高二数学_直线与方程典型习题教师版资料全

合集下载

高中直线与方程练习题及讲解

高中直线与方程练习题及讲解

高中直线与方程练习题及讲解### 高中直线与方程练习题及讲解题目一:直线方程的求解题目描述:已知点A(2,3)和点B(-1,-2),求经过这两点的直线方程。

解题步骤:1. 首先,我们需要找到直线的斜率。

斜率公式为 \( k = \frac{y_2- y_1}{x_2 - x_1} \)。

2. 将点A和点B的坐标代入公式,得到 \( k = \frac{-2 - 3}{-1 - 2} = \frac{-5}{-3} = \frac{5}{3} \)。

3. 有了斜率,我们可以使用点斜式方程 \( y - y_1 = k(x - x_1) \) 来写出直线方程。

选择点A代入,得到 \( y - 3 = \frac{5}{3}(x - 2) \)。

4. 最后,将方程化为一般形式 \( Ax + By + C = 0 \),得到 \( 5x - 3y + 1 = 0 \)。

题目二:直线的平行与垂直题目描述:已知直线 \( l_1: 3x - 4y + 5 = 0 \),求与 \( l_1 \) 平行且与直线 \( 2x + y - 7 = 0 \) 垂直的直线方程。

解题步骤:1. 平行直线的斜率相同,所以 \( l_1 \) 的斜率为 \( k =\frac{3}{4} \)。

2. 垂直直线的斜率互为相反数的倒数,因此 \( l_1 \) 垂直的直线斜率为 \( -\frac{4}{3} \)。

3. 利用点斜式方程,我们可以选择直线 \( l_1 \) 上的一点,比如\( (0, 5/4) \),代入 \( y - y_1 = k(x - x_1) \),得到 \( y - \frac{5}{4} = -\frac{4}{3}(x - 0) \)。

4. 将方程化为一般形式,得到 \( 4x + 3y - 15 = 0 \)。

题目三:直线的交点题目描述:求直线 \( l_1: 2x + 3y - 6 = 0 \) 与直线 \( l_2: x - y + 1 = 0 \) 的交点坐标。

高中数学直线的方程与性质基础知识及例题练习(含答案)

高中数学直线的方程与性质基础知识及例题练习(含答案)

高中数学直线的方程与性质基础知识及例题练习(含答案)一、基础知识:(一)直线的要素与方程:1、倾斜角:若直线l 与x 轴相交,则以x 轴正方向为始边,绕交点逆时针旋转直至与l 重合所成的角称为直线l 的倾斜角,通常用,,,αβγ表示(1)若直线与x 轴平行(或重合),则倾斜角为0 (2)倾斜角的取值范围[)0,απ∈2、斜率:设直线的倾斜角为α,则α的正切值称为直线的斜率,记为tan k α= (1)当2πα=时,斜率不存在;所以竖直线是不存在斜率的(2)所有的直线均有倾斜角,但是不是所有的直线均有斜率(3)斜率与倾斜角都是刻画直线的倾斜程度,但就其应用范围,斜率适用的范围更广(与直线方程相联系)(4)k 越大,直线越陡峭(5)斜率k 的求法:已知直线上任意两点()()1122,,,A x y B x y ,则2121y y k x x −=−,即直线的斜率是确定的,与所取的点无关。

3、截距:若直线l 与坐标轴分别交于()(),0,0,a b ,则称,a b 分别为直线l 的横截距,纵截距 (1)截距:可视为直线与坐标轴交点的简记形式,其取值可正,可负,可0(不要顾名思义误认为与“距离”相关)(2)横纵截距均为0的直线为过原点的非水平非竖直直线4、直线方程的五种形式:首先在直角坐标系中确定一条直线有两种方法:一种是已知直线上一点与直线的方向(即斜率),另一种是已知两点(两点确定一条直线),直线方程的形式与这两种方法有关 (1)一点一方向:① 点斜式:已知直线l 的斜率k ,直线上一点()00,P x y ,则直线l 的方程为:()00y y k x x −=−证明:设直线l 上任意一点(),Q x y ,根据斜率计算公式可得:0y y k x x −=−,所以直线上的每一点都应满足:()00y y k x x −=−,即为直线方程② 斜截式:已知直线l 的斜率k ,纵截距b ,则直线l 的方程为:y kx b =+证明:由纵截距为b 可得直线与y 轴交点为()0,b ,从而利用点斜式得:()0y b k x −=− 化简可得:y kx b =+ (2)两点确定一条直线:③ 两点式:已知直线l 上的两点()()1122,,,A x y B x y ,则直线l 的方程为:221212y y x x y y x x −−=−− ④ 截距式:若直线l 的横纵截距分别为(),0a b ab ≠,则直线l 的方程为:1x y a b+= 证明:从已知截距可得:直线上两点()(),0,0,a b ,所以00b bk a a−==−− ():01b x yl y b x bx ay ab a a b∴−=−−⇒+=⇒+= ⑤ 一般式:由前几类直线方程可知:直线方程通常由,x y 的一次项与常数项构成,所以可将直线的通式写为:0Ax By C ++=(,A B 不同时为0),此形式称为直线的一般式 一般式方程的作用:可作为直线方程的最终结果 可用于判定直线的平行垂直关系点到直线距离公式与平行线间距离公式需要用直线的一般式 5、五种直线形式所不能表示的直线:(1)点斜式,斜截式:与斜率相关,所以无法表示斜率不存在的直线(即竖直线) (2)截距式:① 截距不全的直线:水平线,竖直线 ② 截距为0的直线:过原点的直线6、求曲线(或直线)方程的方法:在已知曲线类型的前提下,求曲线(或直线)方程的思路通常有两种:(1)直接法:寻找决定曲线方程的要素,然后直接写出方程,例如在直线中,若用直接法则需找到两个点,或者一点一斜率(2)间接法:若题目条件与所求要素联系不紧密,则考虑先利用待定系数法设出曲线方程,然后再利用条件解出参数的值(通常条件的个数与所求参数的个数一致) (二)直线位置关系:1、在解析几何中直线的位置关系有三种:平行,相交(包含垂直),重合如果题目中提到“两条直线”,则不存在重合的情况,如果只是12,l l ,则要考虑重合的情况。

