七年级下期数学华师大版期末易错题

合集下载

华师大版初中数学七年级下册期末测试题及参考答案[精品]

华师大版初中数学七年级下册期末测试题及参考答案[精品]

华师七下期末能力测试题一、填空题(每小题3分,共30分)1、五边形中,前四个角的比为1∶2∶3∶4,第五个角比最小角多100°,则五边形的五个内角分别为_____________________.2、本学期,我们做过“抢30”的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30谁就获胜”,改为“每次可以连说三个数,谁先抢到33谁就获胜”,那么采取适当策略,其结果_________者胜.3、如图1,在△ABC ,∠A=36°,D 为AC 边上的一点,AD=BD=BC ,则图中的等腰三角形共有_______个.4、已知△ABC 的边长a 、b 、c 满足(1)()2240a b -+-=,(2)c 为偶数,则c 的值为________.5、已知不等式523x a <+的解集是32x <,则a 的值是________. 6、方程34x y -=中,有一组解与y 互为相反数,则3________x y +=. 7、请列举一件可能事件、不可能事件、必然事件:__________________________________________ ____________________________________________ ___________________________________________.8、一个三角形有两条边相等,周长为18cm ,三角形的一边长为4cm ,则其他两边长分别为________.9、将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;ABCD 图1如果每人分6个橘子,则最后一个小朋友分得的橘子将少于3个,由以上可知共有________个小朋友分________个橘子.10、根据的2倍与5的和比的12小10,可列方程为________________. 二、选择题(每小题3分,共30分) 11、正五边形的对称轴共有( ) A .2条B .4条C .5条D .10条12、有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )个 A .4B .5C .6D .无数13、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( ) A .31元B .30.2元C .29.7元D .27元14、已知15 5-2x m y m =+=,若3m >-,则与y 的关系为( ) A .x y =B .x y <C .x y >D .不能确定15、一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于( ) A .90°B .105°C .130°D .120° 16、如图2,已知:在△ABC 中,AB=AC,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50°B .65°C .70°D .75°17、有一种足球是由32块黑白相间的牛皮缝制而成的(如图3),黑皮可看作正五边形,白皮可ABCFED图2图3看作正六边形,设白皮有块,则黑皮有()32x -块,每块白皮有六条边,共6边,因每块白皮有三条边和黑皮连在一起,故黑皮有3条边.要求出白皮、黑皮的块数,列出的方程正确的是( ) A .332x x =- B .()3532x x =- C .()5332x x =-D .632x x =-18、如图4,将正方形ABCD 的一角折叠,折痕为AE ,∠B ′AD 比∠B ′AE 大48°,设∠B ′AE 和 ∠B ′AD 的度数分别为、y ,那么、y 所适合的 一个方程组是( )A .4890y x y x -=⎧⎨+=⎩B .482y x y x-=⎧⎨=⎩C .48290y x y x -=⎧⎨+=⎩D .48290x y y x -=⎧⎨+=⎩19、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后的两位数,则这个两位数是( ) A .16B .25C .38D .4920、等腰三角形的腰长是4cm ,则它的底边长不可能是( ) A .1cmB .3cmC .6cmD .9cm三、解答题(每小题10分,共60分)21、如图5,在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行于BC ,已知△ADE 的周长为10cm ,BC 的长为5cm ,求△ABC 的周长.E图4A BCE DO图522、儿童公园的门票价格规定如下表:50人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问:(1)两班名有多少学生?(2)如果两联合起;,作为一个团体购票,可以省多少钱?23、已知31x y =⎧⎨=-⎩是方程组3108x ky mx y +=⎧⎨+=⎩的解,求和m 的值.24、已知一个等腰三角形的三边长分别为、2、5-3,求这个三角形的周长.25、某校七(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:弄清这两个被污染的两个数字吗?说明你的理由.26、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.华师七下期末能力测试题参考答案一、填空题1、40°,80°,120°,160°,140°2、先报3、34、45、答案不惟一6、27、答案不惟一8、7,79、1800° 10、125102x +=- 二、选择题11、C 12、B 13、D 14、B 15、C 16、B 17、B 18、C 19、A 20、D 三、解答题 21、15cm22、(1)班有48人,(2)班有56人,合买可省304元23、解:把31x y =⎧⎨=-⎩代入方程组()33110318k m ⨯+-⨯=⎧⎪⎨-=⎪⎩得,解得:=-1,m =3.24、显然2x x ≠,又若53x x =-,则532x x x +-=不合题意. 所以:253x x =-,解得:1x =,所以三角形周长为1225++=. 25、解:设捐款2元的有人,捐款3元的有y 人,则6740162347100x y x y +++=⎧⎨⨯+++⨯=⎩ 解之得:32x y =⎧⎨=⎩ 答:捐款2元的有3人,捐款3元的有20人.26、(1)设A 种型号的衣服每件元,B 种型号的衣服y 元,则:91018101281880x y x y +=⎧⎨+=⎩,解之得90100x y =⎧⎨=⎩ (2)设B 型号衣服购进m 件,则A 型号衣服购进()24m +件,可得:()18243069919 22428m m m m ++⎧⎪⎨+⎪⎩≥解之得≤≤12≤ ∵m 为正整数,∴m =10、11、12,2m +4=24、26、28.答:有三种进货方案:(1) B型号衣服购买10件,A型号衣服购进24件;(2) B型号衣服购买11件,A型号衣服购进26件;(3) B型号衣服购买12件,A 型号衣服购进28件.。

