基础工程课程设计

合集下载

基础工程桩基础课程设计

基础工程桩基础课程设计

基础工程桩基础课程设计一、课程背景随着我国经济的快速发展,基础设施建设成为了推动经济增长的重要力量。

桩基础作为工程结构的重要组成部分,其设计质量直接影响到工程的安全性和可靠性。

因此,掌握桩基础的设计原理和方法对于工程技术人员至关重要。

本课程旨在通过理论教学与实践操作相结合的方式,使学生深入了解桩基础的基本概念、设计原理、计算方法以及施工工艺,提高学生解决实际工程问题的能力。

二、课程目标1. 掌握桩基础的基本概念、分类及特点;2. 理解桩基础的设计原理,包括承载能力、沉降控制等;3. 学会运用规范和手册进行桩基础的设计计算;4. 了解桩基础的施工工艺,包括桩基施工、检测及验收等;5. 培养学生解决实际工程问题的能力,提高综合素质。

三、课程内容1. 桩基础的基本概念、分类及特点;2. 桩基础的设计原理,包括承载能力、沉降控制等;3. 桩基础的设计计算方法,包括单桩承载能力、群桩效应等;4. 桩基础的施工工艺,包括桩基施工、检测及验收等;5. 桩基础在实际工程中的应用案例分析。

四、教学方法1. 理论教学:通过课堂讲授、案例分析等方式,系统讲解桩基础的基本概念、设计原理和计算方法;2. 实践操作:组织学生参观桩基础施工现场,了解桩基础施工工艺,并进行桩基础设计实训;3. 讨论交流:组织学生分组讨论,针对实际工程问题进行交流,提高学生解决实际问题的能力;4. 课程考核:结合理论教学和实践操作,对学生的学习成果进行综合评价。

五、课程安排1. 第一周:桩基础的基本概念、分类及特点;2. 第二周:桩基础的设计原理,包括承载能力、沉降控制等;3. 第三周:桩基础的设计计算方法,包括单桩承载能力、群桩效应等;4. 第四周:桩基础的施工工艺,包括桩基施工、检测及验收等;5. 第五周:桩基础在实际工程中的应用案例分析;六、课程评价基础工程桩基础课程设计旨在为学生提供一个全面了解桩基础设计原理、计算方法及施工工艺的平台,培养学生的实际工程问题解决能力,为我国基础设施建设事业输送高素质人才。

墩台基础工程课程设计

墩台基础工程课程设计

墩台基础工程课程设计一、课程目标知识目标:1. 学生能够理解墩台基础工程的基本概念,掌握其结构组成及功能作用;2. 学生能够描述不同类型墩台基础的特点,并了解其适用条件;3. 学生掌握墩台基础工程的施工工艺流程,了解影响工程质量的因素;4. 学生了解墩台基础工程的养护与维修方法,提高对工程质量的把控能力。

技能目标:1. 学生能够运用所学知识,分析实际工程案例,提出合理的墩台基础设计方案;2. 学生通过课堂讨论、实践操作等方式,提高解决墩台基础工程问题的能力;3. 学生能够运用现代信息技术,搜集相关资料,为墩台基础工程的设计和施工提供参考。

情感态度价值观目标:1. 学生培养对土木工程的热爱,增强对我国基础建设的责任感;2. 学生在学习过程中,形成严谨、务实的学习态度,提高团队合作意识;3. 学生通过了解墩台基础工程在我国基础设施建设中的应用,增强民族自豪感,培养创新精神。

本课程针对高年级学生,结合学科特点和教学要求,注重理论联系实际,提高学生的实践操作能力。

课程目标既注重知识的传授,又强调技能的培养和情感态度价值观的塑造,旨在培养学生成为具有创新精神和实践能力的高级工程技术人才。

二、教学内容1. 墩台基础工程概述- 墩台基础的定义、作用及分类- 墩台基础的结构组成及功能- 教材章节:第一章 绪论2. 墩台基础的类型与选用- 不同类型墩台基础的特点及适用条件- 墩台基础选型原则及案例分析- 教材章节:第二章 墩台基础的类型与选用3. 墩台基础工程施工工艺- 施工准备及施工工艺流程- 影响墩台基础工程质量的因素- 教材章节:第三章 墩台基础工程施工工艺4. 墩台基础工程的养护与维修- 墩台基础工程的养护方法及注意事项- 常见病害及其维修处理方法- 教材章节:第四章 墩台基础工程的养护与维修5. 墩台基础工程案例分析与讨论- 实际工程案例的解析- 学生分组讨论,提出优化设计方案- 教材章节:第五章 墩台基础工程案例分析教学内容按照教材章节顺序进行,注重理论与实践相结合。

