根据高的变化即可判断S与t的函数图象.【详解】解:设点P到直线AD的距离为h,APD∴∆的面积为:1·2S AD h =,当P在线段AB运动时,此时h不断增大,S也不端增大当P在线段BC上运动时,此时h 不变,S 也不变,当P 在线段CD 上运动时,此时h 不断减小,S 不断减少,又因为匀速行驶且CD AB >,所以在线段CD 上运动的时间大于在线段AB 上运动的时间故选C .【点睛】本题考查函数图象,解题的关键是根据点P 到直线AD 的距离来判断s 与t 的关系,本题属于基础题型. 3.如图,已知a ∥b ,∠1=55°,则∠2的度数是( ).A .35°B .45°C .55°D .125°【答案】C 【解析】根据两直线平行,同位角相等可得∠3=∠1=55°,再根据对顶角相等即可求得答案.【详解】∵a//b ,∴∠3=∠1=55°,∴∠2=∠3=55°.故选C .4.下列方程是一元一次方程的是( )A .230x y -=B .10x -=C .23x x -=D .131x +=- 【答案】B【解析】根据一元一次方程的定义逐项分析即可.【详解】A. 230x y -=,含有2个未知数,不是一元一次方程;B. 10x -=是一元一次方程;C. 23x x -=,未知数的次数是2,不是不是一元一次方程;D. 131x+=-,分母含有未知数,不是一元一次方程. 故选B.【点睛】本题考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.5.《孙子算经》中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”若设人数为x ,车数为y ,所列方程组正确的是( )A .2,329.x y x y ⎧-=⎪⎨⎪-=⎩B .2,329.x y y x ⎧-=⎪⎨⎪-=⎩C .2,329.x y x y ⎧-=⎪⎨⎪-=⎩D .2,329.x y y x ⎧-=⎪⎨⎪-=⎩ 【答案】C 【解析】设人数为x ,车数为y ,根据三人共车,二车空;二人共车,九人步即可列出方程组.【详解】设人数为x ,车数为y , 根据题意得2,329.x y x y ⎧-=⎪⎨⎪-=⎩ 故选C.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系求解.6.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 【答案】D【解析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;故选D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.已知实数a ,b ,若a >b ,则下列结论错误的是( )A .a -5>b -5B .3+a >b +3C .5a >5b D .-3a >-3b 【答案】D【解析】由不等式性质,选项D. -3a<-3b,所以D 错,故选D.8.在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有( )个.A .120B .60C .12D .6【答案】A【解析】根据频率的意义,每组的频率=小组的频数:样本容量,据此即可解答.【详解】0.12×1000=120,∴在总体1000个数据中,数据落在54.5~57.5之间的约有120个.故选A.【点睛】本题主要考查频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.9.若P(m+3,m﹣2)是x轴上的点,则m的值是()A.2 B.3 C.﹣2 D.﹣3【答案】A【解析】直接利用在x轴上点的坐标性质得出纵坐标为零进而得出答案.【详解】∵P(m+3,m-1)是x轴上的点,∴m-1=0,解得:m=1.故选A.【点睛】此题主要考查了点的坐标,正确把握x轴上点的坐标性质是解题关键.10.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于()A.60°B.70°C.80°D.90°【答案】C【解析】试题分析:如图,∵a∥b,∴∠1=∠4=120°,∵∠4=∠2+∠3,而∠2=40°,∴120°=40°+∠3,∴∠3=80°.故选C.考点:平行线的性质.二、填空题题11.如图所示,点O为∠ABC内部一点,OD∥BC交射线BA于点D,射线OE与射线BC相交所成的锐角为60°,则∠DOE=____.【答案】60°或120°【解析】分两种情况讨论:∠BFE=60°或∠CFE=60°,依据平行线的性质,即可得到∠DOE的度数.【详解】解:分两种情况讨论:当∠BFE=60°时,∵DO∥BC,∴∠DOE=∠BFE=60°;当∠CFE=60°时,∠CFO=120°,∵DO∥BC,∴∠DOE=∠CFO=120°;故答案为:60°或120°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互;两直线平行,内错角相等.12.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=_____.【答案】(3,2).【解析】试题分析:由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为(3,2).考点:点的坐标.13.若3x=4,9y=7,则3x-2y的值为______.【答案】4 7【解析】根据3x-2y=3x÷32y=3x÷9 y即可代入求解.【详解】解:3x-2y=3x÷32y=3x÷9 y=47.故答案是:47.【点睛】本题考查了同底数的幂的除法运算,正确理解3x-2y=3x÷32y=3x÷9 y是关键.14.如图,在△ABC中,∠B = 60°,∠C = 40°,AE平分∠BAC,AD⊥BC,垂足为点D,那么∠DAE =______度.【答案】10【解析】本题考查的是三角形内角和定理和角平分的定义,根据三角形内角和是180°,角平分线平分角的度数解答即可【详解】因为,在△ABC中,∠B = 60°,∠C = 40°,所以∠BAC=180°-60°-40°=80°,因为AE平分∠BAC,所以∠BAE=∠CAE=40°,又因为在△ACD 中,AD⊥BC,∠C=40°,所以∠CAD=50°,所以∠DAE=∠CAD -∠CAE=50°-40°=10°【点睛】本题的关键是掌握三角形内角和是180度15.如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,则∠BCD 的度数是____.【答案】130°【解析】根据题意滑翔伞的形状是左右成轴对称的四边形ABCD ,得出∠D =40°,再利用四边形内角和定理求出∠BCD 的度数即可.【详解】∵滑翔伞的形状是左右成轴对称的四边形ABCD ,∠BAD =150°,∠B =40°,∴∠D =40°,∴∠BCD =360°﹣150°﹣40°﹣40°=130°.故答案为130°【点睛】本题考查了轴对称的性质以及多边形的内角和定理,根据题意得出∠D =40°是解决问题的关键. 16.等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为___________.【答案】22cm【解析】分析:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4cm 和9cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.详解:(1)若4厘米为腰长,9厘米为底边长,由于4+4<9,则三角形不存在;(2)若9厘米为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22(厘米). 故答案为22cm.点睛:本题考查了等腰三角形的性质和三角形的三边关系,题目从边的角度考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三角形边长能否组成三角形的好习惯,把不符合题意的舍去.17.观察下列方程组,解答问题22631221322433x y x y x y x y x y x y -=-=-=⎧⎧⎧+=+=+=⋯⎨⎨⎨⎩⎩⎩①②③在这3个方程组的解中,你发现x 与y 的数量关系是______.【答案】x+y=1【解析】分别求出各方程组的解,确定出x与y的关系式即可.【详解】①221x yx y-=⎧⎨+=⎩,解为:11xy=⎧⎨=-⎩;②26322x yx y-=⎧⎨+=⎩,解为:22xy=⎧⎨=-⎩;③312433x yx y-=⎧⎨+=⎩,解为:33xy=⎧⎨=-⎩,…则x与y的数量关系为x+y=1,故答案为:x+y=1.【点睛】本题考查了解二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.三、解答题18.如图,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.(1)求∠BCF的度数;(2)如果DE是∠ADC的平分线,那么DE与AB平行吗?请说明理由.【答案】(1)∠BCF=30°;(2)DE∥AB,见解析.【解析】(1)根据平行线的性质和已知求出∠2=∠1=∠B,即可得出答案;(2)求出∠1=∠B=60°,根据平行线的性质求出∠ADC,求出∠ADE,即可得出∠1=∠ADE,根据平行线的判定得出即可.