小学六年级奥数期末测试题(超正规)[1]

合集下载

六年级下册奥数期末测试题

六年级下册奥数期末测试题

六年级下册奥数期末测试题一、计算(10分)12320102009⨯31273944⨯+⨯100110021000100110021+⨯⨯-1111111261220304256++++++1111 (1315151717193739)++++⨯⨯⨯⨯二、应用 (每题5分)一、仓库里存粮假设干吨,第一次运出总数的1/2又4吨,第二次运出余下的1/2又3吨,第三次运出余下的1/2又5吨,最后剩下12吨。

那个仓库原有粮食多少吨?二、某外贸公司有三批货物共值152万,三批货物的重量比是2:4:3,单价比是6:5:2。

这三批货物各值多少万元?3、兄弟两人各有人民币假设干元,其中弟的钱数是兄的4/5,假设弟给兄4元,那么弟的钱数是兄的2/3,求兄弟两人原先各有多少元?4、修一条公路,甲队天天修6小时,4天能够完成;乙队天天修8小时,5天能够完成。

此刻甲、乙两队合作,要求2天完成,那么天天应修多少小时?5、车过河交渡费3元,马过河交渡费2元,人过河交渡费1元,某天过河的车和马数量比是2:9,马和人数量比是3:7,共收渡费315元,求此日过河的车,马和人的数量?六、三位同窗去商场购物,小明花去钱数的1/2等于小琳花去钱数的1/3,小琳花去钱数的3/4等于军军花去钱数的4/7,结果军军比小明多花钱93元。

他们三人共花了多少元钱?7、有两个一样的仓库A和B 。

搬运一个仓库里的货物,甲需要18小时,乙需要12小时,丙需要9小时。

甲、乙在A仓库,丙在B仓库,同时开始搬运。

半途甲又转向帮忙丙搬。

最后,两个仓库同时搬完。

甲帮忙乙、丙各多少时刻?八、一件工作,甲独做要20天完成,乙独做要12天完成。

这件工作先由甲做了假设干天,然后由乙继续做完,从开始到完工共用14天。

这件工作由甲先做了几天?9、单独完成一件工作,甲按规按时刻可提早2天完成,乙那么要超过规按时刻3天才能完成。

若是甲、乙二人合做2天后,剩下的继续由乙单独做,那么恰好在规按时刻完成。

六年级数学上奥数期末测试卷

六年级数学上奥数期末测试卷

六年级数学奥数练习卷(一)1、计算:+⨯+⨯+⨯751531311…+19171⨯2、李老师带领班上46名同学去南湖公园,在准备乘船游玩时,售票员说:“单人购票每人5元,50人以上(含50人)可购团体票,票价是原票价的54。

”请你帮李老师算一算怎样购票便宜。

3、计算:12726272526-⨯⨯+4、计算:1-211⨯+321⨯+…+51501⨯41+281+701+13015、计算:⨯+⨯+⨯+)611()411()211(…×⨯-⨯-⨯+)511()`311()1011(…×(1-91)6、简算12447×126 252371737172583752517⨯+⨯+⨯7799206316735127158⨯-⨯+⨯-⨯2113124⨯7、计算:26⨯28×(2827127261⨯+⨯)8、一根绳子长40m ,第一次剪去25m ,第二次剪去余下的52。

第二次剪去多少米?9、几个修路队合修一条长210km 的路.第一队修了全长的51少4 km ,第二队修了全长的71多5km 。

两个修路队一共修了多少千米?10、乐天影院正在放映一部最新电影,原来电影票20元一张。

现在降价,观众增加了一倍,收入增加了51。

现在门票多少元一张?11、三个质数的倒数和是231131,这三个质数分别是多少?12、巧算:272626÷265353135351÷13、算一算:200420042004÷40024002400214、简算:18÷67+671⨯+61716÷19133548÷+19133522÷15、有一个分数,它的分母加7,化简后为154,分母减7,可约分为21,这个分数是多少?16、小敏看一本书。

