不可约多项式和极小多项式

合集下载

极小多项式

极小多项式

极小多项式?
在抽象代数中,一个域上的代数的元素之极小多项式(或最小多项式)是它满足的最低次多项式。

此概念对线性代数与代数扩张的研究极有助益。

1.形式定义
设为域,为有限维-代数。

对任一元素,集合张出有限维向量空间,所以存在非平凡的线性关系:
可以假设,此时多项式满足。

根据多项式环里的除法,可知这类多项式中只有一个次数最小者,称之为的极小多项式。

由此可导出极小多项式的次数等於,而且可逆若且唯若其极小多项式之常数项非零,此时可以表成的多项式。

2,矩阵的极小多项式
考虑所有矩阵构成的-代数,由於,此时可定义一个矩阵之极小多项式,而且其次数至多为;事实上,根据凯莱-哈密顿定理,可知其次数至多为,且其根属於该矩阵的特徵值集。

极小多项式是矩阵分类理论(约当标准形、有理标准形)的关键。

3,极小多项式与代数扩张
设为的有限扩张,此时可视为有限维-代数。

根据域的性质,极小多项式必为素多项式。

元素的迹数及范数等不变量可以从极小多项式的系数读出。

不可约多项式

不可约多项式
f m ( x ) ′ = mf m 1 ( x ) f ′ ( x ) . 4、
第一章 多项式
定理1.6.1:若不可约多项式 p ( x ) 是 f ( x ) 的k重因式(k>1),则 p ( x ) 是 f ′ ( x ) 的k-1重因 式,特别多项式 f ( x ) 的单因式不是 f ′ ( x ) 的因 式。 证:
故 f ( x ) 在Q上的标准分解式为
3
f ( x ) = ( x 1) ( x 2 2 )
第一章
多项式
问题:多项式 f ( x ) 在 F [ x ] 中没有重因式, f ( x ) 在 F [ x ] 中是否也没有重因式? 由于多项式 f ( x ) 的导数以及两个多项式互素 与否在由数域F过渡到含F的数域 F 时并无改变, 故 f ( x ) 有没有重因式不因数域的扩大而改变。
于是: 1、判别 f ( x )有没有重因式,只要求 f ( x ) , f ′ ( x ) 的最大公因式 d ( x ) , f ( x ) 的重因式的重数恰好是 d ( x ) 中重因式的重数加1。此法不能求 f ( x ) 的单因式。 2、分离重因式,即求 f ( x ) 的所有不可约的单 因式:
f ( x ) = pk ( x ) g ( x ) ,
= p k 1 ( x ) kp′ ( x ) g ( x ) + p ( x ) g ′ ( x )
f ′ ( x ) = kp k 1 ( x ) p′ ( x ) g ( x ) + p k ( x ) g ′ ( x )
p ( x) g ( x), p ( x) p′ ( x ) ,
9q x+ p 2p
27q 2 p+ 4 p2

不可约多项式的判定及应用(黄嘉盛)详解

不可约多项式的判定及应用(黄嘉盛)详解

不可约多项式的判定及应用摘 要多项式理论是高等代数的重要组成部分,而不可约多项式是多项式中重要的概念. 本文主要对有理数域上不可约多项式的判别方法进行整理归纳, 较为系统的给出不可约多项式的判定方法。

对于一般的不可约多项式的判定有Eisenstein 判别法、Kronecker 判别法、Perron 判别法、Browm 判别法等。

研究了各判定方法的等价和包含关系。

此外,我们还给出了不可约多项式的一些应用。

关键词不可约多项式;判定方法;应用2. 不可约多项式的概念及性质2.1 整除的概念设P 是一个数域,对于[]P x 中任意两个多项式()f x 与()g x ,其中()0g x ≠,一定有[]P x 中的多项式()q x ,()r x 存在,使得()()()()f x q x g x r x =+成立,其中(())(())r x g x ∂<∂或者()0r x =,并且这样的()q x ,()r x 是唯一决定的。

定义2.1 数域P 上的多项式()g x 称为能整除()f x ,如果有数域P 上的多项式()h x 使等式()f x =()()g x h x成立,我们用“()g x |()f x ”表示()g x 整除()f x ,用“()g x ()f x ”表示()g x 不能整除()f x 。

定理 2.1[1] 对于数域P 上的任意两个多项式()f x ,()g x ,其中()g x 0≠,()g x |()f x 的充分必要条件是()g x 除()f x 的余式为零。

