小学六年级奥数入学测试题
六年级奥数试题及答案

六年级奥数试题及答案一、选择题(每题5分,共20分)1. 一个数的3倍加上5等于23,这个数是多少?A. 5B. 6C. 7D. 8答案:B2. 一个正方形的周长是24厘米,它的面积是多少平方厘米?A. 36B. 48C. 64D. 96答案:B3. 一个数的一半加上6等于11,这个数是多少?A. 10B. 8C. 9D. 12答案:A4. 一个数的3倍是48,这个数是多少?A. 16B. 12C. 15D. 18答案:A二、填空题(每题5分,共20分)1. 一个数的4倍是32,这个数是______。
答案:82. 一个数的5倍减去8等于37,这个数是______。
答案:93. 一个数的6倍加上10等于46,这个数是______。
答案:64. 一个数的7倍是49,这个数是______。
答案:7三、解答题(每题15分,共30分)1. 一个数的2倍加上3倍等于45,求这个数。
解:设这个数为x,根据题意得方程:2x + 3x = 45 合并同类项得:5x = 45解方程得:x = 9答:这个数是9。
2. 一个数的4倍减去10等于20,求这个数。
解:设这个数为y,根据题意得方程:4y - 10 = 20 移项得:4y = 30解方程得:y = 7.5答:这个数是7.5。
四、应用题(每题15分,共20分)1. 小明有一本书,他第一天看了全书的1/4,第二天看了全书的1/3,第三天看了全书的1/2,请问小明三天一共看了全书的几分之几?解:1/4 + 1/3 + 1/2 = 3/12 + 4/12 + 6/12 = 13/12答:小明三天一共看了全书的13/12。
2. 一个班级有40名学生,其中男生人数是女生人数的1.5倍,请问这个班级有多少名男生?解:设女生人数为x,则男生人数为1.5x,根据题意得方程:x + 1.5x = 40合并同类项得:2.5x = 40解方程得:x = 16答:这个班级有24名男生。
六年级能学的奥数题及答案

六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。
六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。
以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。
请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。
由于每次拿球后都放回,第二次拿到红球的概率也是3/5。
两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。
题目2:一个数字钟的时针和分针在12点整重合。
请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。
因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。
每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。
题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。
答案:设原来的长方形宽为x厘米,那么长就是2x厘米。
原来的面积是x * 2x = 2x^2平方厘米。
增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。
根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。
解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。
题目4:一个数字序列如下:2, 4, 7, 11, ...。
这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。
根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。
六年级小升初奥数题100例附答案(完整版)

六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。
x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。
题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。