高二数学直线的方程知识点及习题

高二数学直线的方程知识点及习题

直线的方程知识点及习题知识点一 直线的点斜式方程1.方程()00y y k x x -=-由直线上一定点及其斜率确定,我们把这个方程叫做直线的点斜式方程,简称点斜式.适用于斜率存在的直线.2.如果直线过点()000,P x y ,且与y 轴垂直,这时倾斜角为0︒,tan 00︒=,即0k =,由点斜式,得直线方程为0y y =,如图3.2-1.3.如果直线过点()000,P x y ,且与x 轴垂直,此时它的倾斜角为90︒(直线与y 轴平行或重合),斜率不存在,它的方程不能用点斜式表示,这时直线方程表示为0x x =,如图3.2-2.知识点二 直线的点斜式方程(1)我们把直线l 与y 轴交点()0,b 的纵坐标b 叫做直线l 在y 轴上的截距.若直线l 的斜率为k ,且在y 轴上的截距为b ,则直线l 的方程为()0y b k x -=-,即y kx b =+,这个方程叫做直线的斜截式方程,简称斜截式.(2)斜截式与一次函数的解析式相同,都是y kx b =+的形式,但有区别,当0k ≠时,y kx b =+即为一次函数;当0k =时,y b =不是一次函数,一次函数y kx b =+()0k ≠必是一条直线的斜截式方程. 例1.已知直线y kx b =+,当34x -≤≤时,813y -≤≤.求此直线方程.(3)截距①直线的斜截式方程是由点斜式推导而来的.直线与y 轴的交点()0,b 的纵坐标b 称为此直线的纵截距.值得强调的是,截距可能是正数,也可能是负数,还可能是0,不能将其理解为“距离”而恒为非负数.②直线与x 轴的交点(),0a 的横坐标a 称为此直线的横截距.并不是每条直线都有横截距和纵截距,如直线1x =没有纵截距,直线2y =没有横截距.练习(1)直线123y x =-+的斜率是_________,在y 轴上的截距是________,在x 轴上的截距是_________;(2)倾斜角为60︒,在y 轴上的截距为3的直线方程是_________.例2 已知直线1l 的方程为23y x =-+,2l 的方程为42y x =-,直线l 与1l 平行且与2l 在y 轴上的截距相同,求直线l 的斜截式方程.练习,.已知直线l 过点(1,2)和(,)a b ,求其方程.本题常见的错误是没有对a 进行分类讨论,而是直接利用斜率公式求斜率,然后套用点斜式写直线方程.在利用点斜式或斜截式求直线方程时,要注意直线方程的点斜式00()y y k x x -=-和斜截式y kx b =+都是斜率k 存在的前提下才能使用的,要认真分析,避免遗漏.1. 直线的两点式方程的定义212y y y y --=121x x x x --就是经过两点111222(,),(,)p x y p x y (其中1212,x x y y ≠≠)的直线方程,我们把它叫做直线的两点式方程,简称两点式.2.若点12,p p 的坐标分别为1122(,),(,)x y x y ,是线段12p p 的中点M 的坐标为(,),x y 则有中点坐标公式:121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩.例3:已知三角形的三个顶点分别为(6,7),(2,3),(2,1)A B C --,求AC 边上的中线所在的直线方程.3 直线的截距式方程直线与x 轴的交点(,0)a 的横坐标a 叫做直线在x 轴上的截距,若此时直线在y 轴上的截距为b ,则直线的方程为1(0),x yab a b+=≠此方程由直线在两个坐标轴上的截距a 与b 确定,所以叫做直线的截距式方程. 求截距的方法在直线l 的方程中,令0x =,解出y 的直线,即得直线l 在y 轴上的截距.令y 0=,解出x 的值,即得出直线l 在x 轴上的截距.例4:求过点A (1,1),且在两坐标轴上的截距相等的直线方程.4 直线的一般式方程1.定义在平面直角坐标系中,每一条直线都可以用一个关于,x y 的二元一次方程表示,每一个关于,x y 的二元一次方程都表示一条直线,我们把关于,x y 的二元一次方程Ax +0By C +=(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 2.适用范围在平面直角坐标系中,任何一条直线都可用一般式表示. 3.几何意义(1)当0B ≠时,A k B -=(斜率),C b B -=(y 轴上的截距); (2)当0A ≠时,Ca A-=(x 轴上的截距).例5.根据条件写出直线方程,并化成一般式. (1(5,3)A ; (2)在,x y 轴上的截距分别是3,1--.5直线过定点问题例5.已知直线:5530l ax y a --+=.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线不经过第二象限,求a 的取值范围.6解决与面积、周长有关的问题例6.直线过点4(,2)3P ,且与x 轴的正半轴和y 轴的正半轴分别交与,A B 两点,O 为坐标原点,是否存在这样的直线能同时满足以下条件:①AOB ∆的周长为12;②AOB ∆的面积为6.若存在,求出直线的方程;若不存在,请说明理由.课堂练习1.已知直线方程34)y x -=-,则这条直线经过的定点和倾斜角分别 ( ) A.(4,3),60︒ B.(3,4),30--︒ C.(4,3),30︒ D.(4,3),60--︒2.若直线(32)6y t x =--不经过第一象限,则t 的取值范围为 .3.已知直线12y x k =+与两坐标轴围成的三角形的面积不小于1,则实数k 的取值范围是 . 4.若直线l 的倾斜角是直线1y x =+的倾斜角的2倍,且过定点(3,3)P ,则直线l 的方程为 . 5.若三条直线0,0,3x y x y x ay +=-=+=构成三角形,则a 的取值范围是( ) A.1a ≠± B.1,2a a ≠≠ C.2a ≠ D.1,2a a ≠±≠6.若直线350mx y +-=经过连接点(1,2),(3,4)A B --的线段的中点,则m = . 7.ABC ∆的三个顶点分别为(0,4),(2,6),(8,0)A B C --. 求:(1)边AC 所在直线的直线方程; (2)AC 边上的中线BD 所在直线方程.直线方程练习题一、选择题1.已知点)1,0(-M ,点N 在直线01=+-y x 上,若直线MN 垂直于直线032=-+y x , 则点N 的坐标是( )A .)1,2(--B .)3,2(C . )1,2(D .)1,2(- 2.点M ),(b a 与N )1,1(+-a b 关于下列哪种图形对称( ) A .直线01=+-y x B .直线01=--y xC .点(21,21-) D .直线0=--+b a y x3.若三条直线l 1:x -y =0;l 2:x +y -2=0; l 3:5x -ky -15=0围成一个三角形,则k 的取 值范围是( )A .k ∈R 且k ±≠5且k ≠1B .k ∈R 且k ±≠5且k ≠-10C .k ∈R 且k ±≠1且k ≠0D .k ∈R 且k ±≠ 54、如果直线(2a +5)x +(a -2)y +4=0与直线(2-a )x +(a +3)y -1=0互相垂直,则a 的值等于( ) A . 2 B .-2 C .2,-2 D .2,0,-25、两条直线mx+y -n =0和x+my +1=0互相平行的条件是( ) A m=1 B m=±1C ⎩⎨⎧-≠=11n m D ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 6、下列说法正确的有( )①若两直线斜率相等,则两直线平行; ②若l 1∥l 2,则k 1=k 2;③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交; ④若两直线斜率都不存在,则两直线平行。

