一次或二次实系数多项式是不可约多项式
高等代数 第4章多项式 4.5 多项式的因式分解

虽然根据多项式的标准分解式写出
f x, g x 是简单的,但由于任意多项式的典型
分解式并不容易求得,故求最大公因式的一般方法 还是采用辗转相除法。
2020/3/2
高等代数
问:如何求 f x 的标准分解式?
由定义可得:
① 一次多项式是不可约多项式(二次及二次以上 多项式是否可约是重点讨论对象);
② 多项式的可约性与数域有关(例 x2 2 在C上
可约,在R中不可约)。 ③ 零多项式于零次多项式不讨论它们的可约性。
2. 性质
性质1 若 p x不可约,则 cp x 也不可约,
c 0, c F.
问题: f xF x, f 0, f x 是否可分解为
不可约多项式的乘积?
定理1.5.1: F x 中任一个nn 0 次多项式 f x
都可以分解成 F x 中不可约多项式的乘积。
2020/3/2
高等代数
证(归纳法):
n=1时,命题显然成立。 假设命题对一切小于n的多项式成立,则当
其他因式,则称 f x 在数域F上可约。
等价定义:如果 F x 中一个 nn 0 次多项式 f x 可分解成 F x 中两个次数都小于 n 的多项式
g x,hx 的积,即 f x g xhx, 则称
f x 在数域F上可约。
2020/3/2
高等代数
高等代数
若 f x p1 x p2 xL pr x, 取 c1c2 L cr 1.
则 f x c1 p1 xc2 p2 xL cr pr x, 可见 f x 分解式不唯一。
定理1.5.2:F x 中任一个次数大于零的多项式
复系数与实系数多项式因式分解

推论1 f ( x) C[x], 若 ( f ( x)) 1, 则 f ( x) 在 C
上具有标准分解式
f ( x) a( x 1)r1 ( x 2 )r2 ( x s )rs
其中1,2 , ,s是不同的复数,r1,r2, ,rs Z+
证:对 f ( x) 的次数作数学归纳. ① ( f ( x)) 1 时,结论显然成立. ② 假设对次数<n的多项式结论成立. 设 ( f ( x)) n,由代数基本定理, f ( x)有一复根 . 若 为实数, 则 f ( x) ( x ) f1( x),其中( f1 ) n 1.
( x2 pr x qr )kr
其中 c1,c2 , ,cs , p1, , pr ,q1, ,qr R, k1, ,ks ,l1, , ls Z ,
且 p2 4q 0, i 1,2 r ,即 x2 pi x qi 为 R上的不可约多项式.
推论2 f ( x) C[x],若 ( f ( x)) n ,则 f ( x) 有n个 复根(重根按重数计算).
二、实系数多项式
命题:若 是实系数多项式 f ( x) 的复根,则 的共轭复数 也是 f ( x) 的复根.
证:设 f ( x) an xn an1xn1 a0 , ai R 若 为根,则
n
n
f ( ) an n an1 n1 a0 0 两边取共轭有 f ( ) an n an1 n1 a0 0 ∴ 也是为 f ( x)复根.
实系数多项式因式分解定理
f ( x) R[x],若 ( f ( x)) 1, 则 f ( x)可唯一 地分解成一次因式与二次不可约因式的乘积.
不可约多项式的判定及应用(黄嘉盛)详解