基础工程课程设计设计

基础工程课程设计设计

基础工程课程设计设计一、教学目标本课程的教学目标是使学生掌握基础工程的基本概念、原理和设计方法,培养学生解决实际工程问题的能力。

具体目标如下:1.知识目标:学生能够理解基础工程的基本概念、原理和设计方法,掌握不同类型基础的设计和计算,了解基础工程的施工技术和质量控制。

2.技能目标:学生能够运用基础工程的知识解决实际工程问题,具备基础工程设计和施工的基本能力。

3.情感态度价值观目标:培养学生对基础工程的兴趣和热情,增强学生对工程事业的的责任感和使命感。

二、教学内容本课程的教学内容主要包括基础工程的基本概念、原理和设计方法,不同类型基础的设计和计算,基础工程的施工技术和质量控制。

具体安排如下:1.第一章:基础工程概述,介绍基础工程的基本概念、类型和设计原则。

2.第二章:基础工程的基本原理,讲解基础工程的受力分析、承载力和稳定性。

3.第三章:基础工程的设计方法,介绍不同类型基础的设计方法和计算公式。

4.第四章:基础工程的施工技术,讲解基础工程的施工流程、技术和质量控制。

5.第五章:基础工程的案例分析,分析实际工程中的基础工程设计和施工问题,培养学生解决实际工程问题的能力。

三、教学方法本课程采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等,以激发学生的学习兴趣和主动性。

1.讲授法:通过讲解基础工程的基本概念、原理和设计方法,使学生掌握基础知识。

2.讨论法:学生进行分组讨论,培养学生解决实际工程问题的能力。

3.案例分析法:分析实际工程中的基础工程设计和施工问题,使学生能够将理论知识应用于实际工程。

4.实验法:安排基础工程的实验课程,使学生了解基础工程的施工技术和质量控制。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。

1.教材:选用权威的基础工程教材,为学生提供全面、系统的知识体系。

2.参考书:提供相关领域的参考书籍,丰富学生的知识面。

3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣。

基础工程桩基础课程设计

基础工程桩基础课程设计

基础工程桩基础课程设计桩基础在工程中都有着极其重要的作用,它可以为建筑物提供承载和稳定性,从而保证建筑物的安全稳定等特质。

因此,优质的桩基础设计是建筑物的基础,在建设项目中有重要的地位。

针对桩基础课程设计,从理论基础知识、基本原理、设计依据、设计流程、施工技术等方面来分析,构建一套完整的基础工程桩基础课程设计框架。

一、理论基础知识桩基础知识的理论基础是物理学、地质学和力学知识,包括地质地基及其特性,地质力学原理、基础桩的类型和性能、桩的结构和形成机制、桩的试验方法等内容。

二、基本原理桩基础设计的基本原理有三个方面:1)地质力学原理:桩基础设计要考虑地质地基和地质力学特性,充分发挥桩基础特性,承载力和稳定性。

2)桩设计原理:根据建筑物的荷载和地质条件,确定桩的尺寸、施工方法、施工技术等,以保证桩的承载能力和稳定性。

3)研究原理:在设计基础桩时,要利用各种研究方法,最多可以使用计算机模拟分析技术。

三、设计依据桩基础的设计依据要素有:1)建筑物的荷载和重量:要考虑建筑物的静荷载、动荷载及风荷载等,并根据建筑物的荷载和重量,确定桩的尺寸、施工方法、施工技术等。