华师大版七年级下册数学期末考试试卷附答案

华师大版七年级下册数学期末考试试卷附答案

华师大版七年级下册数学期末考试试题一、单选题1.若代数式x+3的值为2,则x 等于A .1B .1-C .5D .5-2.观察下边的图案,既是中心对称图形又是轴对称图形的是( )A .B .C .D .3.下列不等式一定成立的是( )A .26x <B .0x ->C .10x +>D .20x > 4.小育到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正八边形 B .正六边形 C .正方形 D .正三角形5.三元一次方程组3210x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩的解是( )A .112x y z =-⎧⎪=⎨⎪=⎩B .124x y z =-⎧⎪=-⎨⎪=-⎩C .221x y z =-⎧⎪=⎨⎪=⎩D .227x y y =⎧⎪=-⎨⎪=-⎩6.下列说法中不正确的是( )A .内角和是1080°的多边形是八边形B .六边形的对角线一共有8条C .三角形任一边的中线把原三角形分成两个面积相等的三角形D .一个多边形的边数每增加一条,这个多边形的内角和就增加180°7.如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x ,宽为y ,则依据题意可得二元一次方程组为( )A.153x yx y+=⎧⎨=⎩B.1523x yx y+=⎧⎨=⎩C.1523x yx x y-=⎧⎨=+⎩D.21523x yx x y-=⎧⎨=+⎩8.已知x2y4k{2x y2k1+=+=+,且1x y0-<-<,则k的取值范围为A.11k2-<<-B.10k2<<C.0k1<<D.1k12<<9.在道路两旁种树,每隔3米一棵,还剩3棵;每隔2.5米一棵,到头还缺77棵,则这条道路()A.长为600米,共有405棵树B.长为600米,共有403棵树C.长为300米,共有403棵树D.长为300米,共有405棵树10.如图,∠ABC=∠ACB,BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,BE平分外角∠MBC交DC的延长线于点E,以下结论:①∠BDE=12∠BAC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠BAC+2∠BEC=180°.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于_________ .12.如果等腰三角形一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是______________.13.如图,将△ABC沿BC方向向右平移2cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________cm.14.若关于x 的不等式组25322x a x b -≥⎧⎨-<⎩的解集为3≤x <4,则a -2b=________. 15.如图,四边形ABCD 中,∠A=100°,∠C=70°,将△BMN 沿MN 翻折,得到△FMN ,若MF ∥AD ,FN ∥DC ,则∠D=________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种袋装粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种袋装粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A 、B 、C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为71.5元,利润率为30%,乙种粗粮利润率为20%,则乙种粗粮每袋的售价为________元.(利润率=-100%⨯售价成本成本)三、解答题17.解下列方程(组):(1) ()()371323x x x --=-+(2)516213410x y x y -=⎧⎨++=⎩18.解不等式组523(2)121123x x x x +<+⎧⎪+-⎨≤+⎪⎩,把解集在数轴上表示出来,并求不等式组的整数解.19.如图,方格纸中每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上.(1)画出与△ABC关于直线MN成轴对称的△A1B1C1;(2)画出将△ABC绕点O逆时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴.20.若关于x的方程1123x k k--=+与方程()315x x x--=-的解互为相反数,求k的值.21.如图,在△ABC中,∠B=32°,∠C=70°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F.(1)求∠BAE的度数;(2)求∠ADF的度数.22.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).23.某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?24.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数” .将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123) =6.(1)计算:F(315),F(746);(2)若s、t都是“相异数”,其中s=100x+42,t=160+y(1≤x≤9,1≤y≤9,x、y都是正整数),当F(s)+F(t)=17时,求x、y的值.25.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1= 度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.参考答案1.B【解析】试题分析:根据题意,列出关于x的一元一次方程x+3=2,通过解该方程可以求得x的值:由题意,得x+3=2,解得x=﹣1.故选B.2.D【解析】【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.【详解】A 选项是轴对称图形但不是中心对称图形;B 选项是既不是轴对称图形也不是中心对称图形;C选项是既不是轴对称图形也不是中心对称图形;D 选项既是中心对称图形也是轴对称图形;故选D.【点睛】本题主要考查中心对称图形和轴对称图形的概念,注意两者的区别.3.C【解析】【分析】根据绝对值的意义和一个数的平方大于等于0,逐个判断即可.【详解】A 选项不一定成立;B选项不一定成立;C选项一定成立;D选项不一定成立,还有可能等于0.故选C.【点睛】本题主要考查绝对值大于等于0,一个数的平方大于等于0,这是重点知识,必须掌握.4.A【解析】【分析】根据圆周角的性质,首先计算每个选项中正多边形的的内角,再计算是否能够无缝铺砖,即可得到答案.【详解】A 正八边形的内角为: (82)180=1358︒︒-⨯,因为360135︒︒不能整除,所以不能无缝铺砖; B 正六边形的内角为: (62)180=1206︒︒-⨯,因为360=3120︒︒ 所以能无缝铺砖;C 正方形的内角为:90︒,因为360=490︒︒ 所以能无缝铺砖;D 正三角形的内角为:60︒,因为360=660︒︒ 所以能无缝铺砖;故选A.【点睛】本题主要考查正多边形的内角和的计算公式,这个是重点知识必须掌握.5.C【解析】【分析】采用加减消元法计算即可.【详解】解:3(1)21(2)0(3)x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩将(1)+(2)可得:22(4)x y +=-将(4)-(3)可得:2x =-(5)将(5)代入(3)可得:2y =(6)将(5)和(6)代入(1)可得:1z =所以可得221x y z =-⎧⎪=⎨⎪=⎩故选C.【点睛】本题主要考查三元一次方程的消元法,这是解决方程的最重要的方法,必须掌握. 6.B【解析】【分析】根据各选项逐个判断说法是否正确即可.【详解】A 根据正多边形的内角和计算公式可得:(82)1801080︒︒-⨯=,因此A 说法正确;B 选项说法不正确,六边形的对角线有18条;C 正确,因为每个边上的高是相等的,只要边上的中线则分成的两个三角形的面积相等;D 正确,根据多边形的内角和的计算公式可得每增加一条边,正多边形的内角增加180°. 故选B.【点睛】本题主要考查正多边形的性质,这些选项都是基本性质,必须掌握.7.A【解析】【分析】设每一个小长方形的长为x ,宽为y ,根据大长方形的宽为15及小长方形的长与宽之间的关系,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设每一个小长方形的长为x ,宽为y ,依题意,得:153x y x y +=⎧⎨=⎩. 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.D【解析】【详解】∵x+2y=4k 2x+y=2k+1⎧⎨⎩①②∴②-①,得x y 2k 1-=-+将x y 2k 1-=-+代入1x y 0-<-<,得:112k 1022k 1k 12-<-+<⇒-<-<-⇒<<故选D9.A【解析】【分析】根据题意首先设这条道路长x m,;列出一元一次方程求解即可.【详解】解:设这条道路长x m22232773 2.5xx++=+-解得:600x = 所以一共有树:2600234053⨯++=故选A.【点睛】本题主要考查一元一次方程的应用题,注意这类题一定要末端要多种一颗树. 10.D【解析】【分析】根据角平分线的性质,逐个判断结论是否正确即可.【详解】①正确,180BDE DBC DCB ︒∠=-∠-∠12DBC ABC ∠=∠; DCB ACD ACB ∠=∠+∠1()2DCB BAC ABC ACB ∴∠=∠+∠+∠ 11180()22BDE ABC BAC ABC ACB ︒∴∠=-∠-∠+∠-∠即: 12BDE BAC ∠=∠ 故正确;②正确, BD 、BE 分别平分△ABC 的内角∠ABC 、外角∠MBC ,11,22DBC ABC CBE MBC ∴∠=∠∠=∠ 111()90222DBC CBE ABC MBC ABC MBC ︒∴∠+∠=∠+∠=∠+∠= BD BE ∴⊥故正确;③正确,ABC ACB ∠∠=由①可得∠BDC=12BAC ∠ 所以可得∠BDC+∠ABC =90°故正确;④正确, ∠BEC=11180180909022DBE BDE BAC BAC ︒︒︒︒-∠-∠=--∠=-∠ 122(90)1802BAC BEC BAC BAC ︒︒∴∠+∠=∠+⨯-∠= 故正确.故选D.【点睛】本题主要考查平分线的性质,结合三角形的内角和的性质,应用等量替换的方法,这个换算即可.11.﹣1【解析】试题分析:把x=2代入得到4+3m-1=0,所以m=-1考点:一元一次方程,代入求值点评:本题考查代入求值,比较简单,细心就可.12.21或18【解析】【分析】根据题意要根据腰的情况分类讨论,第一当腰为5cm是计算周长;第二当腰为8cm计算周长.【详解】解:根据题意可得第一当腰为5cm时,周长为:5+5+8=18;当腰为8cm时,周长为:8+8+5=21故答案为:21或18【点睛】本题主要考查等腰三角形的腰的分类讨论,这是数学中最常用的思想,必须掌握理解. 13.24【解析】【分析】根据四边形ABFD的周长为:AB+BF+DF+AD,而△ABC的周长为:AB+BC+AC=20cm,采用等量替换的方法计算即可.【详解】解:△ABC的周长为:AB+BC+AC=20cm根据题意可得四边形ABFD的周长为:AB+BF+DF+AD=AB+BC+CF+AC+AD=AB+BC+AC+CF+AD=20+2+2=24故答案为24.【点睛】本题主要考查四边形的周长计算,关键在于利用等量替换的方法计算,等量替换是解决几何问题最重要的方法,必须熟练掌握.14.-9【解析】【分析】首先求解不等式组,再根据解集求出未知数的值,代入计算即可.【详解】解:根据题意可得:52223a x b x +⎧≥⎪⎪⎨+⎪<⎪⎩即:52223a b x ++≤< 所以可得2243532b a +⎧=⎪⎪⎨+⎪=⎪⎩ 解得15a b =⎧⎨=⎩ 所以a -2b=1259-⨯=-故答案为-9【点睛】本题主要考查不等式中参数的求解,关键在于根据不等式的解集求解参数.15.95︒【解析】【分析】首先根据MF ∥AD ,FN ∥DC ,可得100,70BMF BNF ︒︒∠=∠=,由于△FMN 是△BMN沿MN 翻折得到的,所以可得,BMN FMN BNM FNM ∠=∠∠=∠,故可得MFN ∠ 的度数,进而可得∠D 的度数.【详解】 解: MF ∥AD ,FN ∥DC100,70,BMF BNF D MFN ︒︒∴∠=∠=∠=∠△FMN 是△BMN 沿MN 翻折得到的∴ ,BMN FMN BNM FNM ∠=∠∠=∠100701809522MFN ︒︒︒︒∴∠=--= 95D ︒∴∠=故答案为95︒【点睛】本题主要考查折叠图形的性质,关键在于折叠后的图形的性质与原图形全等.16.96【解析】【分析】首先根据甲种粗粮的售价和利润率,列方程求得B 和C 的成本价,再计算乙种粗粮的的成本价,根据利润率的公式即可计算的乙种粗粮每袋的售价.【详解】解:根据=100%⨯售价-成本利润率成本 可得:甲种粗粮的成本为:71.5=551+30%所以可得1千克B 和1千克C 的成本价为:553637-⨯=因此可得2千克B 和2千克C 的成本价为:23774⨯=则乙种粗粮的的成本价为:67480+=故乙种粗粮每袋的售价为:808020%96+⨯=故答案为96【点睛】本题主要考查利润率的计算,这是应用题中的一个重要的类型,必须掌握.17.(1)5x = (2)11x y =⎧⎨=-⎩【解析】【分析】(1)根据等式的性质求解即可.(2)采用加减消元法计算即可.【详解】解:(1)原式可化为:210x -=-解得5x =(2)原式可化为:51621(1)12164(2)x y x y -=⎧⎨+=-⎩将(1)+(2)可得:1717x = 解得:1x =将1x =代入(1)可得:1y =-所以可得:11 xy=⎧⎨=-⎩【点睛】本题主要考查方程的解法,注意二元一次方程组中加减消元法的计算. 18.-1,0,1【解析】【分析】首先根据不等式的性质求解不等式组,然后在数轴上表示,写出整数解即可. 【详解】解:原式可化为:24-1xx<⎧⎨≥⎩即-12x≤<在数轴上表示如下:所以可得不等式的整数解集为:-1,0,1【点睛】本题主要考查不等式的解法,关键在于根据数轴写出不等式的解集. 19.(1)见解析(2)见解析(3)是对称图形,对称轴见解析. 【解析】【分析】(1)首先画出对称点,在连接对称点即可;(2)首先画出逆时针旋转的点,在连接点即可;(3)根据图形观察即可,画出对称轴即可.【详解】(1)首先画出A、B、C点的对称点如下图所示:(2)首先画出逆时针旋转的点如下图所示:(3)是对称图形,对称轴如图所示:【点睛】本题主要考查直角坐标系中点的坐标的绘制,关键在于根据点来绘制图形.20.-2【解析】【分析】首先根据未含参数的方程求解出未知数,在代入参数方程求解参数即可.【详解】解:根据()315x x x --=- 可得2x =- 因为方程1123x k k --=+ 与方程()315x x x --=-的解互为相反数 所以可得1123x k k --=+的解为2x = 代入可得:21123k k --=+ 解得2k =-【点睛】本题主要考查方程参数的计算,关键在于计算参数方程的解.21.(1)20︒ (2)71︒【解析】【分析】(1)根据三角形的内角和,首先计算出BAC ∠的度数,再根据AE 平分∠BAC 可得∠BAE 的度数;(2)在ACD ∆中,根据C ∠首先计算出CAD ∠的度数,再结合ADF ∆和DAF ∠便可计算出∠ADF 的度数.【详解】解:(1)在ABC ∆中∠B=32°,∠C=70°根据三角形的内角和为180︒可得180327078BAC ∠=︒-︒-︒=︒AE 平分∠BAC78392BAE ︒∴∠==︒ (2)在ACD ∆中,∠C=70° AD ⊥BC907020DAC ︒︒︒∴∠=-=由(1)可得39CAE ︒∠=19DAF ∴∠=︒DF ⊥AE90901971ADF DAF ∴∠=︒-∠=︒-︒=︒【点睛】本题主要考查三角形的内角和、角平分线的性质,关键在于根据角的计算求解.22.(1)130︒ (2)100︒ (3)∠BDC=1902A ︒+∠ 【解析】【分析】(1)首先根据∠A=80°,便可计算出ABC ACB ∠+∠的度数,再根据BD 、CD 平分ABC ∠和ACB ∠,再结合BCD ∆便可计算的∠BDC 的度数;(2)根据∠EDC=40°,可计算的BDC ∠的度数,再结合BCD ∆可得DBC DCB ∠+∠,再根据BD 、CD 平分ABC ∠和ACB ∠,在△ABC 中便可计算出∠A 的度数;(3)根据(1)和(2)中的计算可直接写出∠A 与∠BDC 之间的数量关系【详解】(1)在△ABC 中∠A=80°∴ 180********ABC ACB A ∠+∠=︒-∠=︒-︒=︒BD 、CD 平分ABC ∠和ACB ∠∴ 11()1005022DBC DCB ABC ACB ∠+∠=∠+∠=⨯︒=︒ 在BCD ∆中,∠BDC=180********DBC DCB ︒-∠-∠=︒-︒=︒(2)在BCD ∆中∠EDC=40°∴ 18040140BDC ∠=︒-︒=︒∴ 18014040DBC DCB ∠+∠=︒-︒=︒BD 、CD 平分ABC ∠和ACB ∠∴ 2()24080ABC ACB DBC DCB ∠+∠=∠+∠=⨯︒=︒在△ABC 中180********A ABC ACB ∠=︒-∠-∠=︒-︒=︒(3)根据(1)和(2)可得∠BDC=1902A ︒+∠ 【点睛】本题主要考查三角形的内角和的定理和角平分线的性质,关键在于要结合三角形进行计算. 23.(1)甲、乙两种材料每千克分别是15、25元(2)生产方案有3种:第一种:A 产品20件,B 产品30件第二种:A 产品21件,B 产品29件第三种:A 产品22件,B 产品28件【解析】【分析】(1)首先根据题意设甲、乙两种材料每千克分别是x ,y 元,根据题意列方程求解即可; (2)首先根据题意设A 两种产品分别为m 件,根据题意列出不等式求解正整数解即可.【详解】(1)解:设甲、乙两种材料每千克分别是x ,y 元 根据题意可得:4023105x y x y +=⎧⎨+=⎩解得1525x y =⎧⎨=⎩(2)设A 两种产品分别为m 件,则B 中产品为50m -根据题意可得:5028301510252015(50)2025(50)38000m m m m m -≥⎧⎨⨯+⨯+⨯-+⨯⨯-≤⎩ 解得:2220m m ≤⎧⎨≥⎩即:2022m ≤≤ 故m 的取值为:20、21、22所以可得生产方案有3种:第一种:A 产品20件,B 产品30件第二种:A 产品21件,B 产品29件第三种:A 产品22件,B 产品28件【点睛】本题主要考查二元一次方程的应用和不等式的应用,关键在于根据题意列出方程和不等式. 24.(1)9 17 (2)13x y =⎧⎨=⎩【解析】【分析】(1)根据相异数的概念首先写出对调的三个数,再求和,计算F(315),F(746)即可; (2)首先根据题意计算F (s )和F (t ),求解x 和y 的值即可.【详解】(1)根据题意可得315的三个数的和为:315+531+153=999所以999÷111=9 故F(315)=9746的三个三位数的和为:746+674+467=1887所以1887÷111=17 故F(746)=17(2) s 、t 都是相异数,s=100x+42, t=160+y ∴ F(s)=(100x+42+420+x+204+10x )÷111=x+6F(t)=(160+y+601+10y+100y+16) ÷111=y+7F(s)+F(t)=17∴6717x y +++=∴x+y=41≤x≤9,1≤y≤9,x 、y 都是正整数13x y =⎧∴⎨=⎩ 或22x y =⎧⎨=⎩ 或31x y =⎧⎨=⎩ s 和t 都是相异数42x x ∴≠≠、,16y y ≠≠、13x y =⎧∴⎨=⎩ 【点睛】本题主要考查新概念的理解,根据新概念列方程,采用分类讨论的思想求解. 25.(1)①160°,②30°;(2)证明见解析.【解析】分析:(1)①根据旋转的性质可得120ACA ∠=︒,再根据直角三角形两锐角互余求出BCD ∠,然后根据111BCB BCD ACB ∠=∠+∠进行计算即可得解;②根据直角三角形两锐角互余求出1A DE ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出1ACA ∠,即为旋转角的度数;(2)根据两直线平行,同旁内角互补求出90ADC ∠=︒,再根据直角三角形30°角所对的直角边等于斜边的一半可得12CD AC ,=根据旋转的性质可得1A C AC ,=然后求出解即可. 详解:(1)①由旋转的性质得,120ACA ∠=︒,∴1902070BCD ACB ACA ∠=∠-∠=-=,∴1117090160.BCB BCD A CB ∠=∠+∠=+=②∵AB ⊥11A B ,∴11190903060A DE B AC ∠=︒-∠=︒-︒=︒, ∴11603030ACA A DE BAC ∠=∠-∠=︒-︒=︒,∴旋转角为30;(2)∵AB ∥CB 1,第 21 页 ∴111801809090ADC ACB ∠=︒-∠=︒-︒=︒,∵30BAC ,∠= ∴12CD AC ,= 又∵由旋转的性质得,1A C AC ,= ∴1.A D CD =点睛:考查了旋转的性质,三角形外角的性质,平行线的性质,熟记和运用各性质是解题的关键.。