所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。
小学六年级数学上册奥数题100道及答案

小学六年级数学上册奥数题100道及答案1. 甲、乙两数的和是120,甲数是乙数的3 倍,求甲、乙两数各是多少?答案:乙数= 120÷(3 + 1) = 30,甲数= 3×30 = 902. 某工厂有三个车间,第一车间人数是第二、三车间人数和的1/2,第二车间人数是第一、三车间人数和的1/3,第三车间有105 人,求该厂总人数。
答案:第一车间人数占总人数的1/(1 + 2) = 1/3,第二车间人数占总人数的1/(1 + 3) = 1/4,所以第三车间人数占总人数的1 - 1/3 - 1/4 = 5/12,总人数= 105÷5/12 = 252 人3. 一筐苹果,连筐重56 千克,先卖出苹果的一半,再卖出剩下苹果的一半,这时连筐重17 千克,原来这筐苹果重多少千克?答案:一共卖出的苹果占总苹果的1/2 + 1/2×1/2 = 3/4,卖出的苹果重56 - 17 = 39 千克,原来苹果重39÷3/4 = 52 千克4. 修一条路,第一天修了全长的1/3,第二天修了余下的1/3,还剩180 米没修,这条路全长多少米?答案:第二天修了全长的(1 - 1/3)×1/3 = 2/9,剩下的占全长的1 - 1/3 - 2/9 = 4/9,全长= 180÷4/9 = 405 米5. 有一堆煤,第一天运走全部的1/4,第二天运走剩下的1/3,第三天运走50 吨,正好运完,这堆煤有多少吨?答案:第二天运走全部的(1 - 1/4)×1/3 = 1/4,所以第三天运走全部的1 - 1/4 - 1/4 = 1/2,这堆煤有50÷1/2 = 100 吨6. 三个连续奇数的和是15,它们的积是多少?答案:中间的奇数= 15÷3 = 5,这三个奇数是3、5、7,它们的积是3×5×7 = 1057. 一个数除以8 余5,除以7 也余5,这个数最小是多少?答案:这个数减去5 能同时被8 和7 整除,8 和7 的最小公倍数是56,所以这个数最小是56 + 5 = 618. 一个长方形的周长是48 厘米,长是宽的3 倍,求这个长方形的面积。
2-6年级奥数入学水平测试题

2-6年级奥数入学水平测试题目录1. XX秋季数学入学指标2. xx数学秋季二升三入学试卷3. xx数学秋季三升四入学试卷4. xx数学秋季四升五入学试卷5. xx数学秋季五升六入学试卷XX秋季数学入学指标1.平时考试成绩怎么样?在班上的名次大概多少?平均95以上,并且最低分不低于92,名次前五(语文成绩必须在班级前20%)2.以前是否学习过奥数?学习情况怎么样?学习过多久?学过,情况较好,时间较长3.上课是否积极回答老师提问?4.不推荐免试入学,进行测试,有助于老师了解学生的不足之处在哪里,便于因材施教。
xx数学秋季二升三入学试卷(分数结果不代表学生成绩的好坏,仅为入学后教师因人授课参考使用)(满分:100分时间:25分钟)姓名:电话:得分:一、用竖式计算,带☆的要验算。
(20分)52÷7= ☆42+48=☆700-160= 29÷4=二、想一想,我会填。
(每空2分,共42分)1.在有余数的除法中,()一定要比()小。
2.用两个“6”和两个“0”组成一个四位数,一个零都不读的有(),只读一个零的有()和()。
3.在括号里填上适当的单位名称。
①一只鸡重1998()。
②小强的体重是28()。
4.在○里填上“>”“<”或“=”。
1千克棉花○1千克铁(50-10)÷5○50-10÷55.桌子上有三盘苹果,小猫说:“第一盘比第三盘多3个。
”小狗说:“第三盘比第二盘少5个。
”猜一猜,第()盘苹果最多,第()盘苹果最少。
6.找规律填空。
(1)2,3,5,8,13,(),()。
(2)512,622 ,(),842,()。
(3)1234,2341,3412,(),()。
7.在下面相同的图形中填上相同的数字。
三、选择题。
(8分)1.百位上的6比十位上的6多( )。
A.6 B.60 C.54 D.5402.□÷8=6……△,方框中最大能填()。
A.55 B.72 C.49 D.57五、解决问题。
六年级入学测试卷(奥数)

六年级入学测试卷姓名: 分数:一、填空(3分×8=24分)1°从A 市到B 市有3条路,从B 市到C 市有2条路,问从A 市经过B 市到达C 市有( )种方法。
2°9个小朋友,每两人之间握手一次,请问一共握手( )次。