第一天看了全书的51,第二天又看了余下的21, 这时还剩80页没有看,这本书共有多少页?17、一杯糖水,糖占糖水的101,再入10克糖后,糖占糖水的112,原来糖水有多少克?18、用绳子测量楼房的高度,把绳子折成相等的5段来量,绳子比楼高多出6m ;把绳子折成相等的6段来量,绳子比楼高多出2m 。

小学六年级奥数题及答案1

小学六年级奥数题及答案1

小学六年级奥数题及答案1标题:小学六年级奥数题及答案解析(一)在数学的世界里,奥数题是一种既能锻炼思维,又能增加学习兴趣的题型。

以下我们来看一道小学六年级的奥数题。

题目:一个正方形的面积是320平方厘米,将其剪成8个相等的小正方形,求小正方形的面积。

这道题涉及到正方形的面积计算,以及面积的均分。

首先,我们来计算一下这个正方形的边长。

设正方形的边长为a,根据正方形的面积公式,我们可以得到以下等式:a^2 = 320我们将这个等式两边同时开平方根,得到:a = √320由于这是一个正方形,因此边长是等于对角线的,我们可以将其表示为:a = √1600 + √9600的和的平方根这样,我们就得到了正方形的边长。

接下来,我们需要将正方形剪成8个相等的小正方形。

每个小正方形的边长等于原来正方形的边长的1/2,即:b = a/2 = √(1600 + 9600)/2 的平方根这样,我们就可以计算出每个小正方形的面积了:每个小正方形的面积 = b^2 = (√(1600 + 9600)/2 的平方根)的平方所以,每个小正方形的面积为:40平方厘米。

总结来说,解决这道奥数题的关键在于理解并运用正方形的面积公式,以及如何将一个正方形分割成相等的小正方形。

通过这道题,我们可以看到,奥数题的解题过程既锻炼了我们的思维能力,也提高了我们的数学素养。

小学六年级奥数测试题及答案小学六年级奥数测试题及答案小学六年级是学生学习数学的重要阶段,而奥数测试题则是检验学生数学能力的重要手段之一。

下面我们来看一道小学六年级奥数测试题及答案。

题目:一个正方形的边长为4厘米,将其分割成四个小三角形,每个小三角形的面积是多少平方厘米?这道题目是一道几何题,需要学生掌握正方形的性质以及三角形的面积计算方法。

首先,我们可以根据正方形的性质,得出其面积等于边长的平方。

因此,该正方形的面积为16平方厘米。

接下来,我们需要将正方形分割成四个小三角形。

小学六年级奥数期末考试试题

小学六年级奥数期末考试试题

小学六年级奥数期末考试试题一、单项选择题 (12×3=36分) (1)在下列算式中加一对括号后,算式的最大值是( )。

9×6 + 12 ÷ 3 - 2A 、 156B 、66C 、 88D 、 52 (2)已知三角形的内角和是180度.一个五边形的内角和应是( )度.A 、500B 、540C 、360D 、480(3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么甲数是( ).A 、1.75B 、 1.47C 、 1.45D 、 1.95(4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱少1.1元,顾客应退回的瓶钱是( )元.A 、0.8B 、 0.4C 、 0.6D 、1.2(5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别( )和( ).A 、95和40B 、 110和30C 、 100和34D 、30和100(6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁?A 、16B 、11C 、9D 、10(7)一个两位数除250,余数是37,这样的两位数是( ).A 、17B 、38C 、71D 、91(8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段.A 、 13B 、 12C 、 14D 、15(9)把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ).A 、 12B 、 18C 、10D 、11(10)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台,求四月份比原计划超产多少台机器?A 、16B 、 8C 、 10D 、 12(11)图中ABCD 是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积大6平方厘米,求ED 等于多少厘米(注:DF AF DE AB ) A 、9 B 、 7 C 、 8 D 、 6(12)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条?A 、48B 、50C 、52D 、58二、填空题(12x5=60分)1、有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.2、1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______.3、将(87B)16转化为三进制的数为。