华师大版七年级下册数学期末考试试卷及答案

华师大版七年级下册数学期末考试试卷及答案

华师大版七年级下册数学期末考试试题一、单选题1.已知7x =是方程27x ax -=的解,则a =( )A .1B .2C .3D .72.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.不等式1122x +的解集是( ) A .1x B .2x C .12x D .12x - 4.三角形的两边长分别是4和7,则第三边长不可能是( )A .4B .6C .10D .125.下列说法错误的是( )A .若a b =,则ac bc =B .若1b =,则ab a =C .若a b c c=,则a b = D .若()()11a c b c -=-,则a b = 6.用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( )A .4:1B .1:1C .1:4D .4:1或1:1 7.已知关于x ,y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则m ,n 的值为( ) A .51m n =⎧⎨=⎩ B .15m n =⎧⎨=⎩C .32m n =⎧⎨=⎩D .23m n =⎧⎨=⎩ 8.如果关于x 的方程3212x a +=和方程()3423x x -=-的解相同,那么与a 互为倒数的是( )A .3B .9C .19D .529.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°10.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g11.若关于x 的不等式()()131a xa --的解都能使不等式5x a -成立,则a 的取值范围是( )A .1a 或2a ≥B .2a ≤C .12a ≤D .2a =12.如图,在ABC ∆中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,2BD DC =,8BGD S ∆=,3AGE S ∆=,则ABC ∆的面积是( )A .16B .19C .22D .30二、填空题 13.关于x 的方程()232523m a x x -++-=是一元一次方程,则a m +=__________ 14.若关于x ,y 的二元一次方程组23122x y k x y +=-⎧⎨+=-⎩的解满足1x y +=,则k 的值是______;15.如图,已知ABC ∆的面积为16,8BC =,现将ABC ∆沿直线BC 向右平移a 个单位到DEF ∆的位置,当ABC ∆所扫过的面积为32时,a 的值为____;16.如图,在ABC ∆中,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC ∆的外角EAC ∠,内角ABC ∠,外角ACF ∠,以下结论:①//AD BC ;②ACB ADB ∠=∠;③90ADC ABD ∠+∠=︒;④1452ADB CDB ∠=︒-∠,其中正确的结论有__.三、解答题17.(1)解方程:2532234x x +--=.(2)解不等式组:12025112x x x ⎧+≥⎪⎪⎨+⎪-<--⎪⎩,并将解集在数轴上表示.18.如图所示,每个小正方形的边长为1,ABC ∆,DEF ∆的顶点都在小正方形的顶点处.(1)将ABC ∆平移,使点A 平移到点F ,点B ,C 的对应点分别是点'B ,'C ,画出''FB C ∆; (2)画出DEF ∆关DF 于所在直线对称的'DE F ∆;(3)求四边形'''B C FE 的面积.19.已知y=kx+b .当x=1时,y=3;当x=-2时,y=9.(1)求出k ,b 的值;(2)当-3≤x ≤3时,求代数式x-y 的取值范围.20.如图,在ABC ∆中,AD 是高,10DAC ∠=︒,AE 是ABC ∆外角MAC ∠的平分线,交BC 的延长线于点E ,BF 平分ABC ∠交AE 于点F ,若46ABC ∠=︒,求AFB ∠的度数。

华东师大版七年级数学下册期末考试题及答案【完整版】

华东师大版七年级数学下册期末考试题及答案【完整版】

华东师大版七年级数学下册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求a b m cd m +++的值.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、83、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、16、2或-8三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、(1)a+b=0,cd=1,m=±2;(2)3或-13、(1)∠BOD;∠AOE;(2)152°.4、证明略5、(1)30;(2)①补图见解析;②120;③70人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

2020-2021学年华东师大版数学七年级下册期末考试题及答案(共5套)

2020-2021学年华东师大版数学七年级下册期末考试题及答案(共5套)