直线与方程练习题高二

直线与方程练习题高二

直线与方程练习题高二直线与方程是高二数学中的重要内容,掌握直线与方程的相关知识对于解决各种问题具有重要作用。

下面是一些直线与方程的练习题,帮助你巩固相关知识点。

题目一:已知直线L1过点A(-1, 3)和点B(5, -1),直线L2垂直于直线L1且过点B,求L2的方程。

解析:直线L1的斜率为:m1 = (y2 - y1)/(x2 - x1) = (-1 - 3)/(5 - (-1)) = -1直线L2的斜率为直线L1的斜率的倒数,即:m2 = -1/m1 = -1/-1 = 1直线L2通过点B(5, -1),带入直线方程y = mx + b中,可得:-1 = 1*5 + bb = -6所以直线L2的方程为:y = x - 6题目二:已知直线L1过点C(2, 3)和点D(4, 7),直线L2平行于直线L1且通过点D,求L2的方程。

解析:直线L1的斜率为:m1 = (y2 - y1)/(x2 - x1) = (7 - 3)/(4 - 2) = 2直线L2为平行于直线L1,故斜率也为2,直线L2通过点D(4, 7),带入直线方程y = mx + b中,可得:7 = 2*4 + bb = -1所以直线L2的方程为:y = 2x - 1题目三:已知直线L1经过点E(2, -1)和点F(6, 5),直线L2与直线L1垂直且过点E,求L2的方程。

解析:直线L1的斜率为:m1 = (y2 - y1)/(x2 - x1) = (5 - (-1))/(6 - 2) = 1直线L2的斜率为直线L1的斜率的倒数,即:m2 = -1/m1 = -1/1 = -1直线L2通过点E(2, -1),带入直线方程y = mx + b中,可得:-1 = -2 + bb = 1所以直线L2的方程为:y = -x + 1题目四:已知直线L1经过点G(3, 2)和点H(7, 6),直线L2与直线L1平行且通过点H,求L2的方程。

解析:直线L1的斜率为:m1 = (y2 - y1)/(x2 - x1) = (6 - 2)/(7 - 3) = 1直线L2为平行于直线L1,故斜率也为1,直线L2通过点H(7, 6),带入直线方程y = mx + b中,可得:6 =7 + bb = -1所以直线L2的方程为:y = x - 1通过以上练习题,可以看出掌握直线与方程的相关知识对于解题非常关键。

高二数学直线与方程A(教师版)

高二数学直线与方程A(教师版)

直线的方程一、兴趣导入(Topic-in ):.弟弟上历史课的时候,老师问他:“路易十四是谁?” 他答:“路易十四不就是路易十加路易四吗!”老师听后没好气地说道:“你怎么不说是路易七乘路易二呢?”哪知道弟弟不假思索便说:“老师,从数学上来说,路易七乘路易二应是路易平方十四,因此你错了。