【详解】(1)∵AD∥BC,∴∠1=∠B=60°,又∵∠1=∠2,∴∠2=60°,又∵FC⊥CD,∴∠BCF=90°﹣60°=30°;(2)DE∥AB.证明:∵AD∥BC,∠2=60°,∴∠ADC =120°,又∵DE 是∠ADC 的平分线,∴∠ADE =60°,又∵∠1=60°,∴∠1=∠ADE ,∴DE ∥AB .【点睛】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.19.在平面直角坐标系中,A 、B 、C 三点的坐标分别为(5,6)-,(3,2)-,()0,5(1)在如图的坐标系中画出ABC △;(2)ABC △的面积为_______________;(3)将ABC △平移得到A B C ''',点A 经过平移后的对应点为(1,1)A ',在坐标系内画出A B C '''并写出点B ',C '的坐标.【答案】(1)见解析;(2)9;(3)()3,3B '- , ()6,0C ';图形见解析【解析】(1)直接描点连线即可;(2)利用割补法求解三角形的面积即可;(3)根据点A 的平移后的坐标,得到三角形的平移方式,然后得到点B ,C 对应平移后的坐标,再描点连线即可.【详解】解:(1)如图.(2)111=54513342=9222ABC S ⨯-⨯⨯-⨯⨯-⨯⨯△; (3) ∵点A 经过平移后的对应点为(1,1)A ',∴△ABC 先向右平移了6个单位,再向下平移了5个单位,则点B 与点C 平移后的坐标为()3,3B '-,()6,0C ',如图,正确画出A B C ''':【点睛】本题主要考查图形的变化-平移,利用割补法求三角形的面积等,解此题的关键在于先根据题意描点连线画出三角形,再根据平移后的坐标得到图形平移的方式.20.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将BCE 绕点C 顺时针方向旋转90得到DCF ,连结EF ,若30EBC ∠=,求EFD ∠的度数.【答案】15°【解析】根据旋转性质可得:BEC DFC ∠=∠,90ECF BCE ∠=∠=,CF CE =,由等腰直角三角形三角形性质可得45CFE FEC ∠=∠=,所以EFD DFC EFC ∠=∠-∠.【详解】解:DCF 是BCE 旋转得到的图形,903060BEC DFC ∴∠=∠=-=,90ECF BCE ∠=∠=,CF CE =,45CFE FEC ∴∠=∠=.604515EFD DFC EFC ∴∠=∠-∠=-=.【点睛】本题考核知识点:旋转性质,等腰直角三角形. 解题关键点:熟记旋转性质,等腰直角三角形性质. 21.已知:P (4x ,x-3)在平面直角坐标系中.(1)若点P 在第三象限的角平分线上,求x 的值;(2)若点P 在第四象限,且到两坐标轴的距离之和为9,求x 的值.【答案】(1)(-4,-4)(2)(8,-1)【解析】(1)由题意得4x=x-3,解得x=-1,此时点P 坐标为(-4,-4);(2)由题意得4x+[-(x-3)]=9,则3x=6,解得x=2,此时点P 坐标为(8,-1).22.先化简,再求值:2222334424a a a a a a a ⎛⎫---÷ ⎪-+--⎝⎭,从﹣2,0,2,3中选取一个你认为合适的数作为a 的值.【答案】1【解析】根据分式的减法和除法可以化简题目中的式子,然后从-1,0,1,3中选取一个使原分式有意义的值代入即可解答本题. 【详解】2222334424a a a a a a a ⎛⎫---÷ ⎪-+--⎝⎭, =2(2)3(2)(2)(2)(2)3a a a a a a a ---+-⋅-- =(3)(2)3a a a -+- =a+1,当a =0时,原式=0+1=1.【点睛】本题考查分式的化简求值、分式有意义的条件,解答本题的关键是明确分式化简求值的方法. 23.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”n 的各个数位上的数字之和记为F (n ).例如n=135时,F (135)=1+3+5=1. (1)对于“相异数”n ,若F (n )=6,请你写出一个n 的值;(2)若a ,b 都是“相异数”,其中a=100x+12,b=350+y (1≤x≤1,1≤y≤1,x ,y 都是正整数),规定:k =()()F a F b ,当F (a )+F (b )=18时,求k 的最小值.【答案】(1)123;(2)12. 【解析】(1)由定义可得.(2)根据题意先求出F (a )=x+3,F (b )=8+y ,代入可得二元一次方程x+y=7,求出x ,y 的解代入可得k 的值.【详解】(1)∵F (n )=6∴n=123(2)∵F (a )=x+1+2=x+3,F (b )=3+5+y=8+y 且F (a )+F (b )=18∴x+3+8+y=18∴x+y=7∵x ,y 是正整数∴123456,,,654321 x x x x x xy y y y y y⎧⎧⎧⎧====⎧==⎧⎪⎪⎪⎪⎨⎨⎨⎨⎨⎨======⎩⎪⎩⎪⎪⎪⎩⎩⎩⎩,,∵a,b是相异数,∴a≠1,a≠2,b≠3,b≠5∴356,,421 x x xy y y⎧=⎧==⎧⎪⎨⎨⎨===⎩⎪⎩⎩,∴k=() ()F aF b=12或45或1∴k的最小值为12.(1)2Q,3Q;【点睛】本题是考察学生阅读理解能力,以及二元一次方程的运用.24.养成良好的早锻炼习惯,对学生的学习和生活非常有益.某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间(x分钟)进行了调查.现把调查结果分为A,B,C,D四组,如下表所示;同时,将调查结果绘制成下面两幅不完整的统计图.组别早锻炼时间A 010x≤<B 1020x≤<C 2030x≤<D 3040x≤<请根据以上提供的信息,解答下列问题:()1扇形统计图中D所在扇形的圆心角度数为______;()2补全频数分布直方图;()3已知该校七年级共有1200名学生,请你估计这个年级学生中有多少人一天早锻炼的时间不少于20分钟.【答案】(1)72°,(2)见下图,(3)1020【解析】()1根据统计图中的数据可以求得扇形统计图中D所在扇形的圆心角度数;()2根据统计图中的数据可以求得C组的人数,从而可以将直方图补充完整;()3根据统计图中的数据可以计算出这个年级学生中有多少人一天早锻炼的时间不少于20分钟.【详解】(1)360°×(1-5%-10%-65%)=72°,故答案为72°(2)C组人数有:10÷5%×65%=130,补全频数分布直方图如图所示:(3)1200×(1-5%-10%)=1020(人)答:该校七年级学生中约有1020人早锻炼的时间不少于20分钟.【点睛】本题考查频数分布表、频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用:如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.【答案】(1)=;(2)若∠B+∠D=∠BED,则AB∥CD,该逆命题为真命题,见解析;(3)见解析【解析】(1)过E作EF∥AB,则EF∥AB∥CD,由平行线的性质得出∠B=∠BEF,∠D=∠DEF,即可得出结论;(2)过E作EF∥AB,则∠B=∠BEF,证出∠D=∠DEF,得出EF∥CD,即可得出结论;(3)过点N作NG∥AB,交AM于点G,则NG∥AB∥CD,由平行线的性质得出∠BAN=∠ANG,∠GNC =∠NCD,由三角形的外角性质得出∠AMN=∠ACM+∠CAM,证出∠ACM+∠CAM=∠ANG+∠GNC,得出∠ACM+∠CAM=∠BAN+∠NCD,由角平分线得出∠ACM=∠NCD,即可得出结论.【详解】(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.【点睛】本题考查了命题与定理、平行线的性质与判定、逆命题、三角形的外角性质、角平分线定义等知识;熟练掌握平行线的判定与性质,作出辅助平行线是解决问题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算正确的是()A.-a2·3a3=-3a6B.(-12a3b)2=14a5b2C.a5÷a5=a D.333 28y yx x ⎛⎫-=-⎪⎝⎭【答案】D【解析】根据积的乘方法则,同底数幂除法的则,进行计算即可.【详解】A. -a2·3a3=-3a5,错误;B. (-12a3b)2=14a6b2,错误;C. a5÷a5=1,错误;D.333y y2x8x⎛⎫-=-⎪⎝⎭,正确.故选D.【点睛】本题考查了积的乘方、幂的乘方、同底数幂除法,关键是掌握计算法则.2.已知空气的单位体积质量为31.2410-⨯克/厘米3,将31.2410-⨯用小数表示为()A.0.000124B.0.00124C.0.00124-D.0.0124【答案】B【解析】指数是-3,说明数字1前面有3个0【详解】指数是-3,说明数字1前面有3个0,故选B【点睛】在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)3.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【详解】解:A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、是轴对称图形,也是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项错误;D、是轴对称图形,不是中心对称图形.故此选项正确.故选D.