华东师大版数学七年级下册期末考试题(一)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x ,则x 的取值范围是( ) A .0<x <52 B .x ≥52C .x >52D .0<x <102.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( ) A .13 B .14 C .15 D .16 3.如图,把一块含有30°角(∠A =30°)的直角三角板ABC 的直角顶点放在长方形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 在三角板的斜边上,如果∠1=40°,那么∠AFE 的度数是( )A .50°B .40°C .20°D .10°第3题图4.如图,已知在△ABC 中,∠B =∠C ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于点D ,∠AED =155°,则∠EDF 等于( ) A .50° B .65° C .70° D .75°第4题图第5题图5.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a ,M 为正八边形内部的小正方形的一个顶点,则∠ABM 的度数及阴影部分的面积分别为( )A .45°,2a 2B .60°,3a 2C .30°,4a 2D .75°,2a 26.下列图形一定是轴对称图形的是( ) A .直角三角形 B .六边形 C .直角梯形 D .正方形7.下列各组的两个图形属于全等图形的是( )8.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是( )A. B. C. D.9.如图,该图形围绕其旋转中心,按下列角度旋转后,能与自身重合的是( ) A.150° B.120° C.90° D.60°第9题图第10题图10.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )A.1条 B.2条 C.4条 D.8条二、填空题(每小题3分,共24分)11.在△ABC中,如果∠B=45°,∠C=72°,那么与∠A相邻的一个外角等于________度.12.如果三角形的三边长度分别为3a,4a,14,则a的取值范围是____________.13.如图,AD,BE分别是△ABC的角平分线和高,∠BAC=40°,则∠AFE=________.第13题图第14题图14.如图,在△ABC中,AD是BC边上的中线,已知AB=5cm,AC=7cm,则△ACD与△ABD 的周长差为________cm.第15题图15.如图,△ABC与△DEF关于O点成中心对称,则线段BC与EF的关系是____________.16.两个完全相同的直角梯形重叠在一起,将其中一个直角梯形按如图所示平移,则图中阴影部分的面积为________.第16题图第17题图17.如图,电风扇的叶片是一个旋转对称图形,电风扇的叶片旋转__________度能与自身重合.18.如图,将△ABC绕其中一个顶点顺时针连续旋转n′1,n′2,n′3所得到的三角形和△ABC的对称关系是______________.第18题图三、解答题(共66分)19.(10分)在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.20.(10分)若六边形的内角之比为2∶4:4:4:5:5,求它的最大内角与最大的外角.21.(12分)在等腰△ABC中,腰AB=AC,BD是AC边上的中线,已知△ABD的周长比△BCD 的周长大8 cm,且腰长是底边长的3倍,求△ABC的周长.22.(10分)在如图所示的长方形草坪上,要修筑两条同样宽的“之”字形柏油路,路宽为2m,则剩余草坪的面积是多少平方米?23.(12分)用四块如图甲所示的瓷砖平铺成一个正方形的地板,使平铺的图案成轴对称图形或中心对称图形,请你在图乙、丙中各画出一种拼法(要求:两种拼法各不相同,所画图案阴影部分用斜线表示).24.(12分)如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,其中AF=4,AB =7.(1)指出旋转中心和旋转的角度; (2)求DE 的长度;(3)BE 与DF 的位置关系如何?参考答案与解析1.C2.C3.D4.B5.A 6.D 7.D 8.D 9.B 10.C 11.117 12.2<a <14 13.70° 14.2 15.平行且相等16.140cm 2解析:如图,∵梯形ABCD 平移到梯形EFGH 的位置,∴S 梯形ABCD =S 梯形EFGH ,BC =FG =20cm ,∴FQ =FG -QG =20-5=15(cm),S 阴影部分=S 梯形BCQF ,而S 梯形BCQF =12×(15+20)×8=140(cm 2),∴S 阴影部分=140cm 2.17.120°或240°18.关于旋转中心成中心对称19.解:∵CD ⊥AB ,∴∠CDB =90°.∵∠B =60°,∴∠BCD =90°-∠B =90°-60°=30°.(3分)∵∠A =20°,∠B =60°,∠A +∠B +∠ACB =180°,∴∠ACB =100°.∵CE 是∠ACB 的平分线,∴∠ACE =12∠ACB =50°,(5分)∴∠CEB =∠A +∠ACE =20°+50°=70°,(7分)∴∠ECD =90°-70°=20°.(10分)20.解:设六边形最小的内角为2x ,则其他几个内角分别为4x ,4x ,4x ,5x ,5x .依题意得2x +4x +4x +4x +5x +5x =(6-2)×180°,(4分)整理得24x =720°,解得x =30°.(6分)所以最大的内角是5x =5×30°=150°,(8分)最大的外角是180°-2x =120°.(10分)21.解:设AB =AC =2x ,则BC =23x .∵BD 是AC 边上的中线,∴AD =CD =12AC =x .又∵AB +AD +BD -(BD +CD +BC )=8cm ,(4分)即2x +x +BD -BD -x -23x =8cm ,(6分)∴43x =8cm ,∴x =6cm ,(8分)∴△ABC 的周长为2x +2x +23x =12+12+4=28(cm).(12分)22.解:经过平移,可知剩余草坪的面积为(32-2)×(20-2)=540(m 2).(9分)答:剩余草坪的面积为540m 2.(10分) 23.解:图略.(12分)24.解:(1)旋转中心为点A ,旋转的角度为90°.(4分)(2)由题意得AE =AF ,AB =AD ,∴DE =AD -AE =AB -AF =7-4=3.(7分)(3)延长BE 交DF 于点G ,∵∠ADF =∠ABE ,∠F +∠ADF =90°,∴∠ABE +∠F =90°,∴∠BGF =90°,即BE 与DF 互相垂直.(12分)华东师大版数学七年级下册期末考试题(二)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.如图,在网格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°2.如图,△ABC ≌△CDA ,并且AB =CD ,那么下列结论错误的是( ) A .∠1=∠2 B .AD =CB C .∠D =∠B D .AC =BC第2题图3.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( ) A .△AA 1P 是等腰三角形 B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1的面积相等D .直线AB ,A 1B 1的交点不一定在MN 上第3题图第4题图4.如图,如果把△ABC 的顶点A 先向下平移3格,再向左平移1格到达A ′点,则线段A ′B 与线段AC 的关系是( ) A .垂直 B .相等C .平分D .平分且垂直5.如图,如果甲、乙关于点O 成中心对称,则乙图中不符合题意的一块是( )第5题图6.一个正多边形的每个外角都等于36°,那么它是( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形 7.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线 C .∠3=12∠ACB D .CE 是△ABC 的角平分线第2题图第3题图8.如图,下列说法中错误的是( ) A .∠1不是△ABC 的外角 B .∠B <∠1+∠2C .∠ACD 是△ABC 的外角 D .∠ACD >∠A +∠B9.下列长度的三条线段不能组成三角形的是( )A.5,5,10 B.4,5,6 C.4,4,4 D.3,4,510.只用下列图形中的一种,能够铺满地面的是( )A.正十边形 B.正八边形 C.正六边形 D.正五边形二、填空题(每小题3分,共24分)11.足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为________条.12.如图,△ABC是由四个形状大小相同的三角形拼成的,则可以看成是△ADF平移得到的小三角形是______________.第12题图第13题图13.如图是贝贝制作的风筝,为了平衡做成轴对称图形,已知OC是对称轴,∠A=35°,∠BOC=115°,那么∠ACB的大小是________.14.如图,四边形ABCD与四边形A′B′C′D′全等,∠A=________,四边形A′B′C′D′的周长为________.第14题图15.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2=________.第15题图第16题图第18题图16.维明公园的一段小路是由型号相同的五边形地砖平铺而成的,如图所示,是平铺图案的一部分,如果每一个五边形中有3个内角相等,那么这三个内角的度数都等于________.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.18.如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积是________.三、解答题(共66分)19.(8分)如图,已知△ABC和点O在网格中,按下面的要求操作:(1)△ABC与△A1B1C1关于点O成中心对称,请画出△A1B1C1;(2)将△ABC绕点O逆时针旋转90°得到△A2B2C2,请画出△A2B2C2.20.(10分)△ABC和△A′B′C′关于直线l对称,求∠B′的度数和AB的长度,并且求B′C′的取值范围.21.(12分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.22.(12分)如图,在△ABC中,已知∠ABC=60°,∠ACB=54°,BE是AC边上的高,CF 是AB边上的高,H是BE和CF的交点,HD是∠BHC的平分线,求∠ABE,∠ACF和∠CHD的度数.23.(10分)已知两个正多边形,其中一个正多边形的外角是另一个正多边形外角的2倍,并且用这两个正多边形可以拼成平面图形,求这两个正多边形的边数.24.(14分)如图①,已知线段AB,CD相交于点O,连接AC,BD,我们把形如图①的图形称之为“8字形”.如图②,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD,AB分别相交于M,N.试解答下列问题:(1)仔细观察,在图②中有________个以线段AC为边的“8字形”;(2)在图②中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图②中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C,∠B之间存在着怎样的数量关系(用α,β表示∠P),并说明理由;(4)如图③,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为________.参考答案与解析 1.B 2.D 3.D 4.D5.C 6.D 7.D 8.D 9.A 10.C 11.2 12.△DBE ,△FEC 13.60° 14.70° 36 15.225° 16.120° 17.30° 18.7 19.解:画图略.(8分)20.解:由轴对称性质知∠B ′=∠B =135°,(2分)AB =A ′B ′=20cm ,(4分)A ′C ′=AC =30cm ,(6分)∴由三角形三边关系知B ′C ′的取值范围为10cm<B ′C ′<50cm.(10分) 21.解:(1)AB =A ′B ′,AB ∥A ′B ′.(3分)(2)AB =A ′B ′,对应线段AB 和A ′B ′所在的直线如果相交,交点在对称轴l 上.(6分)(3)l 垂直平分AA ′.(9分)(4)OA =OA ′,∠AOA ′=∠BOB ′.(12分) 22.解:在△ABC 中,∠ABC =60°,∠ACB =54°,∴∠A =66°.∵∠AEB =90°,∠A =66°,∴∠ABE =24°.(3分)又∵∠AFC =90°,∴∠ACF =90°-66°=24°,(6分)∴∠HBC =∠ABC -∠ABE =60°-24°=36°,∠HCB =∠ACB -∠ACF =54°-24°=30°,∴∠BHC =180°-36°-30°=114°.