”弄得老师哭笑不得。

二、学前测试(Testing):1.(人教A 版教材习题改编)直线经过点(0,2)和点(3,0),则它的斜率为( ). A.23 B.32 C .-23 D .-32 解析 k =0-23-0=-23.答案 C2.直线3x -y +a =0(a 为常数)的倾斜角为( ). A .30° B .60° C .150° D .120°解析 直线的斜率为:k =tan α=3,又∵α∈[0,π)∴α=60°. 答案 B3.(2011·龙岩月考)已知直线l 经过点P (-2,5),且斜率为-34.则直线l 的方程为( ).A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0解析 由y -5=-34(x +2),得3x +4y -14=0. 答案 A4.(2012·烟台调研)过两点(0,3),(2,1)的直线方程为( ). A .x -y -3=0B .x +y -3=0C.x+y+3=0 D.x-y+3=0解析由两点式得:y-31-3=x-02-0,即x+y-3=0.答案 B5.(2012·长春模拟)若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为________.解析∵k AC=5-36-4=1,k AB=a-35-4=a-3.由于A、B、C三点共线,所以a-3=1,即a=4.答案4三、知识讲解(Teaching):1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角α叫做直线l的倾斜角,当直线l与x轴平行或重合时,规定它的倾斜角为0°。

高中数学必修2(北师版)第二章2.1 直线与直线的方程(与最新教材完全匹配)知识点总结含同步练习题及答案

高中数学必修2(北师版)第二章2.1 直线与直线的方程(与最新教材完全匹配)知识点总结含同步练习题及答案

y − (−3) x−3 = , 1 − (−3) −5 − 3 2
整理可得
8x + 11y + 9 = 0,
这就是 AC 边上的中线所在直线的方程.
2.直线与直线的位置关系 描述: 直线 l 1 :y = k1 x + b 1 ,l 2 :y = k2 x + b 2 . 当 l 1 与 l 2 平行时,则 k1 = k2 且 b 1 ≠ b 2 ; 当 l 1 与 l 2 重合时,则 k1 = k2 且 b 1 = b 2 ; 当 l 1 与 l 2 相交时,则 k1 ≠ k2 ,特别地,若两直线垂直,则 k1 ⋅ k2 = −1 . 2 2 2 直线 l 1 :A 1 x + B 1 y + C1 = 0, A 2 1 + B 1 ≠ 0 ,l 2 :A 2 x + B 2 y + C2 = 0, A 2 + B 2 ≠ 0 . 当 l 1 与 l 2 平行时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 ≠ B 2 C1 ; 当 l 1 与 l 2 重合时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 = B 2 C1 ;
因为 0 ∘ ⩽ α < 180 ∘ ,结合图形可知,需按 α 和 135 ∘ 的大小分成两类. 已知直线经过点 A(−a, 6),B(1, 3a),且斜率为 12,求 a 的值. 解:由题意得
3a − 6
3a − 6 = 12, 1+a
所以
3a − 6 = 12 + 12a,
解得 a = −2 . 求证:A(1, 5)、B(0, 2)、C (2, 8) 三点共线. 证明:利用斜率公式计算出 AB 和 AC 两条直线的斜率.

(精品)直线与方程知识点+经典习题

直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k 斜率反映直线与轴的倾斜程度。

当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1. ②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y ab+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:错误!各式的适用范围 错误!特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中.(6)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否. (7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的一组解。