小学六年级奥数题及答案(可直接打印) 一

小学六年级奥数题及答案(可直接打印) 一

一、拓展提优试题1.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.2.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.3.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.4.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.5.根据图中的信息可知,这本故事书有页页.6.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.7.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).8.若三个不同的质数的和是53,则这样的三个质数有组.9.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.10.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.11.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.12.已知A是B的,B是C的,若A+C=55,则A=.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.能被5和6整除,并且数字中至少有一个6的三位数有个.15.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.16.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.17.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.18.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.19.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.20.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)21.宏富超市购进一批食盐,第一个月售出这批盐的40%,第二个月又售出这批盐的420袋,这时已售出的和剩下食盐的数量比是3:1,则宏富超市购进的这批食盐有袋.22.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.23.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.24.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.25.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.26.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.27.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).28.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.29.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.30.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.31.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.32.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.33.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.34.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)35.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?36.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.37.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.38.对任意两个数x,y,定义新的运算*为:(其中m是一个确定的数).如果,那么m=,2*6=.39.已知自然数N的个位数字是0,且有8个约数,则N最小是.40.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.【参考答案】一、拓展提优试题1.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.2.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.3.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.4.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.5.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.6.解:==,答:这三个分数中最大的一个是.故答案为:.7.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.8.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;若三个不同的质数的和是53,可以有以下几组:(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;(11)13,17,23;所以这样的三个质数有11组.故答案为:11.9.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%10.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.11.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.12.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、69015.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.16.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.17.解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.18.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100019.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.20.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.21.解:420÷(1﹣40%﹣)=420÷0.35=1200(袋)答:宏富超市购进的这批食盐有1200袋.故答案为:1200.22.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.23.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.24.解:分针每分钟走的度数是:360÷60=6(度),时针每分钟走的度数是:6×5÷60=0.5(度),第一成直角用的时间是:90÷(6﹣0.5),=90÷5.5,=16(分钟),第二次成直角用的时间是:270÷(6﹣0.5),=270÷5.5,=49(分钟).这时的时刻是:12时+49分=12时49分.故答案为:16,12时49分.25.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.26.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.27.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.28.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.29.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.30.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.31.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.32.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.33.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.34.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.35.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.36.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.37.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.38.解:(1)1*2==,即2m+8=10,2m=10﹣8,2m=2,m=1,(2)2*6,=,=,故答案为:1,.39.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.40.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.。

六年级奥数期末测试卷

六年级奥数期末测试卷

一、填空(每题2分,共30分)1、比1/2大,比7小,分母是6的最简分数有________个。

3、甲、乙两个长方形的周长相等。

甲的长与宽之比是3:2,乙的长与宽之比是5:4,甲与乙的面积之比是_______。

4、某工厂有若干工人,其中1/5是党员,n/3是团员(n是正整数),其余88人是群众,则此工厂共人。

5、一项工程,甲、乙两人合作,6天完成5/6;单独工作时,甲完成1/3与乙完成1/2所用的时间相等。

单独做时,甲需要_______天完成;乙需要_______天完成。

6、自然数a乘294,正好是另一个自然数的平方,则a的最小值是_______。

7、一辆汽车从甲地开往乙地,行前一半时间的速度和行后一半时间的速度之比是5:4,那么行前一半路程和行后一半路程的时间之比是________。

8、一副扑克牌有54张,最少要抽取________张牌,方能使其中至少有2张牌有相同的点数。

9、小军读一本书,如果每天读80页,需要4天多读完;如果每天读90页,需要3天多读完;如果每天读a页,刚好a天读完,则每天应读_______页。

10、笑笑将于2012年的3月份参加数学竞赛,这个月有5个星期四,5个星期五,5个星期六,那么,这个月的23号是星期________。

11、图中大长方形分别由面积为12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组成,那么图中的阴影面积为______。

12、如图,在三角形ABC中,AB、AC两边分别被分成五等份。

阴影部分的面积与空白部分的面积比是___________。

13、下图a是一个密封水瓶的切面图,上半部为圆锥状,下半部为圆柱状,底面直径都是10厘米,水瓶高度是26厘米,瓶中液面的高度为12厘米,将水瓶倒置后,如下图b,瓶中液面的高度是16厘米,则水瓶的容积等于________立方厘米.(π=3.14,水瓶壁厚不计)二、选择题(每题5分,共30分)1、将一个圆柱削成一个最大的长方体,这个长方体体积与圆柱体积之比为( ).A.2∶πB.3∶πC.3∶4D.2∶32、小林在做一个竖式乘法时,把被乘数个位上的“9”看成了“6”;把乘数个位上的“6”看成“9”,经过正确运算后,得到的答案比正确的答案多22.5,如果原来的被乘数减乘数,其差是()。