2)地质条件:要仔细调查地质条件,合理判断地质环境的承载能力,并考虑地质环境的变化对建筑物的影响,包括地质力学性质、坡度、深度等。

3)计算原理:要考虑桩基础承载能力、稳定性、刚度、挠度等参数,根据计算原理,运用计算机模拟分析技术来确定最佳设计方案。

四、设计流程基础工程桩基础设计流程包括:1)前期准备:对桩基础设计做初步调研,收集有关资料,完成前期准备工作;2)设计分析:测定建筑物的荷载和地质条件,确定桩的尺寸、施工方法和施工技术等,运用计算机模拟分析技术进行设计分析;3)施工计划:制定施工计划,包括工程周期安排、人力配置、桩基础施工工艺流程等;4)监理管控:对桩基础施工过程进行监理管控,以确保施工质量。

五、施工技术桩基础施工技术,包括:1)施工准备:定位桩、严格控制开挖深度、保持孔内湿度、确保桩周围稳定等;2)施工方法:地基支护、桩芯施工、浇筑、桩芯处理等;3)施工质量检测:取样检验、桩芯的分析试验、桩基础抗压实验等。

基础工程课程设计(浅基础) ()

基础工程课程设计(浅基础) ()

专业班级建筑工程技术1002班学号姓名肖庆《基础工程》课程设计专业班级建筑工程技术1002班学号姓名肖庆日期基础工程课程设计任务书设计题目:武汉一中学宿舍楼基础设计班级建工10级学生肖庆指导教师杨泰华、王瑞芳武汉科技大学城市建设学院二O1 2年五月一.设计题目:武汉一中学宿舍楼基础设计二.建设地点:武汉市 三.设计原始资料: 1.地质、水文资料:根据工程地质勘测报告,拟建场地地势较为平坦,该场地地表以下土层分布情况如表1所示。

地下水位距地表最低为-1.8m ,对建筑物基础无影响。

2.气象资料:全年主导风向为偏南风,夏季主导风向为东南风,冬季主导风向为北偏西风;常年降雨量为1283.7mm 左右,基本风压为0.35kN/m 2。

3.底层室内主要地坪标高为士0.000,相当于绝对标高6.564m 。

四.上部结构资料上部结构为框架结构,采用粉煤灰轻渣空心砌块,3/8m kN =γ,底层填充墙高为3.4m 。

地基基础设计等级为乙级。

柱截面尺寸为400mm*500mm;传至底层柱下端的荷载分别为:传到边柱A 、D 轴线的荷载为:(1)k F =(1234+3n )kN ,m kN n M k .)250(+=,剪力k H =(30+2n)kN 。

(其中,k k H M ,沿柱截面长边方向作用;n 为学生学号最后两位数);传到 中柱B 、C 轴线的荷载为:轴力k F =(1643+2n)kN ,m kN n M k .)360(+= 所有柱剪力作用在基础顶面;基础梁截面尺寸取为250mm*400mm 。

五、设计内容及要求A.柱下独立基础对于边柱,采用柱下独立基础。

设计参照教材例2-2及例2-3.B.双柱联合基础对于间距小的中柱,可采用双柱联合基础。

轴线C.轴线3及J相交的柱;轴线K及2相交的柱荷载同边柱A、D轴线的柱;轴线1及C相交的柱和轴线2及B相交的柱采用双柱联合基础。

D.计算步骤(1)确定基础底面尺寸;(2)持力层(软弱下卧层)承载力验算;(3)确定基础高度,并进行抗冲切验算;(4)基础底板的配筋计算。

基础工程课程设计

基础工程课程设计

基础工程课程设计一、教学目标本节课的教学目标是让学生掌握基础工程的基本概念、设计和施工方法。

具体来说,知识目标包括了解基础工程的基本概念、设计和施工方法;技能目标包括能够运用基础工程的知识解决实际问题;情感态度价值观目标包括培养学生对基础工程学科的兴趣和热情。