高二数学直线与方程精选50题

直线与方程精选50题1、求过点()5,3,倾斜角等于直线13+=x y 的倾斜角的一半的直线方程.★2、已知直线l 的倾斜角为α,53sin =α,且这条直线经过点()5,3P ,求直线l 的一般式方程.★3、已知矩形OACB 的顶点的坐标分别为()()()5,00,80,0B A O 、、,求该矩形的对角线所在直线方程.4、已知直线0632=+-y x ,这条直线的点方向式可以是________________★5、求过点P 且平行于直线0l 的一般式方程:(1)()04:,1,20=+x l P ★(2)()07143:,2,10=++y x l P6、求过点P 且垂直于直线1l 的直线的一般式方程:(1)()03:,1,21=-y l P(2)4231:),1,2(1+=---y x l P ★7、求满足下列条件的直线方程(1)直线l 经过()()7,3,0,2B A 两点★(2)直线l 经过点()4,3P ,且与向量()1,1-=d 平行★(3)直线l 经过点()4,3P ,且与向量()1,1-=d 垂直★8、已知直线()0816:1=--+y t x l 与直线()()01664:2=-+++y t x t l(1)当t 为何值时,21l l 与相交?(2)当t 为何值时,21l l 与平行?(3)当t 为何值时,21l l 与重合?(4)当t 为何值时,21l l 与垂直?★9、已知直线08:1=++n y mx l 与直线012:2=-+my x l .当直线1l 与直线2l 分别满足下列条件时,求实数m 、n 的值(1)直线1l 与直线2l 平行;(2)直线1l 与直线2l 垂直,且直线1l 在y 轴上的截距为1-..★10、根据下列条件,写出满足条件的直线的一般式方程.★(1)经过直线012=+-y x 与直线0122=-+y x 的交点,且与直线05=-y x 垂直.(2)经过直线01=+-y x 与直线022=+-y x 的交点,且与直线1243=+y x 平行.11、已知直线2:1++=k kx y l 与直线42:2+-=x y l 的交点在第一象限,求实数k 的范围.★12、已知集合(){}R y x y x y x A ∈=--=、,01|,,集合(){}R y x y ax y x B ∈=+-=、,02|,,且φ=⋂B A ,求实数a 的值.13、是否存在实数a ,使直线()()0121:1=--+-y a x a l 与直线()03326:2=--+y a x l 平行?若存在,求a 的值;若不存在,请说明理由.★14、求过点()3,2P 且与直线012=+-y x 垂直的直线方程★15、若坐标原点O 在直线l 的射影H 的坐标为()2,4-,求直线l 的方程★16、已知平面内三点()()()2,14,33,1---C B A 、、,点P 满足BC BP 23=,则直线AP 的方程是17、已知()()4,1,1,3--B A ,则线段AB 的垂直平分线方程是★18、已知三点()()()a C B a A 2,4,1,5,2,-共线,则实数a 的值是___________________19、不论m 取何实数,直线()()()01131=--+--m y m x m 恒过什么象限?20、分别写出下列直线的一个方向向量d 和一个法向量n ★(1)0543=-+y x(2)152=+y x (3)()5413+-=-x y (4)1=x(5)01=+y21、已知0,0<<bc ac ,则直线0:=++a cy bx l 不通过_______________象限22、直线l 的倾斜角的正弦值为54,则其斜率为______________★ 23、过()()a B a a A 2,3,1,1+-的直线的倾斜角为钝角,求实数a 的取值范围★24、直线l 的斜率k 满足13<≤-k ,求其倾斜角的取值范围★25、直线l 的倾斜角是()()2,6,1,2--B A 两点连线的倾斜角的两倍,求直线l 的倾斜角的大小26、直线l 过点()2,1且与两坐标轴围成等腰直角三角形,求l 的方程★27、求直线()R y x ∈=-+αα010cos 的倾斜角的取值范围28、直线()()039372:222=+-++-a y a x a a l 的倾斜角大小是4π,求实数=a __________★29、方程x k y =与方程()0>+=k k x y 的曲线有两个不同的公共点,则实数k 的取值范围是____________________30、过点()()3,0,0,4B A 的直线的倾斜角大小是________________★31、将直线033=++y x 绕着它与x 轴的交点顺时针旋转︒30后,所得的直线方程是★32、将直线0943=+-y x 绕其与x 轴的交点逆时针旋转︒90后得到直线l ,求直线l 的方程★33、ABC ∆的一个顶点()4,3B ,AB 边上的高CH 所在直线方程是01632=-+y x ,BC 边上的中线AM 所在的直线方程是0132=+-y x ,求边AC 所在直线方程.34、已知直线l 沿x 轴的负方向平移3个单位,再沿y 轴的正方向平移1个单位,又回到原来的位置,求直线l 的斜率k 和倾斜角α★35、过点()4,5-P 作一直线l ,使它与两坐标轴相交且与两坐标轴围成的三角形面积为5个面积单位,求直线l 的方程★36、直线()()01213:=----y a x a l (其中a 为实数)★(1)求证:不论a 取何值,直线l 恒过定点;(2)已知直线l 不通过第二象限,求实数a 的取值范围37、已知()()2211,,,y x B y x A 为直线()0≠+=k b kx y 上的两点(1)求证:2121x x k AB -+=;(2)根据(1)的形式特征,用21,,y y k 表示AB38、已知ABC ∆中,顶点()7,2-A ,AC 边上的高BH 所在直线方程为0113=++y x ,AB 边上中线CM 所在的直线方程072=++y x ,求ABC ∆三边所在直线方程39、从点()2,5A 发出的光线经过x 轴反射后,反射光线经过点()3,1-B ,求发射光线所在直线与x 轴的夹角大小★40、求经过0332:01:21=++=++y x l y x l 和的交点且与直线0523=-+y x 的夹角为4π的直线方程★'41、已知等腰直角三角形ABC 的斜边AB 的中点是()2,4,直角边AC 所在的直线方程是02=-y x ,求斜边AB 和直角边BC 所在直线的方程42、光线沿直线052=+-y x 的方向入射到直线0723=+-y x 后反射出去,求反射光线所在的直线方程43、已知()()8,4,3,2-B A 两点,直线l 经过原点,且A 、B 两点到直线l 的距离相等,求直线l 的方程★44、已知平行直线21l l 与的距离为5,且直线1l 经过原点,直线2l 经过点()3,1,求直线1l 和直线2l 的方程★45、已知直线l 过点()1,0P ,且被平行直线0243:0843:21=++=-+y x l y x l 与所截得的线段的长为22,求直线l 的方程46、求与直线032012=+-=+-y x y x 和距离相等的点的轨迹47、已知点()4,3P 到直线l 的距离为5,且直线l 在两坐标轴上的截距相等,则满足条件的直线是___________________★48、过点()2,1P 的所有直线中,与原点距离最大的直线方程是______________49、直线l 经过直线002477=-=-+y x y x 与直线的交点,且原点到直线l 的距离为512,则直线l 的方程为★50、经过直线032=-+y x 和直线0624=--y x 的交点,且与y 轴平行的直线方程为★。