小学六年级数学奥数期末测试卷

小学六年级数学奥数期末测试卷姓名:________一、简便计算(24分)51115612126⨯+⨯15589797⨯+⨯0.9999 1.50.3333 5.5⨯+⨯34.80.755.24⨯+⨯111204510⎛⎫++⨯ ⎪⎝⎭199919891619198********⨯-⨯+2468100++++⋅⋅⋅+1111112612203042+++++二、(第1、2小题5分,其余6分)(1)修路队在一条公路上施工,第一天修了这条公路的14,第二天修了余下的12,已知这两天一共修了1400米,这条公路全长多少米?(2)某火车车速是120千米/小时,现在提速110,现在火车的速度是多少千米?(3)一项工程,甲单独做10小时完成,乙单独做12小时完成,甲、乙合做,几小时完成?(4)一项工程,甲、乙两人合作36天完成,乙丙两人合作45天完成,甲、丙两人合作60天完成,甲、乙、丙单独做各需多少天完成?(5)水池上装有三个水管,单开甲管5小时注满水池,单开乙管8小时注满水池,单开丙管12小时放完一池水,三管齐开需几小时注满水池?(6)有一艘船行驶于90千米的河中,逆行需要10小时,顺行需要6小时,求划速和水速分别是多少?(7)一艘轮船同样的速度往返于甲、乙两个港口,它顺流而下行了6小时,逆流而上行12小时,如果水流速度是每小时4千米,求甲、乙两个港口之间的距离(列方程解答)(8)260克盐水中盐与水的比是5:8,盐有多少克?水有多少克?(9)哥哥和弟弟在长400米的跑道上跑步,他俩同时从同一地点出发,如果背向而行,5分钟相遇,如果同向而行,哥哥10分钟可以追上弟弟,哥哥和弟弟的速度分别是多少米?(10)甲、乙两车分别从A、B两地出发,相向而行,甲、乙两车的速度比4:3,相遇后,甲的速度减少20%,乙速度增加20%,这样,当甲到达B地时,乙离A地还有15千米,求A、B两地相距多少千米?(11)甲班50人,乙班有45人,从甲班调几人到乙班才能使甲乙两班人数比是2:3?(12)甲、乙两个仓库共存粮540吨,已知甲仓库存粮的14等于乙仓库存粮的15,甲、乙两个仓库各存粮多少吨?(13)某商品原价3600元,先降价12%,再提价12%,现价多少元?甲是乙、丙、丁之和的12,乙是甲、丙、丁之和的13,丙是甲、乙、丁之和的14,已知丁是390,求甲、乙、丙、丁四个数之和?(10分)。