二、教学内容本节课的教学内容主要包括基础工程的基本概念、设计和施工方法。

具体来说,我们将讲解基础工程的定义、分类和功能,以及基础工程的设计原则和施工方法。

此外,我们还将通过案例分析,让学生了解基础工程在实际工程中的应用。

三、教学方法为了激发学生的学习兴趣和主动性,我们将采用多种教学方法。

包括讲授法、案例分析法和实验法。

在讲授法中,我们将通过生动的讲解和实例,让学生了解基础工程的基本概念和设计原则。

在案例分析法中,我们将引导学生分析实际工程中的基础工程问题,培养学生的解决问题的能力。

在实验法中,我们将学生进行基础工程的实验,让学生亲身体验基础工程的施工方法。

四、教学资源为了支持教学内容和教学方法的实施,我们将选择和准备适当的教学资源。

教材将是主要的教学资源,我们将选用权威的基础工程教材,确保学生能够获得准确的知识。

此外,我们还将准备相关的参考书籍、多媒体资料和实验设备,以丰富学生的学习体验。

五、教学评估本节课的教学评估将采用多元化的评估方式,以全面客观地评价学生的学习成果。

评估方式包括平时表现、作业和考试。

平时表现将根据学生在课堂上的参与度、提问和回答问题的表现进行评估。

作业将根据学生的完成质量和创新性进行评估。

考试将采用选择题和问答题的形式,测试学生对基础工程的基本概念、设计和施工方法的理解和应用能力。

六、教学安排本节课的教学安排将紧凑合理,确保在有限的时间内完成教学任务。

教学进度将按照教材的章节进行安排,每个章节安排相应的教学时间。

教学时间将根据学生的实际情况和需要进行调整,以确保教学内容能够适应学生的学习节奏和兴趣爱好。

教学地点将选择适合教学的环境,如教室或实验室,以便学生能够更好地进行学习和实践。

课程设计基础工程桩基础计算书

课程设计基础工程桩基础计算书

目录一、设计资料 (4)二、确定桩的长度和承台埋深 (5)三、确定单桩的竖向承载力 (5)四、轴线选择 (5)五、初步确定桩数及承台尺寸 (5)六、群桩基础中单桩承载力验算 (6)七、确定桩的平面布置 (6)八、承台结构计算 (6)1、桩顶最大竖向力 (6)2、承台受弯验算及承台配筋 (6)3、承台柱下抗冲切验算 (7)4、承台角桩抗冲切验算 (8)5、承台抗剪验算 (9)九、单桩配筋设计和计算 (10)一、设计资料1、地形拟建建筑场地地势平坦,局部堆有建筑垃圾;2、工程地质条件自上而下土层依次如下:号土层:素填土,层厚约1.5m,稍湿,松散,承载力特征值fak=95kPa号土层:淤泥质土,层厚3.3m,流塑,承载力特征值fak=65kPa;号土层:粉砂,层厚6.6m,稍密,承载力特征值fak=110kPa;号土层:粉质黏土,层厚4.2m,湿,可塑,承载力特征值fak=165kPa;号土层:粉砂层,钻孔未穿透,中密-密实,承载力特征值fak=280kPa;3、岩土设计技术参数岩土设计参数如表和表所示.4、水文地质条件1拟建场区地下水对混凝土结构无腐蚀性; 2地下水位深度:位于地表下3.5m;5、场地条件建筑物所处场地抗震设防烈度为7度,场地内无可液化砂土、粉土; 6、上部结构资料拟建建筑物为六层钢筋混凝土结构,长30m,宽9.6m;室外地坪标高同自然地面,室内外高差450mm;柱截面尺寸均为4 00mm×400mm,横向承重,柱网布置如图所示;图柱网布置图7、上部结构作用、水平上部结构作用在柱底的荷载效应标准组合值如表所示,该表中弯矩MK 均为横向方向;上部结构作用在柱底的荷载效应基本组合值如表所示,该表中力VK弯短M、水平力V均为横向方向;8、材料混凝土强度等级为C25~C30,钢筋采用HPB235、HRB335级; 二、确定桩的长度和承台埋深1、 材料信息:柱混凝土强度等级:30C桩、承台混凝土强度等级:30C 2/43.1mm N f t = 钢筋强度等级:235HpB 2/210mm N f y = 钢筋强度等级:335HRB 2/300mm N f y =2、 确定桩的长度及截面尺寸:根据设计资料,选第四层粉质粘土为持力层,进入持力层,承台埋深,桩长12m;截面尺寸选为300mmx300mm;三、确定单桩竖向承载力根据公式根据设计资料,Ap=0.3m=㎡,==1.2m,p四、轴线选择选择第1组轴线B计算,根据设计资料有:柱底荷载效应标准组合值:FK=1765KN,MK=,V=130 KN;柱底荷载效应基本组合值:FK=2630KN,MK=,V=140KN五、初步确定桩数及承台尺寸先假设承台尺寸为2mx2m,厚度为1m,承台及其上土平均容重为30 kN/m3则承台及其上土自重标准值为:Gk==300 kN,根据规范,桩数n需满足:4.39.6653001765x 1.11.1n =+=+=Ra G F k k , 如下图所示:六、群桩基础中单桩承载力验算 按照设计的承台尺寸,计算 Gk= kN,单桩平均竖向力: 符合要求;单桩偏心荷载下最大竖向力:在偏心竖向力作用下,必须有: Qk,max=, 符合要求;七、确定桩的平面布置几何参数:承台边缘至桩中心距 mm C 300= mm D 300= 桩列间距 mm A 2000= 桩行间距 mm B 1000= 承台高度mm H 1000= 桩顶深入承台100 mm,承台下设100mm,强度为C25的混凝土垫层,钢筋保护层取50mm , 承台有效高度h0=850mm承台采用混凝土强度等级为C30,抗拉强度2/43.1mm N f t =, 钢筋采用:335HRB 2/300mm N f y =八、承台结构计算1、在承台结构计算中,相应于荷载效应基本组合设计值为:FK=2630KN,MK=,V=140 KN各桩不计承台及其上土重Gk 部分的净反力Ni 为: Ni=kN n F k 5.6574/2630/== 最大竖向力3、 承台受弯计算及承台配筋:1对Ⅰ-Ⅰ截面,垂直于X 轴方向计算截面处弯矩计算:2606.57958503009.0101.13309.0mm h f M A y ys =⨯⨯⨯== 选用2512φ 25890mm A s =,平行于x 轴布置;2对于Ⅱ-Ⅱ截面,垂直于Y 轴方向计算截面处弯矩计算:2606.14368503009.0105.3949.0mm h f M A y x s =⨯⨯⨯== 选用1214φ 21582mm A s =,平行于y 轴布置.4、 承台柱下抗冲切验算:计算公式:建筑地基基础设计规范JGJ-94——2008 式中:X 方向上自柱边到最近桩边的水平距离:,mm a ox 65.0= X 方向冲垮比:765.085.065.00===h a ox ox λ,X 方向冲切系数:87.0)2.0765.0(84.0)2.0(84.0=+=+=ox ox λβY 方向上自柱边到最近桩边的水平距离: mm a oy 15.0=,Y 方向冲垮比:2.018.085.015.00y <===h a o oy λ,取2.0=oy λ,Y 方向冲切系数:1.2)2.02.0(84.0)2(84.0=+=+=oy oy λβ bc=ac=0.4m,作用于冲切破坏锥体上的冲切力设计值:kN Ni F F l 5.19725.6572630=-=-= 符合要求;4、承台角桩抗冲切验算:计算公式:建筑地基基础设计规范JGJ-94——2008 角桩竖向冲反力设计值:kN N N 5.796m ax 1== 式中:Y 方向上从承台角桩内边缘引 45冲切线于承台顶面相交点至角桩边缘的水平距离当柱或承台变阶处位于该 45线以内时,则取由柱边变阶处与桩内边缘连线为冲切锥体的锥线m a x 65.01=,765.085.065.0011===h a x x λ, 58.0)2.056.011=+=x x λβ;X 方向上从承台角桩内边缘引 45冲切线于承台顶面相交点至角桩边缘的水平距离当柱或承台变阶处位于该 45线以内时,则取由柱边变阶处与桩内边缘连线为冲切锥体的锥线m a y 15.01=,2.018.0011<==h a y y λ取,2.01=y λ抗冲切=0111121)]2()2([h f a c a c t hp x y y x ⋅⋅+++βββ符合要求; 5、承台抗剪验算:计算公式:建筑地基基础设计规范JGJ-94——2008(1) Ⅰ—Ⅰ截面的抗剪验算:765.085.065.001===h a x x λ,02.2)0.1765.075.1)0.1(75.1=+=+=λβ受剪的承载力截面高度影响系数hs β的计算:985.08508008004141=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=h hs β最大剪力设计值:kN N V l 15935.7962m ax 2=⨯==抗剪切力=kN V kN h b f l t hs 6.16625.241885.0143002.2985.000=>=⨯⨯⨯=ββ 符合要求2Ⅱ-Ⅱ截面的抗剪验算:3.018.085.015.00<===h a y y λ,取3.0=y λ,受剪的承载力截面高度影响系数hs β的计算:985.08508008004141=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=h hs β 最大剪力设计值:kN Ni V l 13155.65722=⨯==抗剪切力=kN V kN h b f l t hs 13159.418985.06.21430346.1985.000=>=⨯⨯⨯⨯=ββ 符合要求; 九、单桩配筋设计和计算桩身采用C30混凝土,2/1.20mm N f c = 按构造配筋,根据建筑地基基础设计规范JGJ-94——2008,取最小配筋率%:%8.03.03.0=⨯sA 2720mm A s = 采用146φ 2923mm A s =箍筋取200@6φ,局部加密,保护层厚度为30mm.。