【点睛】本题考查轴对称图形与中心对称图形的概念,解题关键是熟练掌握定义、性质.4.某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( )A.1种B.2种C.3种D.4种【答案】C【解析】安排女生x人,安排男生y人,则男生的工作时间5y小时,女生工作时间4x小时,根据活动累计56小时的工作时间,列出二元一次方程,求出其整数解即可.【详解】安排女生x人,安排男生y人,依题意得:4x+5y=56则5654y x-=当y=4时,x=9.当y=8时,x=4.当y=0时,x=14.即安排女生9人,安排男生4人;安排女生4人,安排男生8人;安排女生14人,安排男生0人.共有两种方案.故选C.【点睛】熟练掌握列二元一次方程的方法和变形是本题的解题关键.5.木工师傅在锯木板时,往往先在木板两端固定两个点,用墨盒弹一根墨线然后再锯,这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线D.经过已知直线外一点,有且只有一条直线与已知直线平行【答案】A【解析】解:在木板两端用墨盒弹一根墨线然后再锯,这样做的数学道理是两点确定一条直线.故选A.6.若点M的坐标为(|b|+3,则下列说法正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上【答案】A【解析】直接利用绝对值以及二次根式的性质得出横纵坐标的符号,进而得出答案.【详解】∵点M的坐标为(|b|+2,2-a),∴|b|+2>0,-a2=0,故点M在x轴正半轴上.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.如图所示,直线AB上有一点C,过点C作CD⊥CE,那么图中∠1和∠2的关系是()A.对顶角B.同位角C.互为补角D.互为余角【答案】D【解析】由CD⊥CE得到∠DCE=90°,∠1+∠2=90°,根据余角的定义判断即可.【详解】解:∵CD⊥CE,∴∠DCE=90°,∴∠1+∠2=90°,即∠1和∠2互为余角,故选D.【点睛】本题考查余角的定义,熟练掌握基础知识是解题关键.8.下列不等式一定成立的是()A.2x<5 B.﹣x>0 C.|x|+1>0 D.x2>0【答案】C【解析】利用不等式的基本性质判断即可.【详解】A、2x不一定小于5,不符合题意;B、﹣x不一定大于0,不符合题意;C、|x|+1≥1>0,符合题意;D、x2≥0,不符合题意,故选:C.【点睛】此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.9.若关于x 的不等式组5210x x m ->⎧⎨-≥⎩的整数解共有3个,则m 的取值范围是( ) A .10m -≤<B .10m -<≤C .21m ≤<-D .21m -<≤- 【答案】D 【解析】分别求出不等式组中不等式的解集,利用确定解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解:5210x x m ->⎧⎨-≥⎩①②, 由①解得:x <2,由②解得:x≥m ,故不等式组的解集为m≤x <2,由不等式组的整数解有3个,得到整数解为1,0,−1,则m 的范围为−2<m≤−1.故选:D .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键. 10.轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm 的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为( )A .12 cm 2B .24 cm 2C .36cm 2D .48 cm 2【答案】C 【解析】根据七巧板的特点可知:圈出来的图形面积是正方形面积的四分之一.【详解】根据七巧板的特点可知:圈出来的图形面积是正方形面积的四分之一,所以面积是12×12÷4=36故选:C【点睛】考核知识点:七巧板与正方形性质.二、填空题题11.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB ∥CD,∠BAE=87°,∠DCE=121°,则∠E 的度数是_____【答案】34°【解析】延长DC 交AE 于F ,依据AB ∥CD ,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE .【详解】如图,延长DC 交AE 于F ,∵AB ∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE−∠CFE=121°−87°=34°,故答案为34°【点睛】此题考查平行线的性质,三角形外角性质,解题关键在于作辅助线.12.已知一个锐角为(5x ﹣35)°,则x 的取值范围是_____.【答案】7<x <25【解析】解:由题意可知:0<5x ﹣35<90解得:7<x <25故答案为7<x <2513.如图,ABC ∆的周长为12个单位长,将ABC ∆沿BC 向右平移2个单位长得到DEF ∆,则四边形ABFD 的周长为_______单位长.【答案】1;【解析】根据平移的基本性质作答.【详解】解:根据题意,将周长为12个单位的△ABC 沿边BC 向右平移2个单位得到△DEF ,∴AD=2,BF=BC+CF=BC+2,DF=AC ;又∵AB+BC+AC=12,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=1.故答案为:1.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.14.在一块边长为a cm 的正方形纸板中,四个角分别剪去一个边长为b cm 的小正方形,利用因式分解计算:当a =98 cm ,b =27 cm 时,剩余部分的面积是____.【答案】a 2-4b 2=(a +2b)(a -2b)=152×44=6688(cm 2).【解析】结合图形,知剩余部分的面积即为边长为a 的正方形的面积减去4个边长为b 的正方形的面积,再进一步运用平方差公式进行计算.【详解】根据题意,得剩余部分的面积是a 2-4b 2=(a+2b )(a-2b )=152×44=6688(cm 2).故答案为6688cm 2【点睛】此题考查了因式分解的运用,能够利用因式分解简便计算.15.如果0,7x y xy +==-,则22x y xy +=______.【答案】0【解析】22x y xy +=xy(x+y)=-70⨯=0.故答案为0.16.下面是某同学在一次作业中的计算摘录:①()3333a b a b =;②()326x x -=-;③32()()m m m -+-=; ④235(3)9x x x -⋅=;⑤33367m n mn m n -=-.其中正确的有___________.(把正确的序号都填在横线上)【答案】②、④【解析】根据整式的运算法则分别计算得到结果,即可判断.【详解】解:①()3393a ba b =,错误; ②()326x x -=-,正确;③3()m -和m -,不是同类项,不能合并,错误; ④235(3)9x x x -⋅=,正确;⑤36m n 和37mn 不是同类项,不能合并,错误.其中正确的有②、④.故答案为:②、④.【点睛】此题考查了整式的运算,熟练掌握整式运算的法则是解本题的关键.17.计算:22155()5-÷⨯=___.【答案】1【解析】先算平方和负整数指数幂,再从左往右计算乘除法即可求解. 【详解】221555-⎛⎫÷⨯ ⎪⎝⎭, 52525=÷⨯,0.225=⨯,5=.故答案为:1.【点睛】考查了负整数指数幂,关键是熟练掌握计算法则,注意运算顺序.三、解答题18.解不等式组(1)3(2)41213x x x x --≥-⎧⎪+⎨>-⎪⎩并把解集表示在数轴上. (2)已知关于,x y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,求出满足条件的m 的所有正整数值.【答案】(1)1x ≤;(2)1,2,1【解析】(1)分别求出每个不等式的解集,再取它们的公共部分得到不等式组的解集,然后在数轴上表示出来即可;(2)方程组两方程相加表示出x+y ,代入已知不等式求出m 的范围,确定出正整数值即可.【详解】(1)解:3(2)41213xx x x --≥-⎧⎪⎨+>-⎪⎩①②解①得:1x ≤解②得:4x <将解集表示在数轴上为:∴不等式组的解集为1x ≤(2)解:23224? x y m x y +=-+⎧⎨+=⎩①② ①+②得 3336x y m +=-+2x y m +=-+由32x y +>-得 322m -+>- 72m ->- 72m < ∴满足条件的m 的所有正整数的值有1,2,1.【点睛】此题考查了二元一次方程组的解,解一元一次不等式组以及一元一次不等式的整数解,熟练掌握运算法则是解本题的关键.19.如图,点E 、F 在AC 上,DF =BE ,AE =CF ,∠AFD =∠CEB .求证:AD ∥CB .【答案】见解析.【解析】根据等式的性质得出AF =CE ,进而利用SAS 证明△ADF 与△CBE 全等,进而利用全等三角形的性质和平行线的判定解答即可.【详解】∴AE=CF∴AE﹣EF=CF﹣EF,即AF=CE,又∵∠AFD=∠CEB,DF=BE,△ADF≌△CBE(SAS),∴∠A=∠C∴AD∥CB.【点睛】本题主要考查了全等三角形的判定和性质,关键是根据等式的性质得出AF=CE,进而利用SAS证明△ADF 与△CBE全等解答.20.