不可约多项式的判定及应用多项式理论是高等代数的重要组成部分,而不可约多项式是多项式中重要的概念.本文主要对有理数域上不可约多项式的判别方法进行整理归纳,较为系统的给出不可约多项式 Perron 判别法、Browm 判别法等。
研究了各判定方法的等价和包含关系。
此外,我们还给 出了不可约多项式的一些应用。
关键词不可约多项式;判定方法;应用2.不可约多项式的概念及性质2.1整除的概念设P 是一个数域,对于P[x]中任意两个多项式f(x)与g(x),其中g(x)H0,定有P[x]中的多项式q(x), r(x)存在,使得f(x) =q(x)g(x)+ r(x)成立,其中c(r(x))<c(g(x))或者r(x)=0,并且这样的q(x),r(x)是唯一决定的。
定义2.1数域P 上的多项式g(x)称为能整除f(x),如果有数域P 上的多项式h(x)使等式f (x) = g(x)h(x)我们用g(x)|f(x) ”表示g(x)整除f(x),用g(x) f (x) ”表示g(x)不能整除 f (x)。
定理2.1⑴ 对于数域P 上的任意两个多项式f(x) , g(x),其中的判定方法。
对于一般的不可约多项式的判定有 Eisenstein 判别法、Kronecker 判别法、 成立,H0, g(x) | f (x)的充分必要条件是g(x)除f (x)的余式为零。
证明:如果r(x) = 0那么f(x) = q(x)g(x),即g(x) | f (x)。
反过来,如果g(x) | f(x),那么 f(x) = q(x)g(x) = q(x)g(x) +0, 即卩 r(x) = 0。
注1:带余除法中g(x)必须不为零。
F 面介绍整除性的几个常用性质:(1)如果 f(x) | g(x), g(x) | f (x),那么 f(x)=cg(x),其中 c 为非零常数。
(2)如果 f(x) | g(x), g(x) |h(x),那么 f(x) | h(x)(整除的传递性)。
多项式的定义是什么

多项式的定义是什么多项式函数以其简单的结构和性质在数值逼近中起到重要的作用,多项式的定义是什么?以下是店铺为大家整理的关于多项式的定义,欢迎大家前来阅读!多项式的定义多项式是代数学中的基础概念,是由称为不定元的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。
例如X2 - 3X + 4就是一个多项式。
多项式是整式的一种。
不定元只有一个的多项式称为一元多项式;不定元不止一个的多项式称为多元多项式。
多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。
多项式数学术语多项式 polynomial不含字母的项叫做常数项。
如:5X+6,6就是常数项。
比较广义的定义,1个或0个单项式的和也算多项式。
按这个定义,多项式就是整式。
实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。
0作为多项式时,次数为正无穷大。
单项式和多项式统称为整式。
多项式几何特性多项式是简单的连续函数,它是平滑的,它的微分也必定是多项式。
泰勒多项式的精神便在于以多项式逼近一个平滑函数,此外闭区间上的连续函数都可以写成多项式的均匀极限。
多项式定理基本定理代数基本定理是指所有一元 n 次(复数)多项式都有 n 个(复数)根。
高斯引理两个本原多项式的乘积是本原多项式。
应用高斯引理可证,如果一个整系数多项式可以分解为两个次数较低的有理系数多项式的乘积,那么它一定可以分解为两个整系数多项式的乘积。
这个结论可用来判断有理系数多项式的不可约性。
关于Q[x]中多项式的不可约性的判断,还有艾森斯坦判别法:对于整系数多项式,如果有一个素数p能整除αn-1,αn-2,…,α1,α0,但不能整除αn,且p2不能整除常数项α0,那么ƒ(x)在Q上是不可约的。
由此可知,对于任一自然数n,在有理数域上xn-2是不可约的。
因而,对任一自然数n,都有n次不可约的有理系数多项式。
分解定理F[x]中任一个次数不小于 1的多项式都可以分解为F上的不可约多项式的乘积,而且除去因式的次序以及常数因子外,分解的方法是惟一的。
高等代数第一章答案(多项式)

若()()()x m x l x h +=,且()()x m x p |,()()x l x p |/,则()()x h x p |/。
证法1: 由()()x m x p |/有 ()()()x p x m x m 1=。
由()()x l x p |/有()()()()()0,1≠+=x r x r x p x l x l 。
于是 ()()()()()()()()x r x p x l x m x m x l x h ++=+=11。
因()0≠x r ,故()()x h x p |/。
证明2:用反证法。
若()()x h x p |,即()()()()x m x l x p +|, 又()()x m x p |,故()()()()()x m x m x l x p -+|,即()()x l x p |,矛盾。
问:若()()()()x g x h x f x h |,|//, 则()()()()x g x f x h +|成立吗?试举例说明。
答:不一定。
例如 ()()()1,1,+=-==x x g x x f x x h ,则()()()()x g x h x f x h |,|//,但()()()()x g x f x h +|。
例如 ()()()2,1,+=-==x x g x x f x x h , 则()()()()x g x h x f x h |,|//,且()()()()x g x f x h +/|。
例 求m l ,, 使()2523+++=x lx x x f 能被()12++=mx x x g 整除。
解法1:因()()3=∂x f ,()()2=∂x g ,故商()x q 满足()()1=∂x q ,且设()p x x q +=,则由 ()()()x g x q x f =,可得()()p x pm x p m x x lx x +++++=+++1252323,l m p pm p =+=+=,51,2,从而 4,2,2===l m p 。
高等代数考研辅导第1讲多项式