大学基础工程课程设计

大学基础工程课程设计

大学基础工程课程设计一、教学目标本课程旨在让学生掌握大学基础工程的基本概念、原理和分析方法。

通过本课程的学习,学生应能理解并应用力学、材料力学、结构力学等基本原理,熟悉工程结构的设计与计算方法,掌握工程图纸的阅读和绘制技巧,了解工程建设的规范和标准。

在技能目标方面,学生应具备较强的科学计算和工程分析能力,能够运用专业软件进行工程设计和模拟,具备一定的工程实践能力和创新意识。

在情感态度价值观目标方面,学生应养成严谨的科学态度和良好的职业道德,培养团队合作精神和责任感,对工程学科产生浓厚的兴趣,并意识到工程对社会发展的重要性。

二、教学内容本课程的教学内容主要包括工程力学、材料力学、结构力学等基本原理,工程结构的设计与计算方法,工程图纸的阅读和绘制,工程建设的规范和标准等。

具体包括以下几个方面:1.工程力学:物体静力学、物体动力学、弹性力学等基本原理及其应用。

2.材料力学:材料的基本力学性能,如拉伸、压缩、剪切、弯曲等破坏形态及强度设计。

3.结构力学:梁、板、壳等常见工程结构的受力分析、内力计算和稳定性分析。

4.工程图纸:建筑图纸、结构图纸的阅读和绘制方法。

5.工程建设规范和标准:了解我国工程建设的基本规范和标准,如建筑抗震设计规范、混凝土设计规范等。

三、教学方法本课程采用讲授法、案例分析法、实验法等多种教学方法,以激发学生的学习兴趣和主动性。

1.讲授法:通过教师的讲解,使学生掌握工程力学、材料力学、结构力学等基本原理和计算方法。

2.案例分析法:分析实际工程案例,使学生更好地理解工程图纸的阅读和绘制,以及工程建设的规范和标准。

3.实验法:学生进行力学实验,培养学生的实践能力和创新意识。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料、实验设备等。

1.教材:选用权威、实用的教材,如《工程力学》、《材料力学》等。

2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作精美的PPT,生动展示工程案例和实验现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、设计资料1.地形拟建地形场地平整。