3°4个人全部排成一列,共有( )种不同的排列方法。
4°将37化成小数后,小数点后第15为上的数字是( )。
5°218、170、290除以一个数都余2,这个数最大是( )。
6°1992年爷爷的年龄是孙子的10倍,再过12年,爷爷的年龄是孙子的4倍,那么1993年孙子是( )岁。
7°一包糖在50——100块之间,不论是平均分给5个人,平均分给8个人,还是平均分给10个人,都正好分完,这包糖有( )块。
8°找规律,填下一个:2211=10+21,2212=11+23,2213=12+25,2214=13+27, ( )。
二、计算1°直接写得数。
(2分×8=16分) 2016+514= 2016-5.14= 33.2-=2 1151-+=126120.480.3=÷ 231-+=55 11+=230.999+0.99=⨯ 2°脱式计算(6分×1=12分)1+2-345⨯÷ 78297-2+-917917(21)3°解方程(6分×1=12分)--+=x xx x42(8)80--=43(20)40三、解决问题(12分×3=36分)1°老妇提一篮蛋,第一次卖了全部的一半,第二次卖了余下的一半,第三次卖了第二次余下的一半,第四次卖了第三次余下的一半,这时,还剩2个鸡蛋,老妇篮中原有鸡蛋多少个?2°某厂生产一批水泥,原计划每天生产150吨,可以按时完成任务。
实际每天增产30吨,结果只用25天就完成了任务。
六年级十道奥数题及答案

六年级十道奥数题及答案1. 题目一:一个数的3倍加上10等于这个数的5倍减去8,求这个数是多少?答案:设这个数为x,根据题意可得方程:3x + 10 = 5x - 8。
解这个方程,我们可以得到2x = 18,所以x = 9。
2. 题目二:一个班级有45名学生,其中1/3是男生,1/4是女生,剩下的是双胞胎。
求班级中有多少对双胞胎?答案:男生人数为45 * 1/3 = 15人,女生人数为45 * 1/4 = 11.25,但人数不能为小数,所以女生人数为11人。
剩下的人数为45 - 15 - 11 = 19人。
因为双胞胎是两人一组,所以有19 / 2 = 9.5对双胞胎,但双胞胎的对数不能是小数,所以班级中有9对双胞胎。
3. 题目三:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。
答案:长方体的体积是长、宽、高的乘积,即10 * 8 * 6 = 480立方厘米。
4. 题目四:一个数的平方加上它的两倍等于这个数的5倍,求这个数。
答案:设这个数为x,根据题意可得方程:x^2 + 2x = 5x。
简化得到x^2 - 3x = 0,提取x得到x(x - 3) = 0,所以x = 0或x = 3。
5. 题目五:一个数的1/5加上这个数的1/4等于这个数的1/3,求这个数。
答案:设这个数为x,根据题意可得方程:x/5 + x/4 = x/3。
解这个方程,我们可以得到12x + 15x = 20x,即27x = 20x,所以x = 0。
但是题目中通常不涉及0,所以可能是题目有误。
6. 题目六:一个圆的半径是5厘米,求这个圆的周长和面积。
答案:圆的周长是2πr,所以周长为2 * π * 5 = 10π ≈ 31.42厘米。
圆的面积是πr^2,所以面积为π * 5^2 = 25π ≈ 78.54平方厘米。
7. 题目七:一个数的3/4加上另一个数的1/2等于这两个数的和的1/3,求这两个数的和。
小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数入学测试题【考生注意】本试卷包括两道大题(13道小题),满分100分,考试时间120分钟.一、填空题:(本题共有12道小题,每小题7分,满分84分)1.计算: =______________.2.7个连续质数从大到小排列是a、b、c、d、e、f、g,已知它们的和是偶数,那么c=______.3.上面这个火柴等式显然是错误的,请你移动两根火柴,使它成为一个正确的等式(所移动的两根火柴不许拿走,也不许与其他火柴重合),那么组成的正确等式是 .4.两个孩子在圆形跑道上从同一点A出发按相反方向运动,他们的速度是5米/秒和9米/秒.如果他们同时出发并当他们在A点第一次相遇的时候结束,那么他们从出发到结束之间相遇的次数是 (不计出发时和结束时的两次).5.学校举行一次考试,科目是英语、历史、数学、物理和语文,每科满分为5分,其余等级依次为4、3、2、1分.