如图,已知同一平面内∠AOB=90°,∠AOC=60°.(1)问题发现:∠BOD的余角是,∠BOC的度数是;(2)拓展探究:若OD平分∠BOC,OE平分∠AOC,则∠DOE的度数是;(3)类比延伸:在(2)条件下,如果将题目中的∠AOB=90°改为∠AOB=2∠β;∠AOC=60°改为∠AOC =2α(α<45°),其他条件不变,你能求出∠DOE吗?若能,请你写出求解过程:若不能,请说明理由.【答案】(1)∠AOD,150°;(2)45°;(3)∠DOE=β,理由详见解析.【解析】(1)直接根据余角的定义得到∠BOD的余角,利用∠BOC=∠AOB+∠AOC求出即可;(2)利用角平分线的性质和(1)中所求得出答案即可;(3)根据角平分线的性质求出即可.【详解】(1)∵∠AOB=90°,∴∠AOD+∠BOD=90°,∴∠BOD的余角是∠AOD,∵∠AOC=60°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,故答案为:∠AOD,150°;(2)∵OD平分∠BOC,OE平分∠AOC,∴∠COD=12∠BOC=75°,∠COE=12∠AOC=30°,∴∠DOE 的度数为:∠COD ﹣∠COE =45°;故答案为:45°;(3)∵∠AOB =2β°,∠AOC =2α,∴∠BOC =2β+2α,∵OD 、OE 平分∠BOC ,∠AOC ,∴∠DOC =12∠BOC =β+α,∠COE =12∠AOC =α, ∴∠DOE =∠COD ﹣∠COE =β+α﹣α=β.【点睛】此题主要考查了角平分线的性质以及有关角的计算,熟练利用角平分线的性质得出是解题关键. 21.因式分解:(1)269x x -+.(2)2()4()a x y x y ---.【答案】(1)2(3)x - (2)()(2)(2)x y a a -+-【解析】(1)根据完全平方式计算即可.(2)首先提取公因式,再利用平方差公式展开.【详解】(1)原式=2(3)x -(2)原式=2()(4)()(2)(2)x y a x y a a --=-+-【点睛】本题主要考查因式分解的方法,关键在于利用完全平方公式和平方差公式. 22.求满足不等式组()32813 1322x x x x ⎧--≤⎪⎨--⎪⎩<的所有整数解. 【答案】不等式组的解集:-1≤x <2,整数解为:-1,0,1.【解析】分析:先求出不等式组的解集,然后在解集中找出所有的整数即可.详解:解不等式x-3(x-2)≤8,得:x≥-1, 解不等式12x-1<3-32x ,得:x <2, 则不等式组的解集为-1≤x <2,所以不等式组的整数解为-1、0、1.点睛:本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.23.如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1+∠2=90°.(1)求证:AB ∥CD ;(2)试探究∠2与∠3的数量关系.【答案】(1)见解析;(2)∠2+∠3=90°【解析】(1)已知BE 、DE 平分∠ABD 、∠BDC ,且∠1+∠2=90°,可得∠ABD +∠BDC =180°,根据同旁内角互补,可得两直线平行.(2)已知∠1+∠2=90°,即∠BED =90°,那么∠3+∠FDE =90°,等量代换,即可得出∠3与∠2的数量关系.【详解】解:(1)∵BE 、DE 平分∠ABD 、∠BDC ,∴∠1=12∠ABD ,∠2=12∠BDC , ∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB ∥CD ;(同旁内角互补,两直线平行)(2)∵DE 平分∠BDC ,∴∠2=∠FDE ;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点睛】此题主要考查了角平分线的性质以及平行线的判定,熟练掌握相关性质进行推理是解题关键.24.解不等式组1(1)1212x x ⎧-≤⎪⎨⎪-⎩<并写出该不等式组的所有整数解.【答案】解集是-1<x≤3;整数解是0,1,2,3【解析】分别解出每个不等式的解集,确定不等式组的解集,然后在解集中确定所有整数解即可. 【详解】解不等式1(1)12x -≤得:x≤3 解不等式12x -<得:x >-1所以不等式组的解集是-1<x≤3.大于-1而小于或等于3的所有整数有0,1,2,3,∴该不等式组的所有整数解为0,1,2,3.【点睛】。

(汇总3份试卷)2018年贵阳市某达标中学七年级下学期数学期末质量检测试题

(汇总3份试卷)2018年贵阳市某达标中学七年级下学期数学期末质量检测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.9的平方根是( )A .3B .81C .3±D .81± 【答案】C【解析】根据平方根的定义进行求解即可.【详解】解:9的平方根是3±.故选:C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.2.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶5【答案】C 【解析】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,根据角平分线的性质得到OD=OE=OF ,根据三角形的面积公式计算即可.【详解】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,∵三条角平分线交于点O ,OF ⊥AB ,OE ⊥AC ,OD ⊥BC ,∴OD=OE=OF ,∴S △ABO :S △BCO :S △CAO =AB :BC :CA=20:30:40=2:3:4,故选C .【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 3.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( )A .1x >-B .1x ≥C .11x -<≤D .1x ≤【答案】B 【解析】写出图中表示的两个不等式的解集,这两个式子就是不等式.这两个式子就组成的不等式组就满足条件.【详解】由数轴得出-11x x ⎧⎨⎩>≥ , 故选:B.【点睛】此题考查在数轴上表示不等式的解集,解题关键在于看懂数轴4.下列方程组中,是二元一次方程组的是 ( ) A .213x y y z=+⎧⎨=-⎩ B .127xy x y =⎧⎨+=⎩ C .34x y =⎧⎨=⎩ D .112324x y x y ⎧+=⎪⎨⎪-=⎩ 【答案】C 【解析】根据二元一次方程组是定义依次判定各项后即可解答. 【详解】选项A ,有三个未知数,不是二元一次方程组;选项B ,xy 的次数是2,不是二元一次方程组;选项C ,符合二元一次方程组的定义,是二元一次方程组;选项D ,112x y +=不是整式方程,选项D 不是二元一次方程组.故选C.【点睛】本题考查了二元一次方程组的定义,熟知二元一次方程组的定义是解决问题的关键.5.如图是一张长条形纸片,其中AB CD ∥,将纸片沿EF 折叠,A 、D 两点分别与'A 、'D 对应,若12∠=∠,则'D FC ∠的度数为( )A .72B .36C .60D .65【答案】C 【解析】依据平行线的性质以及折叠的的性质,即可得到∠A'EF=60°,∠1=60°,再根据平行线的性质,即可得到∠D′FC 的度数.【详解】解:∵AB∥CD,∴∠1=∠AEF,由折叠可得∠A'EF=∠AEF,又∵∠1=∠2,∴∠AEF=∠A'EF=∠2,∵∠AEB=180°,∴∠A'EF=60°,∠1=60°,∵A'E∥D'F,∴∠A'EF+∠D'FE=180°,∴∠D'FC=180°-60°-60°=60°,故选:C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.6.如图,下列判断中正确的是()A.如果EF∥GH,那么∠4+∠3=180°B.如果AB∥CD,那么∠1+∠4=180°C.如果AB∥CD,那么∠1=∠2 D.如果AB∥CD,那么∠2=∠3【答案】C【解析】根据平行线的性质进行判断:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【详解】A.如果EF∥GH,那么∠4+∠1=180°,故本选项错误;B.如果AB∥CD,那么∠3+∠4=180°,故本选项错误;C.如果AB∥CD,那么∠1=∠2,故本选项正确;D.如果AB∥CD,那么∠2=∠1,故本选项错误;故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7.如图,直线AB,CD,相交于点O,∠MON=90°.∠BON比∠MOA多10°.求∠BON,∠MOA的度数若设∠BON=x°,∠MOA=y°.可列方程组为()A.9010x yx y+=⎧⎨-=⎩B.9010x yx y+=⎧⎨+=⎩C.9010x yx y-=⎧⎨-=⎩D.29010x yx y+=⎧⎨-=⎩【答案】A【解析】任意平角均为180°,所以∠BON+∠MOA=90°【详解】∵∠BON+∠MOA+∠MON=180°,∴x+y=90°,且由题可知,x-y=10°,故选A.【点睛】本题主要考查平角的问题.熟悉平角为180°是本题的关键.8.