(完整)高中数学直线与方程习题及解析.docx

1.一条光线从点 A(-1,3)射向 x 轴,经过 x 轴上的点 P 反射后通过点 B(3,1),求 P 点的坐标.3-0=-31- 01解 设 P( x,0) ,则 k PA =, k PB ==,依题意,- 1- x x + 1 3- x 3- x由光的反射定律得k PA =- k PB ,即 3= 1,解得 x =2,即 P(2,0).x +1 3- x2.△ ABC 为正三角形,顶点A 在 x 轴上, A 在边 BC 的右侧,∠ BAC 的平分线在 x 轴上,求边 AB 与 AC 所在直线的斜率.解如右图,由题意知 ∠BAO = ∠ OAC = 30°,∴ 直线 AB 的倾斜角为 180°- 30°= 150°,直线 AC 的倾斜角为 30°,∴ k AB = tan 1503=°- 3 ,AC3k = tan 30 =° 3 .2f a , f b , f c的大小. 3.已知函数 f(x)= log ( x + 1), a>b>c>0,试比较a b c解画出函数的草图如图,f xx 可视为过原点直线的斜率.f c f b f a由图象可知:c>b>a.4. (1) 已知四点 A(5,3), B(10,6),C(3,- 4), D(- 6,11),求证: AB ⊥ CD .(2)已知直线 l 1 的斜率 k 1= 3,直线 l 2 经过点 A(3a ,- 2), B(0, a 2+ 1)且 l 1⊥ l 2,求实数4 a 的值.(1)证明 由斜率公式得:k AB = 6- 3 310-5 = 5,11- - 45 k CD = - 6- 3 =- 3,则 k AB ·k CD =- 1, ∴ AB ⊥CD .(2)解∵ l 1⊥ l 2,∴ k 1·k 2=- 1,3× a 2+ 1- - 2即 =- 1,解得 a =1 或 a =3.40- 3a5. 如图所示, 在平面直角坐标系中, 四边形 OPQR 的顶点坐标按逆时针顺序依次为O(0,0)、P(1, t)、 Q(1- 2t,2+ t)、R(- 2t,2),其中 t>0. 试判断四边形 OPQR 的形状.解由斜率公式得k OP=t - 0= t,1- 0QR 2- 2+ t=-t= t,k OR2- 0=-1,k =- 2t- 1- 2t- 1=t - 2t- 0k PQ=2+ t -t2=-1.=1- 2t- 1- 2t t∴k OP=k QR, k OR= k PQ,从而 OP∥ QR, OR∥PQ .∴四边形 OPQR 为平行四边形.又k OP·k OR=- 1,∴ OP⊥ OR,故四边形 OPQR 为矩形.6.已知四边形ABCD 的顶点 A(m, n), B(5,- 1), C(4, 2), D(2,2) ,求 m 和 n 的值,使四边形 ABCD 为直角梯形.解∵四边形 ABCD 是直角梯形,∴有 2 种情形:(1)AB∥CD , AB⊥ AD,由图可知: A(2,- 1).(2)AD∥ BC, AD ⊥ AB,k AD= k BCk AD·k AB=- 1n-2= 3m- 2-1?n- 2 n+1·=- 1m- 2 m- 516m=5.∴8n=-516m= 2m=5.综上或n=- 18n=-57.已知直线 l1与 l 2的方程分别为7x+ 8y+ 9= 0,7x+ 8y-3= 0.直线 l 平行于 l 1,直线 l 与 l1的距离为 d1,与 l2的距离为 d2,且 d1∶d2= 1∶ 2,求直线 l 的方程.解因为直线 l 平行 l1,设直线 l 的方程为 7x+ 8y+ C= 0,则 d1=|C- 9||C-- 3 |,d2=. 72+ 8272+82又2d1= d2,∴2|C-9|= |C+ 3|.解得 C= 21 或 C= 5.故所求直线l 的方程为7x+ 8y+ 21= 0 或 7x+8y+ 5= 08.△ ABC 中, D 是 BC 边上任意一点(D 与 B,C 不重合 ) ,且 |AB|2= |AD |2+ |BD | ·|DC|.求证:△ ABC 为等腰三角形.证明作 AO⊥ BC,垂足为 O,以 BC 所在直线为 x 轴,以 OA 所在直线为 y 轴,建立直角坐标系 (如右图所示 ).设A(0,a), B(b,0), C(c,0), D (d,0).因为 |AB|2= |AD |2+ |BD | |DC· |,所以,由距离公式可得b2+ a2= d2+ a2+ (d- b)(c- d),即- (d- b)(b+d)=( d-b)( c-d).又 d-b≠ 0,故- b- d= c- d,即- b= c.所以 |AB|= |AC|,即△ ABC 为等腰三角形.9.一束平行光线从原点 O(0,0) 出发,经过直线l:8x+ 6y= 25 反射后通过点 P(- 4,3),求反射光线与直线l 的交点坐标.解设原点关于 l 的对称点 A 的坐标为 (a,b),由直线 OA 与 l 垂直和线段 AO 的中点在 l 上得b4a·-3=- 1a=4,解得,8×a b b=3 2+ 6×2= 25∴A 的坐标为 (4,3) .∵ 反射光线的反向延长线过A(4,3) ,又由反射光线过P(- 4,3),两点纵坐标相等,故反射光线所在直线方程为y=3.y= 3x=78,由方程组,解得8x+ 6y=25y= 37∴反射光线与直线l 的交点坐标为8,3 .。

秋季14-高二数学基础版-直线的方程-课后作业教师版

1、等腰直角三角形ABC 的直角顶点C 和顶点B 都在直线062=-+y x 上,顶点A 的坐标是)1,1(-,求AC 所在的直线点法向式方程.答案:230x y --=2、已知点()1,2在直线l 上的射影为()2,1-,则直线l的方程为__ _. 题型:点法向式答案:()0132=+--y x3、经过点(1,2)A 并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。