2.工程地质条件自上而下土层依次如下:①号土层:杂填土,厚度约0.5m,含部分建筑垃圾。

②号土层:粉质黏土,厚度1.2m,软塑,潮湿,承载力特征值f ak=130kPa。

③号土层:黏土,层厚1.5m,可塑,稍潮,承载力特征值f ak=180kPa。

④号土层:细沙,层厚2.7m,中密,承载力特征值f ak=240kPa。

⑤号土层:强风化砂质泥岩,层厚未揭露,承载力特征值f ak=300kPa。

1)拟建场区地下水对混凝土结构无腐蚀性。

2)地下水深度:位于地表下1.5m。

5.上部结构资料拟建建筑为多层全现浇框架结构,框架柱截面尺寸为500mm*500mm。

室外地坪标高同自然地面,室内外高差450mm。

柱网布图1.1所示。

图1 .1 柱网平面图6.2号题A轴柱底荷载:柱底荷载效应标准组合值:F k=1032kN,M k=164KN·m,V K=55kN。

柱底荷载效应基本组合值:F=1342KN,M=214KN·m,V=72KN。

持力层选用3号土层,持力层特征值f ak=180kPa,框架柱截面尺寸为500mm*500mm。

室外地坪标高同自然地面,室内外高差450mm。

二、独立基础设计1.选择基础材料基础采用C25混凝土,HPB235级钢筋,预计基础高度0.6m。

2.选择基础埋置深度①号土层:杂填土,厚度约0.5m,含部分建筑垃圾。

②号土层:粉质黏土,厚度1.2m,软塑,潮湿,承载力特征值f ak=130kPa。

③号土层:黏土,层厚1.5m,可塑,稍潮,承载力特征值f ak=180kPa。

④号土层:细沙,层厚2.7m,中密,承载力特征值f ak=240kPa。

⑤号土层:强风化砂质泥岩,层厚未揭露,承载力特征值f ak=300kPa。

拟建场区地下水对混凝土结构无腐蚀性,地下水深度:位于地表下1.5m。

取基础地面高取至持力层下0.5m,本设计取3号土层为持力层,所以考虑取室外地坪到基础地面为0.5+1.2+0.5=2.2m。

此基础剖面图示意图,如图1.2所示。

±0.000图1.2基础剖面示意图3.求地基承载力特征值f ak根据黏土e=0.58,I L=0.78,查表得ηb=0.3,ηd=1.6。

基底以上土的加权平均重度为γm=18×0.5+20×1+(20−10)×0.2+9.4×0.5=17.85kM/m32持力层承载力特征值 f ak 为f a =f ak +ηd γm (d-0.5)=180+1.6×17.85×﹙2.2-0.5﹚=222.84kPa4. 初步选择基底尺寸取柱底荷载效应标准组合值:F k =1032kN ,M k =164KN ·m ,V K =55kN 。

计算基础和回填土重G k 时的基础埋置深度为d=0.5×(2.2+2.65)=2.225m基底面积为A 0=F kfa−γGd =1032222.84−0.5×10−1.725×20=5.63m 2 由于偏心不大,基础底面积按20%放大,为A=1.2A 0=1.2×5.63=6.752初步选定基础底面积为A=bl=2.2×3.1=6.82m 2,且b=2.2m <3m ,不需要对f a 进行修正。

5. 验算持力层地基承载力基础和回填土重为G k =γG dA =(0.5×10+1.725×20)×6.82=269.39kN偏心距为e k =M kFk +G k=164+55×0.61032+269.39=0.152m<l6=0.52mp kmin >0,满足条件 。

基地最大压力:p kmax =F k +G kA(1+6e k l)=1032+269.396.82×(1+6×0.1523.1)=246.96kPa<1.2f a =267.41 kPa所以,最后确定基础底面面积为2.2m ×3.1m6. 计算基底净反力取柱底荷载效应基本组合值:F=1342KN , M=214KN ·m , V=72KN 。

净偏心距为e n0=MN =214+72×0.61342=0.192m基础边缘处的最大和最小净反力为p nmin nmax =Flb (1±6e n0l)=13423.1×2.2×(1±6×0.1923.1)=123.651269.8987. 基础高度(采用阶梯型基础)柱边基础截面抗冲切验算,见图1.3图1.3 冲切验算简图(a)柱下冲切(b)变阶处冲切l=3.1m,b=2.2,a t=b c=0.5m,a c=0.5m。

初步选定基础高度为h=600mm,分两个台阶,每个台阶高度为300mm,h0=600-(40+10)=550mm(有垫层),则a b=a t+2h0=0.5+2×0.55=1.6m<b=2.2m取a b=1.6m。

因此,可得a m=a t+a b2=500+16002=1050mm因偏心受压,p n取p nmax=269.898kPa,所以冲切力为F t=p nmax[﹙l2−a c2−h0﹚b−﹙b2−b c2−h0﹚2]=269.898×[﹙3.12−0.52−0.55﹚×2.2−﹙2.22−0.52−0.55﹚2]=421.04kN抗冲切力为0.7βhp f t a m h0=0.7×1.0×1.27×103×1.05×0.55=513.40kN>421.04kN满足要求。