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC 的面积是()A.20 B.25 C.30 D.35【答案】C【解析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入即可求解.【详解】如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是20,OD⊥BC于D,且OD=3,∴S△ABC=12×AB×OE+12×BC×OD+12×AC×OF=12×(AB+BC+AC)×3=12×20×3=30,故选C.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.9.给出下列各数:13,0,0.21,3.14,π,0.142 87,1π,其中是无理数的有()A.1个B.2个C.3个D.4个【答案】B【解析】根据无理数的定义解答即可.【详解】无理数有:π,1π,共2个.故选B.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.10.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.【答案】C【解析】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.二、填空题题11.已知关于x 的不等式x-a<0 的最大整数解为3a+5,则a=___________.【答案】-3或-83.【解析】由x的不等式x-a<0,得x<a,因为x的不等式x-a<0的最大整数解为3a+5,所以3a+5<a≤3a+6,因此a=-3或-83. 【详解】由x 的不等式x-a <0,得x <a ,∵x 的不等式x-a <0的最大整数解为3a+5,∴3a+5<a≤3a+6,∴-3≤a <-52, ∵3a+5为整数,可设m=3a+5,则a=53m -, 即-3≤53m -<−52, 解得-4≤m <−52, ∵m 为整数,∴m=-4,-3,∴a=-3或-83故答案为-3或-83. 【点睛】本题考查了一元一次不等式的整数解,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.12.若方程组234563x y x y m +=⎧⎨+=+⎩的解满足0x y +>,则m 的取值范围是____________ 【答案】1m >-【解析】观察方程组,将两个方程左右分别相加并化简,可得1x y m +=+,根据题意即可求出m 的取值范围.【详解】解:234563x y x y m +=⎧⎨+=+⎩①② ①+②得:6666x y m +=+∴1x y m +=+∵0x y +>∴10m +>∴1m >-故答案为:1m>-【点睛】本题为二元一次方程组变式题,考查了解二元一次方程组以及求不等式解集,熟练掌握相关知识点是解答本题的关键.13.已知OA⊥OC于O,∠AOB∶∠AOC=2∶3,则∠BOC的度数为____________度.【答案】30°或150°【解析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.【详解】∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=3:2,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.如图,①当在∠AOC内时,∠BOC=90°-60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故答案为30°或150°.【点睛】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.14.对x,y定义一种新运算E,规定E(x,y)=ax+2by(其中a,b是非零常数),这里等式右边是通常的四则运算.如:E(3,-1)=3a-2b.(1)E(m,2)=_________;(用含m,a,b的代数式表示)(2)若E(1,1)=E(3,-1)=1.则a=________,b=________.【答案】am+2b 2 2【解析】(2)利用题中的新定义解得即可;(2)利用题中的新定义化简得到方程组,求出方程组的解即可得到a与b的值.【详解】(2)根据题意得:E(m,2)=am+2b;(2)根据题意得:a+2b=3a-2b=2,即24 324 a ba b+⎧⎨-⎩==,解得:21ab⎧⎨⎩==,则a=2,b=2,故答案为:(2)am+2b;(2)2,2.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.15.已知:(x+2)(x2﹣2ax+3)中不含x2项,a=_____.【答案】1【解析】原式利用多项式乘多项式法则计算,合并后根据结果不含x2项,即可确定出a的值.【详解】解:原式=x3﹣2ax2+3x+2x2﹣4ax+6=x3+(2﹣2a)x2﹣4ax+3x+6,由结果不含x2项,得到2﹣2a=0,解得:a=1.故答案为:1.【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.已知点B、C为线段AD上的两点,AB=12BC=13CD,点E为线段CD的中点,点F为线段AD的三等分点,若BE=14,则线段EF=____________【答案】3或1.【解析】设AB=x,则BC=3x,CD=3x,CE=DE=12CD=32x,由BE=13可求出x的值,由点F为线段AD的三等分点,可得出AF=3x或DF=3x,分AF=3x、DF=3x两种情况找出EF的长度,此题得解.【详解】设AB=x,则BC=3x,CD=3x,CE=DE=12CD=32x,∵BE=BC+CE=3x+32x=13,∴x=3.∵点F为线段AD的三等分点,∴AF=13AD=3x或DF=13AD=3x.当AF=3x时,如图1所示,EF=AB+BC+CE-AF=52x=1;当DF=3x时,如图3所示,EF=DF-DE=x2=3.综上,线段EF的长为3或1.故答案为:3或1【点睛】本题考查了两点间的距离,分AF=3x、DF=3x两种情况找出EF的长度是解题的关键.17.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是_______【答案】30°【解析】根据题意可得AB∥CD,根据平行线的性质可得∠1=∠3,然后根据已知三角板含有45°角的直角三角板,可得∠2=45°-∠3,即可求解.【详解】如图所示:由题意得,AB∥CD,∴∠1=∠3,∵三角板为含有45°角的直角三角板,∴∠2=45°-∠3=45°-15°=30°.故答案是:30°.【点睛】考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,内错角相等.三、解答题18.计算:(1)(3x+2)(4x-2);(2);(3)【答案】(1)12x2+2x-4;(2)a9;(3)2.【解析】(1)根据多项式与多项式相乘法则计算;(2)根据单项式乘法法则运算;根据有理数运算法则计算.【详解】解:(1)(3x+2)(4x-2)=12x2-6x+8x-4=12x2+2x-4;(2);(3)【点睛】考核知识点:整式乘法,有理数乘法.掌握运算法则是关键.19.已知动点P 以每秒2cm 的速度沿如图甲所示的边框按从B C D E F A →→→→→的路径匀速移动,相应的ABP ∆的面积S 关于时间t 的图象如图乙所示,若6cm AB =,试回答下列问题:(1)求出图甲中BC 的长和多边形ABCDEF 的面积;(2)直接写出图乙中a 和b 的值.【答案】(1)8,60;(2)17;【解析】(1)由图象可求BC=4×2=8cm ,CD=2×2=4cm ,DE=3×2=6cm ,EF=6-4=2cm ,即可求多边形ABCDEF 的面积;(2)由三角形面积公式和时间=路程速度,可求a ,b 的值. 【详解】(1)由图象可得BC=4×2=8cm ,CD=2×2=4cm ,DE=3×2=6cm ,EF=6−4=2cm ,∴多边形ABCDEF 的面积=6×8+6×2=60cm 2,(2)由题意可得:a=12×6×8=24,b=8462142++++=17 【点睛】此题考查动点问题的函数图象,解题关键在于看懂函数图象获取信息.20. (1)计算:[(x+2y)2﹣(x+y)(x ﹣y)﹣5y 2]÷(2x);(2)完成下面推理过程:如图,已知∠1=∠2,∠B =∠C ,可得AB ∥CD .理由是:∵∠1=∠2(已知),∠1=∠CGD(_____),∴∠2=∠CGD(等量代换).∴CE ∥BF(______).∴∠BFD =∠C(_______).∵∠B =∠C(已知),∴∠______=∠B(等量代换),∴AB∥CD(_______).【答案】(1)2y;(2)对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;BFD;内错角相等,两直线平行【解析】(1)首先分别利用完全平方公式和平方差公式化简多项式,然后合并同类项再把除法转化为乘法,即可解答(2)先由对顶的定义得到∠1=∠CGD,则∠2=∠CGD,根据平行线的判定得到CE∥BF,则∠C=∠BFD,易得∠B=∠BFD,然后根据平行线的判定即可得到AB∥CD【详解】解:(1)原式=(x2+4xy+4y2﹣x2+y2﹣5y2)÷(2x)=4xy÷2x=2y;(2)∵∠1=∠2(已知),∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换).∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;BFD;内错角相等,两直线平行【点睛】此题考查平行线的判断与性质,整式的混合运算,掌握运算法则是解题关键21.如图1,AB//EF,∠2=2∠1(1)证明∠FEC=∠FCE;(2)如图2,M为AC上一点,N为FE延长线上一点,且∠FNM=∠FMN,则∠NMC与∠CFM有何数量关系,并证明.【答案】(1)见解析;(2)∠CFM=2∠NMC,理由见解析【解析】(1)由平行线的性质可得∠1=∠CEF,再加上∠2=2∠1,∠2=∠CEF+∠C,从而得到结论;(2)如图,由三角形外角性质可得∠7=∠3+∠4,从而得到∠C=∠3+∠4,再加上∠C+∠5=∠8+∠N可得∠3+∠4+∠5=∠8+∠N,再加上∠FNM=∠FMN可得:∠3+∠4+∠5=∠8+∠3+∠8,从而得出结论.【详解】(1)∵AB//EF,∴∠1=∠CEF,又∵∠2=2∠1(已知),∠2=∠CEF+∠C(三角形外角的性质),∴2∠1=∠2=∠1+∠C,∴∠1=∠C,∴∠FEC=∠C,即∠FEC=∠FCE;(2)如图所示:∵∠7=∠3+∠4,∠7=∠6,∠6=∠C(已证),∴∠C=∠3+∠4,又∵∠7=∠6,∴∠C+∠5=∠8+∠N,∴∠3+∠4+∠5=∠8+∠N,又∵∠FNM=∠FMN,∴∠N =∠3+∠8,∴∠3+∠4+∠5=∠8+∠3+∠8,又∵∠4+∠5=∠CFM ,∴∠3+∠CFM =∠8+∠3+∠8,∴∠CFM =2∠8,即∠CFM =2∠NMC.【点睛】考查了三角形外角的性质和内角和定理,解题关键是充分利用了三角形外角的性质和内角和定理和灵活运用了等量代换.22.点()3,2N --向__________平移2个单位后,所对应的点的坐标是()5,2--.【答案】左【解析】找到横纵坐标的变化情况,根据坐标的平移变换进行分析即可.【详解】解:纵坐标没有变化,横坐标的变化为:5(3)2---=-,说明向左平移了2个单位长度.故答案为:左.【点睛】本题考查了坐标与图形变化-平移,用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.23.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.【答案】(1)(0,4)A ,0()6,B -; (2)4(0,)D -;(3)()8,8P --【解析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由ABO ACO BCO S S S ∆∆∆=+列方程组,求出点C 坐标,进而由△ACD 面积求出D 点坐标.(3)由平行线间距离相等得到20PAB EAB S S ∆∆==,继而求出E 点坐标,同理求出F 点坐标,再由GE=12求出G 点坐标,根据PGE OEF GPFO S S S ∆∆=+梯形求出PG 的长即可求P 点坐标.【详解】解:(1)40a -≥ 60b +≥, ∴460a b -++=,40a ∴-=,60b +=,4a ∴=,6b =-,()0,4A ∴,()6,0B -,(2)由BCM DOM S S ∆∆=∴ABO DOM S S ∆∆=,ABO ACD S S ∆∆∴=,1122ABO S AO BO ∆=⨯⨯=, 如图1,连CO ,作CE y ⊥轴,CF x ⊥轴,ABO ACO BCO S S S ∆∆∆=+,即()11641222m m ⨯⨯+⨯⨯-= 53212n m n m -=⎧∴⎨-=⎩,32m n =-⎧∴⎨=⎩, ()3,2C ∴-, 而12ACD S CE AD ∆=⨯⨯, ()134122OD =⨯⨯+=, 4OD ∴=,()0,4D ∴-,(3)如图2:∵EF ∥AB ,∴20PAB EAB S S ∆∆==,∴1202AO BE ⨯=,即()4640OE ⨯+=, 4OE ∴=,()4,0E ∴,12GE =,8GO ∴=,()8,0G ∴-,20ABF PBA S S ∆∆==,()11642022ABF S BO AF OF ∆∴=⨯⨯=⨯⨯+=, 83OF ∴=, 80,3F ⎛⎫∴- ⎪⎝⎭, PGE OEF GPFO S S S ∆∆=+梯形,11818128422323PG PG ⎛⎫∴⨯⨯=⨯+⨯+⨯⨯ ⎪⎝⎭, 8PG ∴=,()8,8P ∴--,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.24.解不等式组:513(1)2151132x x x x -<+⎧⎪-+⎨-≤⎪⎩,并写出它所有的整数解. 【答案】﹣1≤x <2;﹣1,0,1【解析】根据题意先分别解两个不等式确定不等式组的解集,再找出其中的整数解即可. 【详解】解:513(1)2151132x x x x -<+⎧⎪⎨-+-≤⎪⎩①②, 解①得x <2,解②得x≥﹣1,故不等式组的解集为﹣1≤x <2,故不等式组的整数解为:﹣1,0,1.【点睛】本题考查解一元一次不等式组,根据题意分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集是解题的关键. 25.计算:(1)(﹣12)﹣2+(π﹣3)0﹣(﹣12)2017×22018 (2)(﹣3x)•(﹣23x 2y)3÷(﹣34y 3x 5). 【答案】 (1)7;(1)﹣3227x 1. 【解析】(1)根据负整数幂,零指数幂,积的乘方法则计算即可;(1)先算积的乘方,再进行多项式乘除运算即可解答.【详解】(1)原式=4+1﹣(﹣12×1)1017×1 =5+1=7;(1)原式=(﹣3x)×(﹣827x6y3)÷(﹣34y3x5)=89x7y3÷(﹣34y3x5)=﹣3227x1.【点睛】此题考查整式的混合运算,零指数幂,负整数指数幂,幂的乘方与积的乘方,熟练掌握运算法则是解题关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)10 20 30 40户数[来源:学#科#网] 2 15 10 3则五月份这30户家庭节电量的众数与中位数分别为()A.20,20 B.20,25 C.30,25 D.40,20【答案】A【解析】试题解析:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A.2.张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是x米/分,则可列得方程为A.300030005x1.2x-=B.30003000560x1.2x-⨯=C.3000300051.2x x-=D.30003000560x1.2x+⨯=【答案】A【解析】设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得等量关系:张老师行驶的路程3000÷他的速度-李老师行驶的路程3000÷他的速度=5分钟,根据等量关系列出方程即可.【详解】设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得:300030005x1.2x-=.故选A.3.关于x的不等式组x15x322x2x a3><+⎧-⎪⎪⎨+⎪+⎪⎩只有4个整数解,则a的取值范围是()A.145a3-≤≤-B.145a3-≤<-C.145a3-<≤-D.145a3-<<-【答案】C【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:不等式组的解集是2-3a <x <21,因为不等式组只有4个整数解,则这4个解是20,19,18,1.所以可以得到16≤2-3a <1,解得-5<a≤-143 . 故选:C .【点睛】此题考查解不等式组,正确解出不等式组的解集,正确确定2-3a 的范围,是解决本题的关键. 4.如果3x m =,3y n =,那么3x y -等于()A .m n +B .m n -C .mnD .m n【答案】D【解析】试题解析:3x m =,3y n =, 333,x y x y -=÷.m m n n=÷=故选D. 点睛:同底数幂相除,底数不变,指数相减.5.已知直角三角形.....ABC 中,,,,.则x 的取值范围是( ) A .B .C .D . 【答案】B【解析】根据题意可知,AB 作为斜边,则AB>5,由三角形三边关系得,AB<AC+BC ,即可得到答案.【详解】解:在直角三角形.....ABC 中,∠C=90°,∴AB 为斜边∴,由三角形三边关系,得:,∴,即. 故选择:B.【点睛】 本题考查了直角三角形性质和三边关系,解题的关键是掌握三角形的三边关系.6.若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( ) A .﹣3B .3C .5D .7 【答案】C【解析】将x=2代入ax 4+bx 2+5使其值为5,可得16a+8b 的值,在将x=﹣2代入ax 4+bx 2+5,可求得ax 4+bx 2+7.【详解】解:当x=2时,代数式ax 4+bx 2+5的值是3,即:16a+4b+5=3,可得16a+4b=-2,当x=﹣2时,代数式ax 4+bx 2+7=16a+4b+7=-2+7=5,故选C.【点睛】本题主要考查代数式求值,注意运算的准确性.7.下列计算正确的是( )A .3412a a a ⋅=;B .3412a a a ⋅=;C .3412()a a -= ;D .623a a a ÷=;【答案】C【解析】分析:根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.