(10分)∵HD 是∠BHC 的平分线,∴∠CHD =12∠BHC =57°.(12分)23.解:设这两个正多边形的边数分别为n ,k ,依题意有360°n =2×360°k,(3分)因此k=2n (n ≥3,且n 为整数),(5分)所以n =3,4,5,6,…,从而k =6,8,10,12,….(7分)其中正三角形和正六边形,正方形和正八边形,正五边形和正十边形能拼成平面图形.(10分)24.解:(1)2(2分)(2)∵∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,∴∠CAP =∠BAP ,∠BDP =∠CDP .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =∠P -∠B ,即∠P =12(∠C+∠B ).(5分)∵∠C =100°,∠B =96°,∴∠P =12(100°+96°)=98°.(7分)(3)∠P =13(β+2α).理由如下:∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,∠BDP =23∠CDB .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =13∠CDB -13∠CAB ,∠P -∠B =23∠CDB -23∠CAB ,(9分)∴2(∠C -∠P )=∠P -∠B ,∴∠P =13(∠B +2∠C ).∵∠C =α,∠B =β,∴∠P =13(β+2α).(12分)(4)360°(14分) 解析:如图,∵∠B +∠A =∠1,∠C +∠D =∠2,∴∠A +∠B +∠C +∠D =∠1+∠2.∵∠1+∠2+∠F +∠E =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°.华东师大版数学七年级下册期末考试题(三)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.若关于x 的不等式(a -2)x >a -2的解集为x >1,那么字母a 的取值范围是( ) A .a >1 B .a <1 C .a >2 D .a <22.不等式组⎩⎪⎨⎪⎧2x -1≤1,-12x <1的整数解的个数为( )A .0个B .2个C .3个D .无数个3.某班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔( )A .20支B .14支C .13支D .10支4.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )A. B.C.D.5.图为歌神KTV 的两种计费方案说明.若晓莉和朋友们打算在此KTV 的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?( )A .6人B .7人C .8人D .9人6.一个正多边形的每个外角都等于36°,那么它是( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形 7.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线 C .∠3=12∠ACB D .CE 是△ABC 的角平分线第7题图 第8题图8.如图,下列说法中错误的是( ) A .∠1不是△ABC 的外角 B .∠B <∠1+∠2C .∠ACD 是△ABC 的外角 D .∠ACD >∠A +∠B9.下列长度的三条线段不能组成三角形的是( ) A .5,5,10 B .4,5,6 C .4,4,4 D .3,4,5 10.只用下列图形中的一种,能够铺满地面的是( ) A .正十边形 B .正八边形 C .正六边形 D .正五边形 二、填空题(每小题3分,共24分)11.用不等式表示:x 与5的差不小于x 的2倍:____________. 12.当有理数a <0时,6+a ________6-a (填“<”或“>”).13.关于x 的不等式组的解集在数轴上的表示如图,则不等式组的解集为________.14.当x 满足________时,式子x +52-1的值大于式子3x +22的值.15.如图,在四边形ABCD 中,∠A =45°,直线l 与边AB ,AD 分别相交于点M ,N ,则∠1+∠2=________.第15题图第16题图 第18题图16.维明公园的一段小路是由型号相同的五边形地砖平铺而成的,如图所示,是平铺图案的一部分,如果每一个五边形中有3个内角相等,那么这三个内角的度数都等于________. 17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.18.如图,A ,B ,C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积是________. 三、解答题(共66分)19.(8分)在公路上,常看到如图所示的不同的交通标志图形,它们有着不同的意义,如果设汽车载重为x ,速度为y ,宽度为l ,高度为h ,请你用不等式表示图中各种标志的意义.20.(10分)解下列不等式(组),并把解集在数轴上表示出来.(1)5x -2≤3x; (2)⎩⎨⎧x -23(2x -1)≤4,1+3x2>2x -1.21.(12分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求有理数a 的取值范围.22.(12分)如图,在△ABC 中,已知∠ABC =60°,∠ACB =54°,BE 是AC 边上的高,CF 是AB 边上的高,H 是BE 和CF 的交点,HD 是∠BHC 的平分线,求∠ABE ,∠ACF 和∠CHD 的度数.23.(10分)已知两个正多边形,其中一个正多边形的外角是另一个正多边形外角的2倍,并且用这两个正多边形可以拼成平面图形,求这两个正多边形的边数.24.(14分)如图①,已知线段AB ,CD 相交于点O ,连接AC ,BD ,我们把形如图①的图形称之为“8字形”.如图②,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD ,AB 分别相交于M ,N .试解答下列问题:(1)仔细观察,在图②中有________个以线段AC 为边的“8字形”; (2)在图②中,若∠B =96°,∠C =100°,求∠P 的度数;(3)在图②中,若设∠C =α,∠B =β,∠CAP =13∠CAB ,∠CDP =13∠CDB ,试问∠P 与∠C ,∠B 之间存在着怎样的数量关系(用α,β表示∠P ),并说明理由;(4)如图③,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为________.参考答案与解析1.C2.C3.C4.C5.C 6.D 7.D 8.D 9.A 10.C 11.x -5≥2x 12.< 13.-4≤x <-114.x <1215.225° 16.120° 17.30° 18.719.解:x ≤5.5t(2分) y ≤30km/h(4分) l ≤2m(6分) h ≤3.5m(8分) 20.解:(1)x ≤1(在数轴上表示解集略).(4分) (2)-10≤x <3(在数轴上表示解集略).(10分)21.解:由①,得x >-25,由②,得x <2a .(3分)又∵其有三个整数解,∴不等式组的解集为-25<x <2a ,(5分)∴2<2a ≤3,解得1<a ≤32.(12分)22.解:在△ABC 中,∠ABC =60°,∠ACB =54°,∴∠A =66°.∵∠AEB =90°,∠A =66°,∴∠ABE =24°.(3分)又∵∠AFC =90°,∴∠ACF =90°-66°=24°,(6分)∴∠HBC =∠ABC -∠ABE =60°-24°=36°,∠HCB =∠ACB -∠ACF =54°-24°=30°,∴∠BHC =180°-36°-30°=114°.(10分)∵HD 是∠BHC 的平分线,∴∠CHD =12∠BHC =57°.(12分)23.解:设这两个正多边形的边数分别为n ,k ,依题意有360°n =2×360°k,(3分)因此k=2n (n ≥3,且n 为整数),(5分)所以n =3,4,5,6,…,从而k =6,8,10,12,….(7分)其中正三角形和正六边形,正方形和正八边形,正五边形和正十边形能拼成平面图形.(10分)24.解:(1)2(2分)(2)∵∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,∴∠CAP =∠BAP ,∠BDP =∠CDP .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =∠P -∠B ,即∠P =12(∠C+∠B ).(5分)∵∠C =100°,∠B =96°,∴∠P =12(100°+96°)=98°.(7分)(3)∠P =13(β+2α).理由如下:∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,∠BDP =23∠CDB .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =13∠CDB -13∠CAB ,∠P -∠B =23∠CDB -23∠CAB ,(9分)∴2(∠C -∠P )=∠P -∠B ,∴∠P =13(∠B +2∠C ).∵∠C =α,∠B =β,∴∠P =13(β+2α).(12分)(4)360°(14分) 解析:如图,∵∠B +∠A =∠1,∠C +∠D =∠2,∴∠A +∠B +∠C +∠D =∠1+∠2.∵∠1+∠2+∠F +∠E =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°.华东师大版数学七年级下册期末考试题(四)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.下列方程中,是二元一次方程的是( ) A .xy =1 B .y =3x -1 C .x +1y=2 D .x 2+x -3=02.若a <b ,则下列各式中一定成立的是( ) A .a -1<b -1 B.a 3>b3C .-a <-bD .ac <bc3.不等式组⎩⎪⎨⎪⎧x -1>0,8-4x ≤0的解集在数轴上表示为( )4.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=445.已知关于x 的方程2x +4=m -x 的解是负数,则m 的取值范围是( ) A .m <43 B .m >43 C .m <4 D .m >46.已知a ,b 满足方程组⎩⎪⎨⎪⎧a +2b =8,2a +b =7,则a -b 的值为( )A .-1B .0C .1D .27.已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax +5y =4,5x +y =3与⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,则a ,b 的值为( ) A.⎩⎪⎨⎪⎧a =1,b =2B.⎩⎪⎨⎪⎧a =-4,b =-6C.⎩⎪⎨⎪⎧a =-6,b =2D.⎩⎪⎨⎪⎧a =14,b =28.已知⎩⎪⎨⎪⎧3x +4y =4k ,4x +3y =3k +7且0<x +y <1,则k 的取值范围是( )A .-1<k <0B .-1<k <-12C .0<k <1D .-1<k <19.某商品的标价比成本价高m %,根据市场需要该商品需降价n %出售,为了不亏本,n 应满足( )A .n ≤mB .n ≤100m100+mC .n ≤m100+m D .n ≤100m100-m10.宜宾市某化工厂,现有A 种原料52千克,B 种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A 种原料3千克,B 种原料2千克;生产1件乙种产品需要A 种原料2千克,B 种原料4千克,则生产方案的种数为( ) A .4 B .5 C .6 D .7二、填空题(每小题3分,共24分)11.当x =________时,代数式3x -2与代数式6-x 的值相等.12.已知⎩⎪⎨⎪⎧x =-2,y =3是方程x -ky =1的解,那么k =________.13.不等式组⎩⎪⎨⎪⎧12x ≤1,2-x <3的解集是__________.14.已知x =3-2a 是不等式2(x -3)<x -1的一个解,那么a 的取值范围是________. 15.若3x +12的值比2x -23的值小1,则x 的值为________.16.如果4xa +2b -11-2y5a -2b -3=8是关于x ,y 的二元一次方程,那么a -b =________.17.已知关于x的不等式组⎩⎪⎨⎪⎧x -a ≥0,3-2x ≥-1的整数解共有5个,则a 的取值范围是________________.18.书店举行购书优惠活动,活动规则如下: ①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折; ③一次性购书200元以上一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元. 三、解答题(共66分)19.(8分)解下列方程或方程组:(1)3x -22=4x +23-1; (2)⎩⎪⎨⎪⎧3x -7y =8①,2x +y =11②.20.