(1)零多项式只能整除零多项式 4.说明 (2) f ( x), cf ( x)有相同的因式和倍式
例1.1: 证明:x2 +x 1| x3m +x3n 1 x3 p 2 (m, n, p N ).
(1)( x 1) | f ( x n ) x n 1| f ( x n ) 同理可证明 (2) x 2 x 1| f ( x 3 ) xf ( x 3 ) ( x 1) | f ( x), ( x 1) | f ( x). 1 2 1 2
r 标准分解式:f ( x) cp1r1 ( x) p22 ( x) psrs ( x), c是f ( x)的首项系数,p1 ( x), ,ps ( x)是首项系数为1的
互不相同的不可约多项式,ri是正整数.
k l r 1 (1) f ( x) ap1k1 ( x) prkr ( x) prk11 ( x) pmm ( x), g ( x) bp1l1 ( x) prlr ( x) qrlr1 ( x) qnn ( x), 其中pr 1 ( x), , pm ( x)与
(1)找u ( x), v( x), 使u ( x) f ( x) v( x) g ( x) 1; (2)证明f ( x), g ( x)的任一公因式都是非零常数; (3)证明( f ( x), g ( x)) 1的方法: (3)反证法; (4) f ( x)的均不是g ( x)的根.
2.因式分解定理及唯一性定理:P上每个次数 1的多项式f ( x )都可以唯一 分解成P上一些不可约多项式的乘积.所谓唯一性指 f ( x ) p1 ( x ) ps ( x ) q1 ( x ) qt ( x ), 那么s t且适当调序后有pi ( x ) ci qi ( x )(ci 0)
如何判别一个多项式不可约

探索不可约多项式的 应用
除了在数学理论研究中的应用外 ,不可约多项式在实际应用中也 有着广泛的应用前景。例如,在 计算机科学、信息编码等领域中 ,不可约多项式可以用于构造一 些特殊的函数和编码。
推广判别不可约多项 式的方法
目前我们判别不可约多项式的方 法主要适用于有限域上的多项式 ,对于其他情况是否适用还需要 进一步的研究和探索。因此,推 广判别不可约多项式的方法也是 未来的一个研究方向。
判别二次多项式
对于形如 $ax^2 + bx + c$ 的二次多项式,如果判别式 $Delta = b^2 - 4ac$ 小于0 ,则该多项式不可约。
判别三次多项式
对于形如 $ax^3 + bx^2 + cx + d$ 的三次多项式,如果无法通过因式分解或使用其 他方法证明其不可约,则该多项式可能可约。
THANKS
谢谢您的观看
不可约多项式是整环上的 不可约元,即它不能被其 他非零元素整除。
不可约多项式在整环中是 不可约元,因此它在整环 中是不可约的。
不可约多项式是素数,即 它没有除了1和自身以外 的因数。
不可约多项式在整环中是 不可约的,因此它在整环 中是不可约的。
03
判别多项式不可约的方法
辗转相除法
辗转相除法是一种通过连续除法来判别多项式是否可约的方法。
数学研究
判别多项式是否可约在数学领域 具有重要研究价值,有助于深入 理解多项式的性质和结构。
算法设计
在实际应用中,多项式不可约的 判别方法可以用于设计高效的算 法,例如在符号计算、数值分析 等领域。
教育教学
对于学习数学的学生来说,掌握 多项式不可约的判别方法有助于 提高数学素养和解题能力。
《高等代数》数分高代定理大全