详解:A 、应为3a•4a=12a 2,故本选项错误;B 、应为a 3×a 4=a 7,故本选项错误;C 、(-a 3)4=a 12,正确;D 、应为a 6÷a 2=a 6-2=a 4,故本选项错误.故选C .点睛:本题主要考查同底数幂乘、除法的运算性质和幂的乘方的性质,需要熟练掌握并灵活运用.8( )A .4B .8C .4±D .8± 【答案】A【解析】依据算术平方根的定义求解即可.故选A【点睛】此题考查算术平方根,掌握运算法则是解题关键9.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( ) A .先向左转130°,再向左转50°B .先向左转50°,再向右转50°C .先向左转50°,再向右转40°D .先向左转50°,再向左转40° 【答案】D【解析】根据同位角相等,两直线平行,可得B.10.小锦和小丽分别购买了一些中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意列方程组正确的是( )A .220562328x y x y +=⎧⎨+=⎩B .202562328x y x y +=⎧⎨+=⎩C .202282356x y x y +=⎧⎨+=⎩D .222820356x y x y +=⎧⎨+=⎩ 【答案】B【解析】根据题意可得两个等式为:20x+2y=56,2x+3y=28,故可列方程组202562328x y x y +=⎧⎨+=⎩, 故选B .二、填空题题11.如图1,将边长为a 的大正方形剪去一个边长为b 的小正方形,并沿图中的虚线剪开,拼接后得到图2,请根据图形的面积写出一个含字母a ,b 的等式_______________.【答案】()()22a b a b a b -=+- 【解析】根据左图中的面积=大正方形的面积-剪去的小正方形的面积,右图中的面积=长×宽,由面积不变可得含字母a ,b 的等式.【详解】左图中部分的面积=a 2-b 2,右图中的面积=(a+b)(a-b),由图中的面积不变,得()()22a b a b a b -=+-. 故答案为:()()22a b a b a b -=+-. 【点睛】本题考查了利用图形的面积验证平方差公式,根据两个图形的面积相等列出等式是解题的关键. 12.如图所示是一条线段,AB 的长为10厘米,MN 的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN 上的概率为__.【答案】15【解析】先确定线段MN 的长在线段AB 的长度中所占的比例,根据此比例即可解答.【详解】AB 间距离为10,MN 的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN 上的概率为21105= 故答案为:15 【点睛】用到的知识点为:概率=所求情况数与总情况数之比.13.已知点M (﹣4,2)在平面直角坐标系内,若将点M 先向下平移3个单位长度,再向左平移3个单位长度,则平移的点N 的坐标为___.【答案】(﹣7,﹣1).【解析】根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可.【详解】∵点M (﹣4,2),∴向下平移3个单位长度,再向左平移3个单位长度,平移的点N 的坐标为(﹣4﹣3,2﹣3)即(﹣7,﹣1),故答案为(﹣7,﹣1).【点睛】此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律.14.从鱼池的不同地方捞出100条鱼,在鱼的身上做上记号,然后把鱼放回鱼池.过一段时间后,在同样的地方再捞出50条鱼,其中带有记号的鱼有2条,则可以估计整个鱼池约有鱼______条.【答案】1.【解析】先计算出有记号鱼的频率,再用频率估计概率,利用概率计算鱼的总数.【详解】解:设鱼的总数为x 条,鱼的概率近似等于2:50=100:x解得x=1.故答案为:1.【点睛】本题主要考查频率=所求情况数与总情况数之比,关键是根据有记号的鱼的频率得到相应的等量关系,难度适中.15.点()3,4A -到y 轴的距离是________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列长度的三条线段能组成三角形的是()A.1、2、3B.3、3、7C.20、15、8D.5、15、8【答案】C【解析】解:A、1+2=3,不能组成三角形;B、3+3<7,不能组成三角形;C、15+8>20,能够组成三角形.D、5+8<15,不能组成三角形;故选C.2.下列说法正确的是()①平面内没有公共点的两条线段平行;②两条不相交的直线是平行线;③同一平面内没有公共点的两条射线平行;④同一平面内没有公共点的两条直线平行.A.①B.②③C.④D.②④【答案】C【解析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.【详解】解:①同一平面内没有公共点的两条线段不一定平行,故①错误;②在同一个平面内,两条不相交的直线是平行或重合,故②错误;③同一平面内没有公共点的两条射线不一定平行,故③错误;④同一平面内没有公共点的两条直线平行,故④正确;故选:C.【点睛】此题考查了平行线的判定.解题的关键是熟记平行线的概念.3.将一副三角板按照如图所示的位置摆放在同一水平面上,两条斜边互相平行,两个直角顶点重合,则∠1的度数是()A.30o B.45o C.75o D.105o【答案】C【解析】如图,作辅助线FG∥AB,根据平行线的性质即可解答.【详解】解:如图,作辅助线FG∥AB,∵FG ∥AB ∥DE ,∴∠ABC=∠BCG,∠DEC=∠GCE,∴∠1=∠BCG+∠GCE=∠ABC+∠DEC=45°+30°=75°;故选C.【点睛】本题主要考查了平行线的性质,准确识图是解题的关键.4.已知1纳米910-=米,某种植物花粉的直径为35000纳米,则该花粉的直径为A .53.510-⨯米B .43.510⨯米C .93.510-⨯米D .63.510-⨯米 【答案】A【解析】科学记数法的表示形式为10n a -⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:∵1纳米910-=米,∴直径为35000纳米=35000×910- m=3.5×510-米,故选:A .【点睛】本题考查用科学记数法表示较小的数,一般形式为-10n a ⨯,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.若关于x 的不等式2x -a≤-1的解集是x≤-1,则a 的值是( )A .0B .-3C .-2D .-1 【答案】D【解析】试题解析:移项得:21x a ≤-,系数化为1,得:12a x -≤, ∵不等式21x a -≤-的解集1x ≤-,112a -∴=-, 解得:a=−1,故选D.6.下列事件适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检查D.了解全市中小学生每天的午休时间【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、对乘坐飞机的乘客进行安检适合全面调查;B、学校招聘教师,对应聘人员进行面试适合全面调查;C、对“天宫2号”零部件的检查适合全面调查;D、了解全市中小学生每天的午休时间适合抽样调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.若点(m,m﹣1)在第四象限,则()A.m>0 B.m>1 C.0<m<1 D.m<0【答案】C【解析】根据第四象限点的坐标的符号特征列出不等式进行解答即可.【详解】∵点(m,m﹣1)在第四象限,∴10mm>⎧⎨-<⎩,解得:0<m<1,故选C.【点睛】本题考查平面直角坐标系内各象限点坐标的符号特征,熟知“平面直角坐标系中,第四象限的点横坐标为正数,纵坐标为负数”是解答本题的关键.8.若正多边形的一个外角是,则该正多边形的内角和为()A.B.C.D.【答案】A【解析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【详解】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6−2)×180°=720°.故选:A.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.9.已知关于x 的不等式组30,x x m-<⎧⎨<⎩无解,则m 的取值范围是( ) A .3m ≤B .3m >C .3m <D .3m ≥【答案】A【解析】求出两个不等式的解集,根据已知得出m ≤3,即可得出选项. 【详解】30x x m -<⎧⎨<⎩①②, ∵解不等式①得:x >3,不等式②的解集是x <m ,又∵不等式组30,x x m -<⎧⎨<⎩无解, ∴m ≤3,故选:A .【点睛】本题考查了解一元一次不等式和解一元一次不等式组,关键是能根据已知得出关于m 的不等式. 10.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°【答案】A 【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°. 