(8分)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1,把它的解集在数轴上表示出来,并写出不等式组的非负整数解.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A ,B 两种饮料各多少瓶?22.(10分)若关于x ,y 的方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解x 与y 的值的和等于2,求m 2-4m+4的值.23.(10分)定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.24.(10分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知这两种货车的装货情况如下表:(1)(2)现租用该公司3辆甲种货车及5辆乙种货车,一次刚好运完这批货,如果按每吨付运费30元计算,货主应付多少运费?25.(12分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元. (1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,其中直拍球拍的数量不低于总数量的70%,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.参考答案与解析1.B 2.A 3.A 4.A 5.C 6.A 7.D 8.A 9.B10.B 解析:设生产甲产品x 件,则乙产品(20-x )件,根据题意得⎩⎪⎨⎪⎧3x +2(20-x )≤52,2x +4(20-x )≤64,解得8≤x ≤12.∵x 为整数,∴x =8,9,10,11,12,∴有5种生产方案.故选B.11.2 12.-1 13.-1<x ≤2 14.a >-1 15.-13516.-2 17.-3<a ≤-218.248或296 解析:设第一次购书的原价为x 元,则第二次购书的原价为3x 元,依题意得①当0<x ≤1003时,x +3x =229.4,解得x =57.35(舍去);②当1003<x ≤2003时,x +910×3x =229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x ≤100时,x +710×3x =229.4,解得x =74,此时两次购书原价总和为:4x =4×74=296.综上所述,小丽这两次购书原价的总和是248或296元.19.解:(1)x =4.(4分)(2)⎩⎪⎨⎪⎧x =5,y =1.(8分)20.解:不等式组的解集为-1≤x <3,(4分)在数轴上表示略,其非负整数解为0,1,2.(8分)21.解:设A 种饮料生产了x 瓶,B 种饮料生产了y瓶,根据题意得⎩⎪⎨⎪⎧x +y =100,2x +3y =270,(4分)解得⎩⎪⎨⎪⎧x =30,y =70.(7分)答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.(8分)22.解:⎩⎪⎨⎪⎧3x +5y =m +2①,2x +3y =m ②,由①-②,得x +2y =2③.∵x ,y 的值的和等于2,∴x +y =2④,由③-④,得y =0.把y =0代入④,得x =2.把x =2,y =0代入②,得m =4,(7分)∴m 2-4m +4=42-4×4+4=4.(10分)23.解:由题意得⎩⎪⎨⎪⎧3x -3-x +1>5,3x -3-x +1<9,(5分)解得72<x <112.(10分)24.解:(1)设甲、乙两种货车每辆每次分别可运x 吨货物,y 吨货物,由题意得⎩⎪⎨⎪⎧2x +3y =15.5,5x +6y =35,解得⎩⎪⎨⎪⎧x =4,y =2.5.答:甲种货车每辆每次可运货物4吨,乙种货车每辆每次可运货物2.5吨.(7分) (2)30×(4×3+2.5×5)=735(元).(9分) 答:货主应付运费735元.(10分)25.解:(1)设直拍球拍每副x 元,横拍球每副y 元,由题意得⎩⎪⎨⎪⎧20(x +20)+15(y +20)=9000,5(x +20)+1600=10(y +20),解得⎩⎪⎨⎪⎧x =220,y =260. 答:直拍球拍每副220元,横拍球每副260元.(6分)(2)设购买直拍球拍m 副,则购买横拍球(40-m )副,由题意得⎩⎪⎨⎪⎧m ≥40×70%,m ≤3(40-m ),解得28≤m≤30.∵m 为整数,∴m 为28,29,30.(8分)设买40副球拍所需的费用为w ,则w =(220+20)m +(260+20)(40-m )=11200-40m .(10分)∴当m =28时,w =10080元;当m =29时,w =10040元;当m =30时,w =10000元,∴当m =30时,w 取最小值,最小值为10000元. 答:购买直拍球拍30副,购买横拍球10副时,费用最少,最少费用为10000元.(12分)华东师大版数学七年级下册期末检测题(五)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.已知(x -2y -1)2+||2x +y -7=0,则3x -y 的值为( )A .3B .1C .-6D .82.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的平均速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x ,y 分钟,则列出的二元一次方程组是( )A.⎩⎪⎨⎪⎧x +y =13,200x +70y =3350B.⎩⎪⎨⎪⎧x +y =20,70x +200y =3350C.⎩⎪⎨⎪⎧x +y =13,70x +200y =3350D.⎩⎪⎨⎪⎧x +y =20,200x +70y =33503.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .44.小刚解出了方程组⎩⎪⎨⎪⎧3x -y =3,2x +y =△的解为⎩⎪⎨⎪⎧x =4,y =□.因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则△、□分别为( )A .17,9B .16,8C .23,15D .15,235.甲、乙两药品仓库共存药品45 t ,为共同抗击“H7N9禽流感”,现从甲仓库调出库存药品的60%,从乙仓库调出库存药品的40%支援疫区.结果乙仓库所余药品比甲仓库所余药品多3 t ,那么,甲、乙仓库原来所存药品分别为( )A .21 t ,24 tB .24 t ,21 tC .25 t ,20 tD .20 t ,25 t 6.下列式子中,是一元一次方程的是( ) A .3x +1=4x B .x +2>1 C .x 2-9=0 D .2x -3y =0 7.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =yaC .若a =b ,则ac =bcD .若b a =dc ,则b =d8.一元一次方程2x =4的解是( ) A .x =1 B .x =2 C .x =3 D .x =49.已知方程x -2y +3=8,则整式x -2y 的值为( ) A .5 B .10 C .12 D .1510.下列过程中,变形正确的是( ) A .由2x =3,得x =23B .由x -13-1=1-x 2,得2(x -1)-1=3(1-x )C .由x -1=2,得x =2-1D .由-3(x +1)=2,得-3x -3=2二、填空题(每小题3分,共24分)12.已知x ,y 满足方程组⎩⎪⎨⎪⎧x +2y =5,2x +y =4,则x -y 的值是________.13.若2x a +1-3y b -2=10是关于x ,y 的二元一次方程,则a -b =________.14.已知⎩⎪⎨⎪⎧x =3,y =-2是方程组⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.15.若(m -2)x |2m -3|=6是关于x 的一元一次方程,则m 的值是________. 16.若a =b ,12b =-12c ,4c -3d =0,则a 和d 之间的关系式为______________.17.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为________.18.规定一种运算“*”,a *b =13a -14b ,则方程x *2=1*x 的解为________.三、解答题(共66分)19.(12分)解下列方程组:(1)⎩⎪⎨⎪⎧4x +y =7,6x -y =3;(2)⎩⎪⎨⎪⎧3x -2(2y +1)=4,x +2y +12=4(x -1).20.(10分)在等式y =x 2+mx +n 中,当x =2时,y =5;当x =-3时,y =-5. (1)求m ,n 的值;(2)试求当x =3时,y 的值.21.(10分)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -5y =2a ,2x +7y =a -18.(1)若x ,y 的值互为相反数,求a 的值;(2)若2x +y +35=0,解这个方程组.22.(10某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?23.(12分)小杰到食堂买饭,看到A ,B 两窗口前面排队的人一样多,就站在A 窗口队伍的后面,过了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人.此时,若小杰迅速从A 窗口队伍转移到B 窗口队伍后面重新排队,将比继续在A 窗口排队提前30秒买到饭,求开始时,每队有多少人排队.24.(12分)某公司以每吨500元的价格收购了100吨某种药材.若直接在市场上销售,每吨的售价是1000元.该公司决定加工后再出售,相关信息如下表所示:注:①出品率指加工后所得产品的质量与原料的质量的比值;②加工后的废品不产生效益.受市场影响,该公司必须在10天内将这批药材加工完毕,现有3种方案: A .全都粗加工;B .尽可能多的精加工,剩余的直接在市场上销售;C .部分粗加工,部分精加工,恰好10天完成. 问:哪个方案获得的利润最大?是多少?参考答案与解析1.D2.D3.C 解析:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费.设截成2米长的彩绳x 根,1米长的y 根,由题意得2x +y =5,因为x ,y 都是正整数,所以符合条件的解为⎩⎪⎨⎪⎧x =0,y =5或⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =1,则共有3种不同截法.故选C.4.A5.B 解析:若设甲仓库原来存药x 吨,乙仓库原来存药y 吨,由题意得⎩⎪⎨⎪⎧x +y =45,60%y -40%x =3,解得⎩⎪⎨⎪⎧x =24,y =21.故选B. 6.A 7.C 8.B 9.A 10.D 11.y =2x -53 12.-1 13.-3 14.-815.1 16.4a +3d =0 17.90% 18.10719.解:(1)⎩⎪⎨⎪⎧x =1,y =3.(6分) (2)⎩⎨⎧x =43,y =-12.(12分) 20.解:(1)由题意得⎩⎪⎨⎪⎧5=4+2m +n ,-5=9-3m +n ,(3分)解得⎩⎪⎨⎪⎧m =3,n =-5.(6分)(2)由(1)可得原等式为y =x 2+3x -5,因此当x =3时,y =32+3×3-5=13.即当x =3时,y 的值为13.(10分)21.解:(1)⎩⎪⎨⎪⎧3x -5y =2a ①,2x +7y =a -18②,①-②×2,得-x -19y =36,即x +19y =-36.当x =-y 时,-y +19y =-36,解得y =-2,∴x =2.代入①,得a =8.(6分)(2)由(1)知,⎩⎪⎨⎪⎧x +19y =-36,2x +y =-35,解得⎩⎪⎨⎪⎧x =-17,y =-1.(10分) 22.解:设五月份用电量为x 度,则六月份用电量为(500-x )度.依题意得500-x >x ,解得x <250,当0<x ≤200时,列方程得0.55x +0.6(500-x )=290.5,解得x =190.则500-x =310,符合题意.(5分)当200<x <250时,列方程得0.6x +0.6(500-x )=290.5,此方程无解.(9分)答:该户居民五、六月份各用电190度,310度.(10分)23.解:设开始时,每队有x 人在排队,2分钟后,B 窗口排队的人数为x -6×2+5×2=x -2,(3分)根据题意得x4=2+x -26+12,(7分)解得x =26.(11分)答:开始时,每队有26人排队.(12分)24.解:方案A 的利润为100×80%×5000-500×100=350000(元);(3分)方案B 的利润为60×60%×11000+40×1000-50000=386000(元);(6分)设方案C 粗加工x 天,则精加工(10-x )天,有14x +6(10-x )=100,解得x =5.(8分)方案C 的利润为5×14×80%×5000+5×6×60%×11000-50000=428000(元).(10分)所以方案C 的利润最大,是428000元.(11分)答:方案C 获得的利润最大,最大利润为428000元.(12分)。