数分高代定理大全《髙等代数》第一章帶余除法对于P[x]中任意两个多项式/'(兀)与g(x),其中g(x)HO, —定有P[A]中的多项式q(x), r(x)存在,使/(x) = g(x)g(x) + r(x)成立,其中d(r(x)) < d(g(x)) 或者心)=0,并且这样的<?(x),r(x)是唯一决定的.定理1对于数域P上的任意两个多项式f(x)9g(x),其中g(x)H0,g(x)I/*(x)的充分必要条件是g(x)除/(x)的余式为零.定理2对于P[X]中任意两个多项式/(A), g(x),在P[x]中存在一个最大公因式d(x),且d(x)可以表示成f (x), g(x)的一个组合,即有P[x]中多项式M(X),V(A)使d(x) = w(x)/(x) + y(x)g(x).定理3 P[x]中两个多项式/(A-), g(x)互素的充分必要条件是有P[x]中的多项式/心),v(x)使«(x)/(x) + v(x)g(x) = 1 .定理 4 如果(f(x),g(x)) = l,且/(x)I g(x)h(x),那么f(x)I h(x).定理5如果“(X)是不可约多项式,那么对于任意的两个多项式/(x),g(x),由p(x) I f(x)gM一定推出p(x) I f(x)或者p(x)\ g(x).因式分解及唯一性定理数域P上每一个次数XI的多项式/(X)都可以唯一地分解成数域P上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式f(X)= Pl (x)p2 (x)•- p s (x) = 4 (x)§2 (x) ••q (x),那么必有s = t ,并且适当排列因式的次序后有Pi(x) = c i q i(x),i = 1,2,•••,$,其中Cf(i = 1,2,…,s)是一些非零常数. 定理6如果不可约多项式"(x)是/(X)的k重因式(k>\),那么它是微商广(x)的—1重因式.定理7 (余数定理)用一次多项式A-6Z去除多项式/(X),所得的余式是一个常数,这个常数等于函数值/(&).定理8 P[x]中n次多项式(// > 0)在数域P中的根不可能多于〃个,重根按重数计算.定理9如果多项式/(x), g(x)的次数都不超过川,而它们对幵+ 1个不同的数弘冬,•••£+]有相同的值,即/g)= g(e),i = 1,2,•••/1 + 1,那么f(x) = g(x). 代数基本定理每个次数21的复系数多项式在复数域中有一根.复系数多项式因式分解定理每个次数的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.实系数多项式因式分解定理每个次数XI的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积.定理10 (高斯(Gauss)引理)两个本原多项式的乘积还是本原多项式.定理11如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.定理12设/(朗=唧+%的+・•• +如是一个整系数多项式,而二是它的有理S根,其中互素,那么必有s\a n,r\a0.特别地,如果/(x)的首项系数"” =1 , 那么/(x)的有理根是整根,而且是心的因子.I定理13 (艾森斯坦(Eisenstein)判别法)设f(x) = a…x n + a…_x x n~x + • • •+a0是一个整系数多项式,如果有一个素数",使得1. p I a n ;2・PI勺_],%_2昇・・,°0;3・ p 2 / a ()那么/(x)在有理数域上是不可约的.第二章定理1对换改变排列的奇偶性.定理2任意一个"级排列与排列12・."都可以经过一系列对换互变,并且所作 对换的个数与这个排列有相同的奇偶性.立:a kA\ + % 人2 + ••• +a kn A m Cl \l A \ j + Cl 2!A 2 丿 + …+ 勺/帀定理4 (克拉默法则)如果线性方程组 a [X x A +a n x 2+-- + a Xn x n =b r“2內 + «22X 2 + ・・・ + a 2n X n = b 2,<°"內+°”2兀2+••• + %"="“ 4如…"J 的系数矩阵A=如如…①”♦ • • ♦ • •.a n\ Cl n2 …%.的行列式〃=国H 0 ,定理3设d =5 (':2 ,州表示元素®的代数余子式,则下列公式成〃,当《 =二 飞当kHi那么该线性方程组有解, 并且解是唯一的,解可以通过系数表为旦,… d=佥, 其中©是把矩阵A 中第丿•列换成方程组的常数项所成的行列式,即定理5如果齐次线性方程组4內+如七+•••+"],耳=°, 。