答案:3条,2y x =,30x y +-=,10x y -+=4、若倾斜角的正弦值为513,则该直线方程的斜率是____________ 直线的方程答案:512± 5. 直线21)10()x a y a R +++=∈(的倾斜角的取值范围是( ) A .[0,4π] B . [43π,π) C .[0,4π]∪(2π,π) D . [4π,2π)∪[43π,π) 答案:B6、方程1=+y x 所表示的图形的面积为_________。

答案:27、已知三角形三个顶点分别是A (2,1),B (﹣2,3),C (6,﹣7),求下列直线的一般式方程:(1)过点A 与BC 边平行的直线;(2)过点A 与BC 边垂直的直线;(2)过点B 且平分△ABC 面积的直线.答案:(1)54140x y +-=;(2)4530x y --=(3)10x y +-=8.已知数列{}n a 的通项公式n a n =,它的前n 项和为n S ,设集合⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=*,N n n S a A nn ,若以A 中元素作为点的坐标,这些点都在同一条直线上,求这条直线的斜率 答案:21. 9.已知△ABC 的顶点A (1,3),AB 边上的中线所在直线的方程是1y =,AC 边上的高所在直线的方程是210x y -+=.求(1)AC 边所在直线的方程;(2)AB 边所在直线的方程.答案:(1)25x y +-.(2)20x y -+=关键:10、过点)4,1(P 的直线l 交x 、y 轴的正向于A 、B 两点,求:(1)AOB ∆面积取最小值时直线l 的方程;(2)当OB OA +取最小值时,直线l 的方程;答案:(1)480x y +-=,(2)260x y +-=,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识点一:倾斜角与斜率】(1)直线的倾斜角①关于倾斜角的概念要抓住三点:1、与x 轴相交;2、x 轴正向;3、直线向上方向。

②直线与x 轴平行或重合时,规定它的倾斜角为00 ③倾斜角α的围000180α≤<(2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在.记作tan k α=0(90)α≠ ⑴当直线l 与x 轴平行或重合时, 00α=,0tan 00k == ⑵当直线l 与x 轴垂直时, 090α=,k 不存在. ②经过两点1112212(,),(,)P x y P x y x x ≠()的直线的斜率公式是2121y y k x x -=- ③每条直线都有倾斜角,但并不是每条直线都有斜率.(3)求斜率的一般方法: ①已知直线上两点,根据斜率公式212121()y y k x x x x -=≠-求斜率; ②已知直线的倾斜角α或α的某种三角函数根据tan k α=来求斜率;(4)利用斜率证明三点共线的方法:已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC x x x k k ===或,则有A 、B 、C 三点共线。

【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。

如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直.(2)线段的中点坐标公式121122,(,),(,)P P x y x y 若点的坐标分别是,1212122(,)2x x x PP M x y y y y +⎧=⎪⎪⎨+⎪=⎪⎩且线段的中点的坐标为 【知识点四 直线的交点坐标与距离】(1)两条直线的交点设两条直线的方程是1111:0l A x B y C ++=, 2222:0l A x B y C ++=两条直线的交点坐标就是方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩的解。

①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;②若方程组无解,则两条直线无公共点,此时两条直线平行.(2)几种距离两点间的距离:平面上的两点111222(,),(,)P x y P x y 间的距离公式12||PP =特别地,原点(0,0)O 与任一点(,)P x y的距离||OP =点到直线的距离:点00(,)o P x y 到直线0Ax By C ++=的距离d =两条平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离d =注:1求点到直线的距离时,直线方程要化为一般式;2求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算。

需要更多的高考数学复习资料【例】已知,,直线l 过原点O 且与线段AB 有公共点,则直线l 的斜率的取值围是( )A B C D答案:B分析:由于直线l 与线段AB 有公共点,故直线l 的斜率应介于OA ,OB 斜率之间.解:由题意,,,由于直线l 与线段AB 有公共点,所以直线l 的斜率的取值围是考点:本题主要考查直线的斜率公式,考查直线l 与线段AB 有公共点,应注意结合图象理解.【例】在坐标平面,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( )A 1条B 2条C 3条D 4条答案:B分析:由题意,A 、B 到直线距离是1和2,则以A 、B 为圆心,以1、2为半径作圆,两圆的公切线的条数即可.解:分别以A 、B 为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求.考点:本题考查点到直线的距离公式,考查转化思想【例】方程1=+y x 所表示的图形的面积为_________。