七年级下册数学 期末试卷易错题(Word版 含答案)

七年级下册数学 期末试卷易错题(Word版 含答案)

七年级下册数学 期末试卷易错题(Word 版 含答案)一、选择题1.116的平方根是() A .-14B .14C .14±D .12±2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列语句中,是假命题的是( ) A .有理数和无理数统称实数B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .在同一平面内,垂直于同一条直线的两条直线互相平行D .两个锐角的和是锐角5.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒6.下列计算正确的是( ) A .38-=±2B .(﹣3)0=0C .(﹣2a 2b )2=4a 4b 2D .2a 3÷(﹣2a )=﹣a 37.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是( )A .(2020,0)B .(2021,-1)C .(2021,1)D .(2022,0)二、填空题9.若,则()m a b +的值为10.点A (-2,1)关于x 轴对称的点的坐标是____________________.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.13.图,直线//AB CD ,直线l 与直线AB ,CD 相交于点E 、F ,点P 是射线EA 上的一个动.点.(不包括端点E ),将EPF 沿PF 折叠,使顶点E 落在点Q 处.若∠PEF =75°,2∠CFQ =∠PFC ,则EFP ∠=________.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若△PAB 的面积为18,则m ,n 满足的数量关系式为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→”的路线运动,设第n 秒运动到点n P (n 为正整数),则点2021P 的坐标是______.三、解答题17.计算:(1)()4129-⨯- (2)()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=. 19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF . 分析:要证BE ∥DF ,只需证∠1=∠D . 证明:∵AB ∥CD (已知) ∴∠B +∠1=180°( ) ∵∠B +∠D =180°(已知) ∴∠1=∠D ( ) ∴BE ∥DF ( )20.如图,在平面直角坐标系中,ABC ∆的顶点都在格点上,点C (41)-,. (1)写出点A ,B 的坐标; (2)求ABC ∆的面积.21.已知:31a +的立方根是2-,21b -的算术平方根3,c 是43的整数部分. (1)求,,a b c 的值;(2)求922a b c -+的平方根.二十二、解答题22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.二十三、解答题23.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.24.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.25.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.26.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于a,那么这个数叫做a的平方根)即可得.【详解】解:因为211416⎛⎫±=⎪⎝⎭,所以116的平方根是14±,故选:C.【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.C 【分析】根据平移变换的定义可得结论. 【详解】解:由平移变换的定义可知,选项C 可以看作由“基本图案”经过平移得到的. 故选:C . 【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换解析:C 【分析】根据平移变换的定义可得结论. 【详解】解:由平移变换的定义可知,选项C 可以看作由“基本图案”经过平移得到的. 故选:C . 【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题. 3.B 【分析】根据坐标的特点即可求解. 【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限 故选B . 【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点. 4.D 【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可 【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如505010090︒+︒=︒>︒,故D 选项是假命题,符合题意 故选D 【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.5.C【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.【详解】A.原式=﹣2,故A错误;B.原式=1,故B错误;C、(﹣2a2b)2=4a4b2,计算正确;D、原式=﹣a2,故D错误;故选C.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA =180°-34°=146°, ∵BE ⊥AE , ∴∠AEB =90°,∵∠AEB +∠BED +∠AED =360°, ∴∠BED =360°-146°-90°=124°, 故选:B . 【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标. 【详解】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长解析:C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标. 【详解】解:半径为1个单位长度的半圆的周长为12×2π×1=π, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度, ∴点P 每秒走12个半圆,∴当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0), …,∵2021÷4=505余1, ∴P 的坐标是(2021,1), 故选:C . 【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题9.-1 【解析】解:有题意得,,,,则解析:-1 【解析】 解:有题意得,,,,则()ma b10.(-2,-1) 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本解析:(-2,-1) 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.120°和60° 【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),解析:120°和60° 【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB ),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°, 又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB ),=180°-60°,=120°;∠DFE 的邻补角的度数为:180°-120°=60°.考点:角的度量.12.【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,∴,∴,,,∵,∴,∴,∴,∴,∴.故答案为:.【点睛】本题考查了平解析:90x y z +-=︒【分析】过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∵90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;13.或【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+解析:35︒或63︒【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+∠CFE=180°设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.②当点Q在CD下方时,如图2设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=2x,3∴75°+2x+x=180°,3解得x=63°,∴∠EFP=63°.故答案为:35︒或63︒【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.15.【分析】连接OP,将PAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,解析:3230m n +=-【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,∵∠AOB=90°, ∴11=23322OAB S OA OB ⋅=⨯⨯=, ∵点P (m ,n )为第三象限内一点,m <0,n <0∴,11y 222OAP P S OA n n ∴=⋅=⨯⋅=-, 1133222OBP P S OB x m m =⋅=⨯⋅=-, 33182PAB OAB OAP OBP S S S S n m ∴=++=--+=, 整理可得:3230m n +=-;故答案为:3230m n +=-.【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.16.【分析】通过观察可得,An 每6个点的纵坐标规律:,0,,0,-,0,点An 的横坐标规律:1,2,3,4,5,6,…,n ,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1 解析:20213,22⎛⎫- ⎪ ⎪⎝⎭ 【分析】 通过观察可得,A n 每6个点的纵坐标规律:32,0,32,0,-32,0,点A n 的横坐标规律:1,2,3,4,5,6,…,n ,点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次,点P 运动n 秒的横坐标规律: 12,1,32,2,52,3,…,2n ,点P 的纵坐标规律:32,0,32,0,032-,0,…,确定P 2021循环余下的点即可. 【详解】解:∵图中是边长为1个单位长度的等边三角形,∴113,22A ⎛⎫ ⎪ ⎪⎝⎭A 2(1,0)333,22A ⎛⎫ ⎪ ⎪⎝⎭A 4(2,0)553,22A ⎛⎫- ⎪ ⎪⎝⎭A 6(3,0)773,22A ⎛⎫ ⎪ ⎪⎝⎭…∴A n 中每6303030, 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次点P 00,0,…, 点P 的横坐标规律: 12,1,32,2,52,3,…,2n , ∵2021=336×6+5,∴点P 2021的纵坐标为, ∴点P 2021的横坐标为20212,∴点P 2021的坐标20212⎛ ⎝⎭,,故答案为:20212⎛ ⎝⎭,. 【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴ ,∴,∴;(2解析:(1)54;(2)1;(3)-1. 【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x -=,∴ ()334=5x , ∴4=5x , ∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键. 19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B +∠1=180°,又有∠B +∠D =180°,由此即可证得.【详解】证明:∵AB ∥CD (已知)∴∠B +∠1=180°(两直线平行,同旁内角互补)∵∠B +∠D =180°(已知)∴∠1=∠D (同角的补角相等),∴BE ∥DF (同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1),;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(解析:(1)(3,4)A ,(0,1)B ;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(1)(3,4)A ,(0,1)B(2)3ABC S S S =-△长方形个三角形11145241533222=⨯-⨯⨯-⨯⨯-⨯⨯ =9【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(1);(2)其平方根为.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根.【详解】解:(1)由题得..又,解析:(1)3,5,6a b c =-==;(2)其平方根为4±.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=. 364349<6437∴<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=. ∴其平方根为164±±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键. 二十二、解答题22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.二十三、解答题23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC =23∠APC 理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE ﹣∠CKE =∠BAK ﹣∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP ﹣∠DCP ,∵∠BAK =23∠BAP ,∠DCK =23∠DCP , ∴∠BAK ﹣∠DCK =23∠BAP ﹣23∠DCP =23(∠BAP ﹣∠DCP )=23∠APC , ∴∠AKC =23∠APC .【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.24.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.25.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-1∠B.2【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.26.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.。

华师大版数学七年级下册期末考试试卷及答案

华师大版数学七年级下册期末考试试卷及答案

华师大版数学七年级下册期末考试试题第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D2.若一个多边形的每个内角都为135°,则它的边数为( ) A .9 B .8 C .10 D .123.(邵阳中考)不等式组⎩⎨⎧x>-12x -3≤1的解集在数轴上表示正确的是( )4.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是( )A .先把△ABC 向左平移5个单位,再向下平移2个单位B .先把△ABC 向右平移5个单位,再向下平移2个单位 C .先把△ABC 向左平移5个单位,再向上平移2个单位D .先把△ABC 向右平移5个单位,再向上平移2个单位第4题图5.下列正多边形的组合中能够铺满地面不留缝隙的是( ) A .正八边形和正三角形 B .正五边形和正八边形 C .正方形和正三角形 D .正六边形和正五边形6.如图,△ABC 绕点A 按逆时针方向旋转一定的角度后成为△AB ′C ′.有下列结论:①BC =B ′C ′;②∠BAB ′=∠CAC ′;③∠ABC =∠AB ′C ′;④△ABB ′≌△ACC ′.其中正确的结论有( )第6题图A.1个 B.2个 C.3个 D.4个7.已知△ABC,①如图甲,若P点是∠ABC和∠ACB的平分线的交点,则∠P=90°+12∠A;②如图乙,若P点是∠ABC和外角∠ACE的平分线的交点,则∠P=90°-∠A;③如图丙,若P点是外角∠CBF和∠BCE的平分线的交点,则∠P=90°-12∠A.上述说法正确的有()A.0个 B.1个 C.2个 D.3个8.有一根长40 cm的金属棒,欲将其截成x根长7 cm的小段和y根长9 cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=4,y=1C.x=3,y=2 D.x=2,y=3第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.若2x3-2k+2=4是关于x的一元一次方程,则k=.10.若3x-2=2(x-3)与3(x+a)=a-5x有相同的解,那么a-1=.11.如图,△BDC≌△ABE,且∠BCD=90°,A,C,B在同一条直线上,AB=5 cm,AE=4 cm,BE=3 cm,则△ACD的面积为 cm2.第11题图12.在有理数范围内定义一种新运算“⊗”,其运算规则为a⊗b=-3a+2b,如-1⊗2=-3×(-1)+2×2=7,则不等式x⊗(-2)≥3的解集是.13.如图所示,已知∠AOB =30°,点P 在∠AOB 内部,点P 与点P 1关于OA 对称,与点P 2关于OB 对称,则∠P 1OP 2= .第13题图14.以长为13,14,x +5的三条线段为边可构成三角形,则x 的取值范围是 . 15.已知方程组⎩⎨⎧x -y =2k ,x +3y =1-5k 的解x 与y 的和为负数,则k 的取值范围是 .16.某种商品进价为800元,售价为1 200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率不低于5%,则至多打 折. 三、解答题(本大题共8小题,共72分) 17.(10分)解方程(组): (1)3x -12 -2x +16=-1;(2)⎩⎪⎨⎪⎧x +13+y -14=32,x -32+y +25=12.18.(6分)解不等式组⎩⎨⎧3x +2≤2(x +3),2x -13>x2,并写出不等式组的整数解.19.(8分)如图,已知在△BCD中,BC=4,BD=5.(1)直接写出CD的取值范围是1<CD<9;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.20.(8分)顶点在网格交点的多边形叫做格点多边形.如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度.(1)在网格中画出△ABC向上平移4个单位长度后得到的△A1B1C1;(2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2;(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.AB C21.(8分)(乐山中考)已知关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4,② 的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y>0. 求满足条件的m 的整数值.22.(10分)如图,在△ABC 中,∠BAC =120°,以BC 为边向外作等边三角形BCD ,将△ABD 绕着点D 按顺时针方向旋转60°到△ECD 的位置,若AB =3,AC =2,求∠BAD 的度数和AD 的长.23.(10分)(哈尔滨中考)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元,购买4个A 型放大镜和6个B 型放大镜需用152元. (1)求每个A 型放大镜和B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?24.(12分)(攀枝花中考)为了打造区域性中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?参考答案第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列图形既是轴对称图形,又是中心对称图形的是 (D )A B C D2.若一个多边形的每个内角都为135°,则它的边数为 (B ) A .9 B .8 C .10 D .123.(邵阳中考)不等式组⎩⎨⎧x>-12x -3≤1的解集在数轴上表示正确的是(B )4.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是 (A ) A .先把△ABC 向左平移5个单位,再向下平移2个单位 B .先把△ABC 向右平移5个单位,再向下平移2个单位 C .先把△ABC 向左平移5个单位,再向上平移2个单位 D .先把△ABC 向右平移5个单位,再向上平移2个单位第4题图5.下列正多边形的组合中能够铺满地面不留缝隙的是 (C ) A .正八边形和正三角形 B .正五边形和正八边形 C .正方形和正三角形 D .正六边形和正五边形6.如图,△ABC 绕点A 按逆时针方向旋转一定的角度后成为△AB ′C ′.有下列结论:①BC =B ′C ′;②∠BAB ′=∠CAC ′;③∠ABC =∠AB ′C ′;④△ABB ′≌△ACC ′.其中正确的结论有 (C )第6题图A .1个B .2个C .3个D .4个7.已知△ABC,①如图甲,若P点是∠ABC和∠ACB的平分线的交点,则∠P=90°+12∠A;②如图乙,若P点是∠ABC和外角∠ACE的平分线的交点,则∠P=90°-∠A;③如图丙,若P点是外角∠CBF和∠BCE的平分线的交点,则∠P=90°-12∠A.上述说法正确的有(C)A.0个 B.1个 C.2个 D.3个8.有一根长40 cm的金属棒,欲将其截成x根长7 cm的小段和y根长9 cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为(C)A.x=1,y=3 B.x=4,y=1C.x=3,y=2 D.x=2,y=3第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.若2x3-2k+2=4是关于x的一元一次方程,则k=1.10.若3x-2=2(x-3)与3(x+a)=a-5x有相同的解,那么a-1=15.11.如图,△BDC≌△ABE,且∠BCD=90°,A,C,B在同一条直线上,AB=5 cm,AE=4 cm,BE=3 cm,则△ACD的面积为32cm2.第11题图12.在有理数范围内定义一种新运算“⊗”,其运算规则为a⊗b=-3a+2b,如-1⊗2=-3×(-1)+2×2=7,则不等式x⊗(-2)≥3的解集是x≤-73.13.如图所示,已知∠AOB=30°,点P在∠AOB内部,点P与点P1关于OA对称,与点P2关于OB对称,则∠P1OP2=60°.第13题图14.以长为13,14,x +5的三条线段为边可构成三角形,则x 的取值范围是-4<x<22. 15.已知方程组⎩⎨⎧x -y =2k ,x +3y =1-5k 的解x 与y 的和为负数,则k 的取值范围是k>13 .16.某种商品进价为800元,售价为1 200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率不低于5%,则至多打7折. 三、解答题(本大题共8小题,共72分) 17.(10分)解方程(组): (1)3x -12 -2x +16=-1; 解:3(3x -1)-(2x +1)=-6, 化简得7x =-2,所以x =-27 .(2)⎩⎪⎨⎪⎧x +13+y -14=32,x -32+y +25=12.解:原方程组可化为⎩⎨⎧4(x +1)+3(y -1)=18,5(x -3)+2(y +2)=5,整理得⎩⎨⎧4x +3y =17,5x +2y =16, 解得⎩⎨⎧x =2,y =3.18.(6分)解不等式组⎩⎨⎧3x +2≤2(x +3),2x -13>x2, 并写出不等式组的整数解.解:⎩⎨⎧3x +2≤2(x +3), ①2x -13>x2, ②解①,得x≤4,解②,得x>2,不等式组的解集为2<x≤4.则不等式组的整数解为3,4.19.(8分)如图,已知在△BCD中,BC=4,BD=5.(1)直接写出CD的取值范围是1<CD<9;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.解:∵AE∥BD,∴∠CBD=∠A=55°.∵∠BDE为△BCD的一个外角,∴∠BDE=∠C+∠CBD.∴∠C=∠BDE-∠CBD=125°-55°=70°.20.(8分)顶点在网格交点的多边形叫做格点多边形.如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度.(1)在网格中画出△ABC向上平移4个单位长度后得到的△A1B1C1;(2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2;(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.AB C答案:略21.(8分)(乐山中考)已知关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4,② 的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y>0. 求满足条件的m 的整数值. 解:①+②,得3x +y =3m +4,③②-①,得x +5y =m +4,∵⎩⎨⎧3x +y ≤0,x +5y>0, ∴⎩⎨⎧3m +4≤0,m +4>0,解得-4<m ≤-43 , ∴满足条件的m 的整数值为-3,-2.22.(10分)如图,在△ABC 中,∠BAC =120°,以BC 为边向外作等边三角形BCD ,将△ABD 绕着点D 按顺时针方向旋转60°到△ECD 的位置,若AB =3,AC =2,求∠BAD 的度数和AD 的长.解:由∠BAC =120°知∠ABC +∠ACB =60°,因为∠ABD =∠ABC +∠CBD =∠DCE ,∠CBD =60°,由此可知∠ACB +∠BCD +∠DCE =360°-120°-60°=180°,即点A ,C ,E 在一条直线上.又因为AD =ED ,由旋转特征知,∠ADE =60°,故△ADE 为等边三角形,所以∠BAD =∠E =60°,AD =AE =AC +CE =AC +AB =5.23.(10分)(哈尔滨中考)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元,购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?解:(1)设每个A 型放大镜x 元,每个B 型放大镜y 元,根据题意,得⎩⎨⎧8x +5y =220,4x +6y =152, 解得⎩⎨⎧x =20,y =12. 答:每个A 型放大镜20元,每个B 型放大镜12元.(2)设购买a 个A 型放大镜,则购买(75-a)个B 型放大镜.根据题意,得20a +12(75-a)≤1 180,解得a ≤35.答:最多可以购买35个A 型放大镜.24.(12分)(攀枝花中考)为了打造区域性中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?解:(1)设甲、乙两种型号的挖掘机各需x 台,y 台.依题意得⎩⎨⎧x +y =8,60x +80y =540, 解得⎩⎨⎧x =5,y =3.答:甲、乙两种型号的挖掘机各需5台,3台.(2)设租用m 台甲型挖掘机,n 台乙型挖掘机.依题意,得60m +80n =540,化简,得3m +4n =27.∴m =9-43 n ,∴方程的解为⎩⎨⎧m =5,n =3, ⎩⎨⎧m =1,n =6. 当m =5,n =3时,支付租金为100×5+120×3=860元>850元,超出限额;当m =1,n =6时,支付租金为100×1+120×6=820元,符合要求.答:有一种租车方案,即租用1台甲型挖掘机和6台乙型挖掘。