详解:∵AD 是BC 边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC ,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.二、填空题题11.如图,ABC ∆中,90ACB ∠=︒,50B ∠=︒,点M 是线段AB 上的一个动点,连接CM ,当BCM ∠是_________度时,BCM ∆是等腰三角形.【答案】50︒或65︒【解析】根据等腰三角形的特点分类讨论即可求解.【详解】∵BCM ∆是等腰三角形,①B 是底角时,则BCM ∠=50B ∠=︒;②B 是顶角时,则BCM ∠=18050652;故答案为:50︒或65︒.【点睛】此题主要考查等腰三角形的性质,解题的关键是根据题意分情况讨论. 12.已知14x y =⎧⎨=⎩是方程kx +y =3的一个解,那么k 的值是____. 【答案】-1【解析】把14x y =⎧⎨=⎩代入方程kx+y=3得到关于k 的一元一次方程,解之即可. 【详解】把14x y =⎧⎨=⎩代入方程kx+y=3得: k+4=3,解得:k=-1,故答案为-1.【点睛】本题考查了二元一次方程的解,正确掌握代入法是解题的关键.13.如图,在中,平分交于点,于点,,,则______°.【答案】60.【解析】在Rt △ADE 中求得∠ADE 的度数,然后利用三角形的外角性质得到∠BAD 的度数,再根据角平分线的定义求得∠BAC 的度数,最后利用三角形的内角和为180°即可得解. 【详解】解:∵,∴∠AED=90°, ∵, ∴∠ADE=90°﹣∠DAE=80°,又∵,∴∠BAD=∠ADE ﹣∠B=40°, ∵平分, ∴=2∠BAD=80°,∴∠C=180°﹣∠B ﹣∠BAC=60°.故答案为:60.【点睛】本题主要考查角平分线的定义,三角形的外角性质,三角形的内角和等,解此题的关键在于熟练掌握其知识点.14.当x ________时,有13x -≤1. 【答案】9x ≤ 【解析】13x -≤1 去分母得:x-3≤6称项得:x≤6+3合并同类项得:x≤9.故答案是:x≤9.15.如图,在△ABC 中,AC 的垂直平分线分别交AC ,BC 于E ,D 两点,EC=4,△ABC 的周长为23,则△ABD 的周长为____.【答案】2【解析】根据线段垂直平分线性质得出AD=DC ,AE=CE=4,求出AC=1,AB +BC=2,求出△ABD 的周长为AB +BC ,代入求出即可.【详解】∵AC 的垂直平分线分别交AC 、BC 于E ,D 两点,∴AD=DC ,AE=CE=4,∴AC=1.∵△ABC 的周长为23,∴AB +BC +AC=23,∴AB +BC=23﹣1=2,∴△ABD 的周长为AB +BD +AD=AB +BD +CD=AB +BC=2.故答案为2.【点睛】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解答此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.若m ,n 为实数,且21280m n m n +---=,则2012()m n +的值为________.【答案】1【解析】根据绝对值与二次根式的非负性即可列出方程组求解.【详解】依题意得210280m n m n +-=⎧⎨--=⎩,解得23m n =⎧⎨=-⎩故2012()m n +=(-1)2012=1故填1【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据非负性列出方程组.17.将方程32y x -=变形成用含y 的代数式表示x ,则x =______.【答案】3y-1【解析】分析:将y 看做已知数求出x 即可.详解:3y-x=1,解得:x=3y-1.故答案为:3y-1点睛:此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .三、解答题18.已知a,b,c为△ABC的三条边的长,当b2+2ab=c2+2ac时,⑴试判断△ABC属于哪一类三角形;⑵若a=4,b=3,求△ABC的周长;【答案】 (1)等腰三角形;(2)1.【解析】试题分析:(1)由已知条件得出b2﹣c2+2ab﹣2ac=0,用分组分解法进行因式分解得出(b﹣c)(b+c+2a)=0,得出b﹣c=0,因此b=c,即可得出结论;(2)由(1)得出b=c=3,即可求出△ABC的周长.解:(1)△ABC是等腰三角形,理由如下:∵a,b,c为△ABC的三条边的长,b2+2ab=c2+2ac,∴b2﹣c2+2ab﹣2ac=0,因式分解得:(b﹣c)(b+c+2a)=0,∴b﹣c=0,∴b=c,∴△ABC是等腰三角形;(2)∵a=4,b=3,∴b=c=3,∴△ABC的周长=a+b+c=4+3+3=1.考点:因式分解的应用.19.解方程或解方程组:(1)解方程组2511(21)2x yx y-=⎧⎪⎨-=-⎪⎩(2)解不等式组121139x xx x->⎧⎪-+⎨≤⎪⎩并将它的解集在数轴上表示出来.【答案】(1)4.54xy=⎧⎨=⎩;(2) x<﹣1,见解析.【解析】(1)根据加减消元法即可求解;(2)依次解出各不等式的解集,再找到其公共解集. 【详解】解:(1)①﹣②得,x=4.5,把x=4.5代入②得y=4,所以原方程组的解为4.54xy=⎧⎨=⎩;(2)解x﹣1>2x,得x<﹣1,解1139x x-+≤,得x≤2,所以不等式组的解集为x<﹣1,在数轴上表示为:【点睛】此题主要考查方程与不等式的解法,解题的关键是熟知加减消元法与不等式的性质进行求解.20.在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图1两种方式放置(图1,图1中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图1中阴影部分的面积为S1.(1)在图1中,EF=___,BF=____;(用含m的式子表示)(1)请用含m、n的式子表示图1,图1中的S1,S1,若m-n=1,请问S1-S1的值为多少?【答案】(1)EF=10-m;BF= m-2;(1)3;【解析】(1)根据线段的和差即可求出EF与BF;(1)利用面积的和差分别表示出S1和S1,然后利用整式的混合运算计算它们的差.【详解】(1)EF=AF-AE=AF-(AB-BE)=AF-AB+BE=2-m+4=10-m,BF=BE-EF=4-(10-m)=m-2.故答案为10-m,m-2;(1)∵S1=2(AD-2)+(BC-4)(AB-2)=2(n-2)+(n-4)(m-2)=mn-4m-11,S1=AD(AB-2)+(AD-2)(2-4)=n(m-2)+1(n-2)=mn-4n-11,∴S1-S1=mn-4n-11-(mn-4m-11)=4m-4n=4(m-n)=4×1=3.【点睛】此题考查整式的混合运算,正方形的性质,解题关键在于适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.21.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少;(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【答案】(1)榕树和香樟树的单价分别是60元/棵,80元/棵;(2)有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.【解析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【详解】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,2032340y xx y-=⎧⎨+=⎩,解得6080xy=⎧⎨=⎩,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,6080(150)10840150 1.5a aa a+-≤⎧⎨-≥⎩,解得:58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.【点睛】本题考查一元一次不等式组的应用;二元一次方程组的应用.22.在平面直角坐标系中.(1)已知点P (2a ﹣4,a+4)在y 轴上,求点P 的坐标;(2)已知两点A (﹣2,m ﹣3),B (n+1,4),若AB ∥x 轴,点B 在第一象限,求m 的值,并确定n 的取值范围.【答案】(1)(0,6);(2)n >﹣1.【解析】(1)根据y 轴上的点的横坐标为0列出关于a 的方程,解之可得;(2)由AB ∥x 轴知A 、B 纵坐标相等可得m 的值,再根据点B 在第一象限知点B 的横坐标大于0,据此可得n 的取值范围.【详解】解:(1)∵点P (2a ﹣4,a+4)在y 轴上,∴2a ﹣4=0,解得:a =2,∴a+4=6,则点P 的坐标为(0,6);(2)∵A (﹣2,m ﹣3),B (n+1,4),AB ∥x 轴,∴m ﹣3=4,解得:m =7,∵点B 在第一象限,∴n+1>0,解得:n >﹣1.【点睛】本题主要考查坐标与图形的性质,解题的关键是掌握坐标轴上点的坐标特点及平行与x 轴的点的坐标特点. 23.某自行车制造厂开发了一款新式自行车,计划6月份生产安装600辆,由于抽调不出足够的熟练工来完成新式自行车的安装,工厂决定招聘一些新工人;他们经过培训后也能独立进行安装.调研部门发现: 1名熟练工和2名新工人每日可安装辆自行车; 2名熟练工和3名新工人每日可安装14辆自行车。

相关文档
最新文档