答案:2解:方程1=+y x【例】设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 .答案:11(,)k k解:1=+by ax 变化为()1,()10,ax k a y a x y ky +-=-+-=对于任何a R ∈都成立,则010x y ky -=⎧⎨-=⎩ 【例】一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________. 答案:4160x y -+=,或390x y +-=解:设444(3),0,3;0,34;33412y k x y x x y k k k k---=+==-==+-++= 2413110,31140,4,3k k k k k k --=--===-或 【例】已知A (1,2),B (3,4),直线l 1:x=0,l 2:y=0和l 3:x+3y ﹣1=0、设P i 是l i (i=1,2,3)上与A 、B 两点距离平方和最小的点,则△P 1P 2P 3的面积是________答案:分析:设出P 1,P 2,P 3,求出P 1到A ,B 两点的距离和最小时,P 1坐标,求出P 2,P 3的坐标,然后再解三角形的面积即可.解:设P 1(0,b ),P 2(a ,0),P 3(x 0,y 0) 由题设点P 1到A ,B 两点的距离和为显然当b=3即P 1(0,3)时,点P 1到A ,B 两点的距离和最小,同理P 2(2,0),P 3(1,0),所以考点:本题考查得到直线的距离公式,函数的最值,考查函数与方程的思想,是中档题.【例】已知直线(a ﹣2)y=(3a ﹣1)x ﹣1,为使这条直线不经过第二象限,则实数a 的围是___ ___ 答案:[2,+∞)分析:由已知中直线(a ﹣2)y=(3a ﹣1)x ﹣1不经过第二象限,我们分别讨论a ﹣2=0(斜率不存在),a ﹣2≠0(斜率存在)两种情况,讨论满足条件的实数a 的取值,进而综合讨论结果,得到答案. 解:若a ﹣2=0,即a=2时,直线方程可化为x=,此时直线不经过第二象限,满足条件;若a ﹣2≠0,直线方程可化为y=x ﹣,此时若直线不经过第二象限,则≥0,≥0,解得a >0综上满足条件的实数a 的围是[2,+∞)考点:本题考查的知识点是确定直线位置的几何要素,其中根据直线的斜截式方程中,当k≥0且b≤0时,直线不过第二象限得到关于a 的不等式组,是解答本题的关键,但解答时,易忽略对a ﹣2=0(斜率不存在)时的讨论,而错解为(2,+∞)。

【例】过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5。

解:设直线为4(5),y k x +=+交x 轴于点4(5,0)k-,交y 轴于点(0,54)k -, 14165545,4025102S k k k k=⨯-⨯-=--= 得22530160k k -+=,或22550160k k -+= 解得2,5k =或 85k = 25100x y ∴--=,或85200x y -+=为所求。

【例】直线31y x =+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限作等边△ABC ,如果在第一象限有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值。

解:由已知可得直线//CP AB ,设CP 的方程为3,(1)y x c c =+>则33,3113AB c=⨯==+,333y x=-+过1(,)2P m得13533,2m m=-+=【例】已知点(1,1)A,(2,2)B,点P在直线xy21=上,求22PBPA+取得最小值时P点的坐标。

解:设(2,)P t t,则2222222(21)(1)(22)(2)101410PA PB t t t t t t+=-+-+-+-=-+当710t=时,22PBPA+取得最小值,即77(,)510P【例】求函数22()2248f x x x x x=-++-+的最小值。

解:2222()(1)(01)(2)(02)f x x x=-+-+-+-可看作点(,0)x到点(1,1)和点(2,2)的距离之和,作点(1,1)关于x轴对称的点(1,1)-22min()1310f x∴=+=【例】在△ABC中,已知BC边上的高所在直线的方程为x﹣2y+1=0,∠ A的平分线所在直线的方程为y=0.若点B的坐标为(1,2),求点C的坐标.分析:根据三角形的性质解A点,再解出AC的方程,进而求出BC方程,解出C点坐标.逐步解答.解:点A为y=0与x﹣2y+1=0两直线的交点,∴点A的坐标为(﹣1,0).∴k AB==1.又∵∠A的平分线所在直线的方程是y=0,∴k AC=﹣1.∴直线AC的方程是y=﹣x﹣1.而BC与x﹣2y+1=0垂直,∴k BC=﹣2.∴直线BC的方程是y﹣2=﹣2(x﹣1).由y=﹣x﹣1,y=﹣2x+4,解得C(5,﹣6)考点:直线的点斜式方程。

本题可以借助图形帮助理解题意,将条件逐一转化求解【例】直线l过点P(2,1),且分别与x ,y轴的正半轴于A,B两点,O为原点.(1)求△AOB面积最小值时l的方程;(2)|PA|•|PB|取最小值时l的方程.分析:(1)设AB方程为,点P(2,1)代入后应用基本不等式求出ab的最小值,即得三角形OAB面积面积的最小值.(2)设直线l的点斜式方程,求出A,B两点的坐标,代入|PA|•|PB|的解析式,使用基本不等式,求出最小值,注意检验等号成立条件.解:(1)设A (a ,0)、B (0,b ),a >0,b >0,AB 方程为,点P (2,1)代入得 ≥2,∴ab≥8 (当且仅当a=4,b=2时,等号成立),故三角形OAB 面积S=ab≥4,此时直线方程为:,即x+2y ﹣4=0.(2)设直线l :y ﹣1=k (x ﹣2),分别令y=0,x=0,得A (2﹣,0),B (0,1﹣2k ). 则|PA|•|PB|==≥4,当且仅当k 2=1,即k=±1时,|PA|•|PB|取最小值,又∵ k <0,∴ k=﹣1,这时l 的方程为x+y ﹣3=0.考点:本题考查直线在坐标轴上的截距的定义,直线的截距式方程,以及基本不等式的应用.【例】求倾斜角是直线y =-3x +1的倾斜角的14,且分别满足下列条件的直线方程: (1)经过点(3,-1);(2)在y 轴上的截距是-5.解:∵直线的方程为y =-3x +1,∴k =-3,倾斜角α=120°,由题知所求直线的倾斜角为30°,即斜率为33. (1)∵直线经过点(3,-1),∴所求直线方程为y +1=33(x -3),即3x -3y -6=0. (2)∵直线在y 轴上的截距为-5,∴由斜截式知所求直线方程为y =33x -5,即3x -3y -15=0. 【例】已知直线l :kx -y +1+2k =0(1)证明:直线l 过定点;(2)若直线l 交x 负半轴于A ,交y 正半轴于B ,△AOB 的面积为S ,试求S 的最小值并求出此时直线l 的方程。

相关文档
最新文档