七年级下期数学++华师大版+++期末易错题+

七年级下期数学++华师大版+++期末易错题+

七年级下期数学华师大版期末易错题(40分钟)一.选择题(共11小题)1.若等式x=y可以变形为,则有()A.a>0 B.a<0C.a≠0 D.a为任意有理数2.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2 B.3 C.4 D.53.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程?a=﹣(x﹣6)无解,则a的值是()A.1 B.﹣1 C.±1 D.a≠14.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?()A.6 B.9 C.12 D.185.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元 C.0.95元 D.0.9元6.二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.47.当1≤x≤2时,ax+2>0,则a的取值范围是()A.a>﹣1 B.a>﹣2 C.a>0 D.a>﹣1且a≠08.如果关于x的不等式(m+1)x>m+1的解集为x<1,则m的取值范围是()A.m<0 B.m<﹣1 C.m>1 D.m>﹣19.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线10.夏季荷花盛开,为了便于游客领略“人从桥上过,如在水中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘的周长为280m,且桥宽忽略不计,则小桥的总长为()A.280m B.140m C.90m D.70m11.如图,图案⑥是由①②③④⑤五种基本图形中的两种拼接而成的,这两种基本图形是()A.①⑤B.②⑤C.③⑤D.②④二.填空题(共8小题)12.已知(|m|﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,则m= .13.若4x﹣3y=0且x≠0,则= .14.若关于x的不等式2m一1<x<m+l无解,则m的取值范围是.15.若不等式组恰有两个整数解.则实数a的取值范围是.16.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= .17.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=12,则S1﹣S2的值为.18.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为.19.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.三.解答题(共5小题)20.解下列方程(1)(2).21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究二:若将△ADC改为任意四边形ABCD呢?已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(写出说理过程)探究三:若将上题中的四边形ABCD改为六边形ABCDEF(图(3))呢?请直接写出∠P 与∠A+∠B+∠E+∠F的数量关系:.23.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x= °; x= °; x= °;(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠F= °.24.如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.(1)将△ABC向下平移4个单位,得到△A′B′C′;(2)把△A′B′C′绕点C′顺时针旋转90°,得到△A″B″C″,请你画出△A′B′C′和△A″B″C″(不要求写画法);(3)点B经过(1),(2)两次变换的路径长.七年级下期数学华师大版期末易错题(40分钟)参考答案一.选择题(共11小题)1.C;2.B;3.A;4.D;5.B;6.D;7.A;8.B;9.D;10.B;11.B;二.填空题(共8小题)12.1;13.;14.m≥2;15.<a≤1;16.24°;17.2;18.3﹣;19.±3;三.解答题(共5小题)20.;21.;22.∠P=(∠A+∠B+∠E+∠F)﹣180°;23.180;180;180;140;24.;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下期数学华师大版期末易错题
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
七年级下期数学华师大版期末易错题(40分钟)
一.选择题(共11小题)
1.若等式x=y可以变形为,则有()
A.a>0 B.a<0
C.a≠0 D.a为任意有理数
2.已知下列方程:①;②=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()
A.2 B.3 C.4 D.5
3.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程?a=﹣(x﹣6)无解,则a的值是()
A.1 B.﹣1 C.±1 D.a≠1
4.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?()A.6 B.9 C.12 D.18
5.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需元;若购铅笔4支,练习本8本,圆珠笔2支共需元,那么,购铅笔、练习本、圆珠笔各1件共需()
A.元 B.元 C.元 D.元
6.二元一次方程x+3y=10的非负整数解共有()对.
A.1 B.2 C.3 D.4
7.当1≤x≤2时,ax+2>0,则a的取值范围是()
A.a>﹣1 B.a>﹣2 C.a>0 D.a>﹣1且a≠0
8.如果关于x的不等式(m+1)x>m+1的解集为x<1,则m的取值范围是()A.m<0 B.m<﹣1 C.m>1 D.m>﹣1
9.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()
A.角平分线 B.中位线C.高 D.中线
10.夏季荷花盛开,为了便于游客领略“人从桥上过,如在水中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘的周长为280m,且桥宽忽略不计,则小桥的总长为()
A.280m B.140m C.90m D.70m
11.如图,图案⑥是由①②③④⑤五种基本图形中的两种拼接而成的,这两种基本图形是()
A.①⑤B.②⑤C.③⑤D.②④
二.填空题(共8小题)
12.已知(|m|﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,则m= .13.若4x﹣3y=0且x≠0,则= .
14.若关于x的不等式2m一1<x<m+l无解,则m的取值范围是.
15.若不等式组恰有两个整数解.则实数a的取值范围
是.
16.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= .
17.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为
S 1,△CEF的面积为S
2
,若S
△ABC
=12,则S
1
﹣S
2
的值为.
18.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为.
19.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.
三.解答题(共5小题)
20.解下列方程
(1)
(2).
21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:
销售时段销售数量销售收入
A种型号 B种型号
第一周 3台 5台 18000元
第二周 4台 10台 31000元
(1)求A,B两种型号的净水器的销售单价;
(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?
(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
22.动手操作,探究:
探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.
探究二:若将△ADC改为任意四边形ABCD呢?
已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(写出说理过程)
探究三:若将上题中的四边形ABCD改为六边形ABCDEF(图(3))呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:.
23.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;
(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.
x= °; x= °; x= °;
(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠
F= °.
24.如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.
(1)将△ABC向下平移4个单位,得到△A′B′C′;
(2)把△A′B′C′绕点C′顺时针旋转90°,得到△A″B″C″,请你画出△
A′B′C′和△A″B″C″(不要求写画法);
(3)点B经过(1),(2)两次变换的路径长.
七年级下期数学华师大版期末易错题(40分钟)
参考答案
一.选择题(共11小题)
1.C;2.B;3.A;4.D;5.B;6.D;7.A;8.B;9.D;10.B;11.B;
二.填空题(共8小题)
12.1;13.;14.m≥2;15.<a≤1;16.24°;17.2;18.3﹣;19.±3;
三.解答题(共5小题)
20.;21.;22.∠P=(∠A+∠B+∠E+∠F)﹣180°;23.180;180;180;140;24.;。

相关文档
最新文档