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。

A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。

第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。

此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。

题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。

两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。

完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。

题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。

分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。

题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。

小学六年级奥数题及答案【5篇】

小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。

第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。

问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。

如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。

因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

3.妈妈每四天去一次杂货店,每五天去一次百货商店。

妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。

2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。

如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。

2.从五年级的六个班级中选出一个学习、体育、健康先进集体。

有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。

他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。

所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。

3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。

有50道测试题。

评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。

小学六年级奥数训练(一)及其答案

小学六年级奥数训练试卷一一、计算题:(每题5分,共10分)1、(111×66-185×8)÷37=______.2、1997+1996-1995-1994+1993+1992…-2+1=_______.二、填空题:(每题5分,共25分)1、某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角(甲、乙都是整数),则甲交了______角______分2、乒乓球单打决赛在甲、乙、丙、丁四位选手中进行,赛前,有些人预测比赛结果,A说:甲第4;B说:乙不是第2,也不是第4;C说:丙的名次在乙的前面;D说:丁将得第1.比赛结果表明,四个人中只有一人预测错了.那么,甲、乙、丙、丁四位选手的名次分别为:_______.3、41位数55…5□99…9(其中5和9各有20个)能被7整除,那么中间方格内的数字是_____.4、如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.5.字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如右,那么三位数ABC是______.三、解答题:(1~7题每题5分,8,9,10题每题10分,共65分)1.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上看见慢车驶过的时间是11秒,那么坐在慢车上看见快车驶过的时间是多少秒?2.一堆苹果,2个2个地数剩1个,3个3个地数剩2个,4个4个地数剩3个,5个5个地数剩4个,6个6个地数剩5个,求这堆苹果至少有多少个?3.甲、乙、丙三人去完成植树任务,已知甲植一棵树的时间,乙可以然后丙休息了8天,乙休息了3天,甲没休息,最后一起完成任务.问:从开始植树算起,共用了多少天才完成任务?5.原计划有420块砖让若干学生搬运,每人运砖一样多,后来增加一个学生,这样每个学生就比原计划少搬2块.那么原来有学生多少人?6.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?7、小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?8、甲、乙、丙三个小孩分别带了若干块糖,甲带的最多,乙带的较少,丙带的最少.后来进行了重新分配,第一次分配,甲分给乙、丙,各给乙、丙所有数少4块,结果乙有糖块最多;第二次分配,乙给甲、丙,各给甲、丙所有数少4块,结果丙有糖块最多;第三次分配,丙给甲、乙,各给甲、乙所有数少4块,经三次重新分配后,甲、乙、丙三个小孩各有糖块44块,问:最初甲、乙、丙三个小孩各带糖多少块?9、外表相同的18个小球中,有9克和10克的两种重量,从18个球中取出两个球放在天平左边以作比较,另外16个球分成8对,依次放在天平的右边与这两个球比较重量,发现有5对比那两个球重,有2对比那两个球轻,有一对与那两个球重量相等,这18个球的总重量是多少?10、A s shown below, the area of the parallelogram ABCD is 54 cm2, E, F trisect CA and BA, the area of the shadow is _________.小学六年级奥数训练试卷一答案一、计算题:1、(111×66-185×8)÷37=111×66÷37-185×8÷37=3×66-5×8=198-40=1582、1997+1996-1995-1994+1993+1992…-2+1=1997+(1996-1995-1994+1993)+(1992+…+(4-3-2+1)=1997二、填空题:1、甲交了27角6分解:按照这样的收费标准,如果两人在同一标准下(例如都在24度以下,或都在24度以上),那么交的钱数应该是9分或2角的倍数.甲比乙多交了9.6角,显然甲用电在24度以上,乙在24度以下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.填空:①如果a:b=2:3,b:c=2:3,则a:c=
②在2:3中,如果前项加上4,要使比值不变,则后项要加上 ③如果
2012
2011
2010
C B A =
=
,则A:B:C=
2.计算:30
26326
22322
18318
14314
103
10
636
23⨯+
⨯+
⨯+
⨯+
⨯+
⨯+

3.已知图中正方形的面积为20,求阴影部分的面积。

4.甲乙两个书架,共有书2000册,其中甲的册数的52
与乙的册
数的4
1
共有650册。

求两个书架各有书多少册?
5.小明喜欢跑步,某天早晨他正在跑步,跑了一段时间后,已跑距离与未跑距离的比是1:3,跑了300米后,已跑距离与未跑距离的比是5:
6.那么他跑了多少米?
6①已知6
5
可以写成2
1
与3
1
的和,
12
7可以写成3
1与4
1的和,
20
9可以
写成4
1与5
1的和,那么72
17可以写成 与 的和。

请根据上面的规律,计算72
1756
1542
13301120
912
76
51-
+
-
+
-
+
-。

7.小华读一本故事书,第一天读了全书的8
3,第二天读的比第一天余下的3
1还多8页,此时还有32页没有读,全书有多少页?
8.某校五年级三个班植树,一班植树的棵树占三个班总棵树的
5
1,二班与三班植树棵树的比是3:5,二班比三班少植树40棵,
求三个班共植树多少棵?
附加题(做对加10分,做错不扣分)
一辆车从甲地开往乙地,如果把车速提高25%,那么可以比原定时间提前24分到达;如果以原速度行驶80千米后,再将速度提高31
,那么可以提前10分钟到达乙地。

甲乙两地相距多少千米?。

相关文档
最新文档