今已知按总分由多到少排列着5个同学A、B、C、D、E,并且满足条件:①在同一科目以及总分中,没有得分相同的人;②A的总分是24;③C有4门科目得了相同分数;④D历史得4分,E物理得5分,语文得3分.那么B的成绩是:英语分,历史,数学分,物理分,语文分 .6.数的各位数字之和为.7.一辆客车和一辆货车分别从甲、乙两地同时出发相向而行,客车每小时行驶32千米,货车每小时行驶40千米,两车分别到达乙地和甲地后,立即返回出发地.返回的速度,客车增加8千米/小时,货车减速5千米/小时.已知两车两次相遇处相距70千米,那么货车比客车早返回出发地小时.8.40只脚的蜈蚣与3个头的龙同在一个笼中,共有26个头、298只脚,若40只脚的蜈蚣有1个头,则3个头的龙有只脚.9.确定图7-1中图形的周长,至少要知道8条边中边的长度.10.如图7-2,小圆半径为10,大圆半径为20,那么,阴影部分的面积是.( ≈3.14).11.某一天中,经理有5封信要交给打字员打字,每次他都将信放在打字员的信堆的上面,打字员有时间就将信堆最上面的那封信取来打.假定5封信按经理放在信堆上的先后顺序依次编号为l、2、3、4、5,那么打字员有___________种可能的打字顺序.12.请将1、2、3……14填入图7-3中所示的图形的圆圈内(每个数用一次,每个圆圈填入一个数),使每两个用短线相连的圆圈内的数所成的差(大减小)出现尽可能多的不同的值.二、解答题:(本题满分16分)13.在一行中,写着2n个x,甲、乙两人交替地把其中一个x换成1、2、3、4、5、6中的一个数字,甲先换,乙后换,当最终形成的2n个数字组成的2n位数(十进制)能被9整除时,乙获胜,反之甲获胜.问:对怎样的n甲有稳操胜券的策略?对怎样的n乙有稳操胜券的策略?并证实你的结论.试题解答一、填空题:1.1.2.11.因为质数中除了2以外都是奇数,所以这7个质数的和是偶数就说明了其中有一个是2.所以这7个连续质数是17、13、ll、7、5、3、2.所以c=11.3. (答案不惟一)4.13.因为这2个孩子的速度之比是5:9,所以他们分别要跑9圈和5圈之后才能重新同时回到A点.因为他们一共跑了9+5=14圈,所以他们一共相遇了14次,包括最后一次.所以除去出发时和结束时的两次外,他们一共相遇了13次.5.4、2、4、1、4.因为A的总分是24,所以A有4科得了5分,只有l科得了4分.而E的物理是5分,所以A的物理是4分.现在我们知道的得分如图7-1所示.现在4分和5分都已经出现了2次,所以C得了相同分数的那4门科目的分数不能是4和5,只能是3、2或1.因为总分最低的E的总分至少是5+3+1+1+1=11,所以C的总分至少是13.因为5分已经出现了5次,所以C除了相同分数的4门科目之外的那门科目的得分最多是4.所以C得分相同的那4门科目的分数之和至少是13-4=9,这4个相同的分数必然是3.又因为3已经出现过1次了,所以这4个3的位置也可以确定.现在我们知道的分数如图7-2所示.从图7-2中我们可以看出,B在历史和物理上的得分都至多是3,其他3门课的得分至多是4.因为C的总分至少是13,所以B的总分至少是14.容易推出B至少要有3个4分,否则B的总分至多是4+4+2+2+2=14,于是B、C、D、E 的总分就只能分别是14、13、12、11.通过简单的尝试,就可以知道这是不可能的.所以召_的英语、数学和语文都是4分,如图7-3所示.现在还需要求出B的历史和物理分数.现在5分、4分和3分都已经有5个了,只要再把2分和1分填进去就可以了.因为E 的总分至少是11分,所以D 的总分至少是12分.但是现在D 只有1个4分,D 只有1个4分,所以D 剩下的4门都是2分.于是整个图就都出来了,如图7-4所示.6.179287.1.35.假设甲、乙两地之间的距离是x ,那么由两车的速度可以知道两车第1次相遇的地点离乙地的距离应该是x 95.第1次相遇之后再经过x x 28853295=÷小时客车到达乙地,第1次相遇之后再经过x x x 9014095=÷⎪⎭⎫ ⎝⎛-小时货车到达甲地.所以当客车以每小时40千米的速度驶回甲地时,货车已经以每小时35千米的速度向乙地行驶了x x x 16019012885=-小时.所以通过计算从客车离开乙地到两车第2次相遇所经过的时间,可以求出两车第2次相遇的地点与乙地的距离为x x x 125354040160135=+⨯⎪⎭⎫ ⎝⎛⨯-,从而有70=x x x 36512595=-.也就是说x=504千米.所以两车第2次相遇后再过去125×504÷35=6小时货车回到乙地,而客车回到甲地则还要再过⎪⎭⎫ ⎝⎛-1251×504÷40=7.35小时.