8.变阶处抗冲切验算。

由于有a t=b1=1.2m,a1=1.6m,h01=300-50=250mm所以a b=a t+2h01=1.2+2×0.25=1.7m<b=2.2m取a b=1.7m,因此,可得a m=a t+a b2=1.2+1.72=1.45m冲切力为F l=p nmax [﹙l2−a12−h01﹚b−﹙b2−b12−h01﹚2]=269.898×[﹙3.12−1.62−0.25﹚×2.2−﹙2.22−1.22−0.25﹚2]=280.02kN抗冲切力为0.7βhp f t a m h 01=0.7×1.0×1.27×103 ×1.45×0.25=322.263kN>280.02kN满足要求。

9. 配筋计算配筋计算,如图1.4所示。

ⅠⅢⅠⅢⅠⅢⅠⅢⅣⅡⅣⅡ图1.4选用钢筋HPB235,f y =210N/mm 2。

1) 基础长边方向。

对于Ⅰ—Ⅰ截面,柱边净反力为p n Ⅰ=p nmin +l+a c 2l(p nmax −p nmin )=123.651+3.1+0.52×3.1×(269.898−123.651) =208.57kPa悬臂部分净反力平均值为0.5×(p nmax + p n Ⅰ )=0.5×(269.898+208.57)=239.234kPa 。

弯矩为MⅠ=124(p nmax+pnⅠ2)(l−a c)2(2b+b c)=124×239.234×(3.1−0.5)2×(2×2.2+0.5) =330.19kN•mA sⅠ=MⅠ0.9f y h0=330.19×1060.9×210×550=3176.431mm2对于Ⅲ—Ⅲ截面,有p nⅢ=p nmin+l+a12l(p nmax−p nmin)=123.651+3.1+1.62×3.1×(269.898−123.651)=234.516kPaMⅢ=124(p nmax+pnⅢ2)(l−a1)2(2b+b1)=124×252.207×(3.1−1.6)2×(2×2.2+1.2) =132.41kN•mA sⅢ=MⅢ0.9f y h01=132.41×1060.9×210×250=2802.3mm2比较A sⅢ和A sⅠ应按A sⅠ配筋,实际配Φ14@110,则钢筋根数为n=2200110+1=21A s=153.93×21=3232.70mm2>3176.431mm22)基础短边方向。

因为该基础受单向偏心荷载作用,所以,在基础短边方向的基底反力可按均匀分布计算,取p n=12(p nmax+p nmin)=12×(269.898+123.651)=196.775kPa对于Ⅱ—Ⅱ截面有MⅡ=124p n(b−b c)2(2l+a c)=124×196.775×(2.2−0.5)2×(2×3.1+0.5) =158.756 kN•mA sⅡ=MⅡ0.9f y h0=158.756×1060.9×210×550=1527.238mm2对于Ⅳ—Ⅳ截面有MⅣ=124p n(b−b1)2(2l+a1)=124×196.775×(2.2−1.2)2×(2×3.1+1.6) =63.95 kN•mA s Ⅳ=M Ⅳ0.9fy h 01=63.95×1060.9×210×250=1353.479mm 2按A s Ⅱ布筋,实际配Φ10@155,根数为n=3100155+1=21A s =78.54×21=1649.34mm 2>1527.238 mm 210. 基础配筋大样图 基础配筋如图1.5所示。

12Φ14@110Φ10@155图1.5.基础配筋大样图11. 确定B,C,两轴柱子基础底面尺寸 由任务书可得基底荷载为B 轴:F k =1615kN ,M k =125KN ·m ,V K =60kNC 轴:F k =1252kN ,M k =221KN ·m ,V K =52kN 由于f a =f ak +ηd γm (d-0.5)=180+1.6×17.85×﹙2-0.5﹚=222.84kPa计算基础和回填土重G k 时的基础埋置深度为d=0.5×(2+2.45)=2.225mB 轴基础底面积为A 0=F kfa−γGd =1615222.84−0.5×10−1.725×20=8.81m 2 基础地面面积增大20%A=1.2A0=1.2×8.81=10.571m2初步选定基础底面积为A=bl=2.8×3.8=10.64m2>10.571m2 且b<3m,不需要进行修正。

相关文档
最新文档