所以货车比客车早返回出发地7.35-6=1.35小时,也就是l 小时21分钟.8.14.因为一共有298只脚,而每只蜈蚣有40只脚,所以最多有7只蜈蚣.因为一共有26个头,而蜈蚣有1个头,龙有3个头,所以要么有2只蜈蚣8条龙,要么有5只蜈蚣7条龙.如果是2只蜈蚣8条龙的话,那么这8条龙一共有298-40×2=218只脚,但是8不整除218,所以只能是5只蜈蚣7条龙.于是这7条龙一共有298-40×5=98只脚,也就是每条龙有98÷7=14只脚.9.4.横着的边和竖着的边之问没有任何关系,可以把它们分开来计算.横着的4条边之间的关系是长边是3条短边的和,所以只要知道长边的长度就可以了.而竖着的4条边之间的关系则要复杂一些,为最长边加上最短边等于剩下的两条边之和,所以需要知道其中的2条边的长度.所以一共需要知道3条边的长度才能求出图形的周长.10.456.4个半径为10的小圆的面积之和正好等于1个半径为20的大圆的面积,所以图7-4中的阴影部分的面积等于图7-5中的阴影部分的面积.要求出所有阴影部分的面积,只需要求出图7-5中的阴影部分的面积就可以了.而图7-5中的阴影部分的面积就是图7-6中的阴影部分的面积的8倍,所以我们要求的所有阴影部分的面积就是图7-6的阴影部分的面积的16倍.而图7-6的阴 影 部 分 的 面 积 为)2(251010214102-⨯=⨯⨯-⨯ππ,所以π≈456.答案为)2=⨯⨯π-⨯25-(16400()211 42.我们对打字员打的第一封信来分类讨论.如果打字员打的第一封信是5,那么就意味着打字员是在经理把5封信都交给他之后才开始打的,所以在这种情况下只有1种打信顺序.如果打字员打的第一封信是4,那么就意味着打字员是在经理把前4封信都交给他并且还没把第5封信拿来时开始打的.这时第5封信可能在打字员打完前4封信中的任何1封信之后来到打字员手中,所以在这种情况下有4种打信顺序.如果打字员打的第一封信是3,那么就意味着打字员是在经理把前3封信都交给他并且还没把第4封信拿来时开始打的.这时候我们可以继续讨论打字员打的第2封信是哪一封信,从而可以得出在这种情况下有9种打信顺序:32145.32154、32415、32451、32541、34215、34251、34521、35421.如果打字员打的第一封信是2,那么就意味着打字员是在经理把前2封信都交给他并且还没把第3封信拿来时开始打的.这时候我们可以继续讨论打字员打的第2封信是哪一封信,从而可以得出在这种情况下有14种打信顺序:21345、21354、21435、21453、21543、23145、23154,23415、23451、23541、24315、24351、24531、25431.最后一种情况是打字员打的第一封信是1.这意味着经理刚把第1封信拿来,还没把第2封信拿来的时候打字员就开始打了.这种情况可以看作是我们这道题的条件改为只有4封信的情况.重复一遍前面的讨论,就可以得到这时也有14种打信顺序:12345、12354、12435、12453、12543、13245、13254、13425、13452、13542、14325、14352、14532、15432.所以打字员一共有1+4+9+14+14=42种不同的打信顺序.12.如图7-7.1到13各在这些差里面出现1次.二、简答题:13.解:当n不能被9整除的时候,甲有稳操胜券的策略;当n能够被9整除的时候,乙有稳操胜券的策——2分因为1个数是否能被9整除取决于这个数的各个数位上的数字之和是否能被9整除,所以我们实际上只要考虑甲、乙两人所写的2n个数字之和能否被9整除就可以了.——4分当n能够被9整除的时候,乙采用如下的策略就可以稳操胜券:每次甲取什么数,乙就取1个与甲所取的数的和为7的数.这样最终的2n个数字之和就是7n.而n能够被9整除,所以7n能够被9整除,从而最后得到的这个2n位数能够被9整除,因此是乙胜.——8分当n不能够被9整除的时候,甲采用如下的策略就可以稳操胜券:因为n不能够被9整除,所以7n不能够被9整除,从而7n-7被9除的余数不是2.于是甲可以先取1个数,使得这个数与7n-7的和被9除的余数是0、1或2(7n-7被9除的余数是0、1、3、4、5、6、7、8时,分别取1、1、6、5、4、3、2、1即可);以后每次乙取什么数,甲就取1个与乙所取的数的和为7的数.这样在乙取最后一个数之前,已经换好的2n-1个数字之和被9除的余数就是0、1或2.此时不管乙取1、2、3、4、5、6中的哪一个数都不能使这2n个数的和能被9整除.所以最后得到的这个2n位数不能够被9整除,因此是甲——16分。