证明: 如果()r x = 0那么()f x =()()q x g x ,即()g x |()f x 。

反过来,如果()g x |()f x ,那么()f x =()()q x g x =()()q x g x +0,即()r x = 0。

注1: 带余除法中()g x 必须不为零。

下面介绍整除性的几个常用性质:(1) 如果()f x |()g x ,()g x |()f x ,那么()()f x cg x =,其中c 为非零常数。

不可约多项式本源多项式

不可约多项式本源多项式

有限域第一次大作业一、实验内容(1)构造有限域202F .(2)找到有限域202F 上的任意元素的极小多项式;(3)找到2F 上的一个本原多项式。

二、算法设计(1)我们知道有限域()n q F q p =的表达有三种形式:()i {}q q F ααα==,α为 ()q h x x x =-的根;()ii []()()()[],p q p F x F f x F x n f x =∈的次不可约多项式; ()iii {}0,q q F F α=U 为上的一个生成元;在这里我们主要通过找到2F 上的一个20次可约多项式来构造有限域202F ,并进行相应的运算。

由于只要找到一个2F 上的不可约多项式,我们采用的算法:()a 随机生成一个20次2F 上的多项式,()b 判断多项式为不可约的,pari 代码见附录1;通过pari 我们得到了一个20次的不可约多项式()(x)f ,则[]()2(x)F x f 即为我们想要的有限域,在这有限域上可以直接进行相应的代数运算,pari 代码见附录2;(2)找到有限域202F 上的任意元素α的极小多项式()f x 的思路第一步:通过元素α的共轭元个数来判断极小多项式()f x 的次数;第二步:通过α的共轭元生成极小多项式()f x ;第三步:进一步判断该元素α是否为本原元,若是,则生成的极小多项式()f x 就是2F 上的本原多项式。

pari 代码见附录3;(3)由于上述方法(2)生成的极小多项式不一定是本原多项式,因此,我们还给出一个能找到上的本原多项式的方法,该方法也是基于随机生成多项式并判断是否为本原多项式,我们知道一个n 次不可约多项式()f x 是本原多项式的条件是其周期达到最大1n p -,由于()()11n p f x x --,所以只要11n k p p p -=L 时,若()|f x ()11 1,,n i p p x i k -⎛⎫ ⎪-= ⎪⎝⎭L ,则()f x 就是本原多项式,所用的算法思路如下第一步:随机产生一个2F 上的20次多项式()f x ;第二步:利用方法一判断该多项式()f x 是否为不可约的;第三步:进一步判断该多项式()f x 是否为本原多项式。

不可约多项式的判定及应用(黄嘉盛)详解

不可约多项式的判定及应用(黄嘉盛)详解

不可约多项式的判定及应用多项式理论是高等代数的重要组成部分,而不可约多项式是多项式中重要的概念.本文主要对有理数域上不可约多项式的判别方法进行整理归纳,较为系统的给出不可约多项式 Perron 判别法、Browm 判别法等。

研究了各判定方法的等价和包含关系。

此外,我们还给 出了不可约多项式的一些应用。

关键词不可约多项式;判定方法;应用2.不可约多项式的概念及性质2.1整除的概念设P 是一个数域,对于P[x]中任意两个多项式f(x)与g(x),其中g(x)H0,定有P[x]中的多项式q(x), r(x)存在,使得f(x) =q(x)g(x)+ r(x)成立,其中c(r(x))<c(g(x))或者r(x)=0,并且这样的q(x),r(x)是唯一决定的。

定义2.1数域P 上的多项式g(x)称为能整除f(x),如果有数域P 上的多项式h(x)使等式f (x) = g(x)h(x)我们用g(x)|f(x) ”表示g(x)整除f(x),用g(x) f (x) ”表示g(x)不能整除 f (x)。

定理2.1⑴ 对于数域P 上的任意两个多项式f(x) , g(x),其中的判定方法。

对于一般的不可约多项式的判定有 Eisenstein 判别法、Kronecker 判别法、 成立,H0, g(x) | f (x)的充分必要条件是g(x)除f (x)的余式为零。

证明:如果r(x) = 0那么f(x) = q(x)g(x),即g(x) | f (x)。

反过来,如果g(x) | f(x),那么 f(x) = q(x)g(x) = q(x)g(x) +0, 即卩 r(x) = 0。

注1:带余除法中g(x)必须不为零。

F 面介绍整除性的几个常用性质:(1)如果 f(x) | g(x), g(x) | f (x),那么 f(x)=cg(x),其中 c 为非零常数。

(2)如果 f(x) | g(x), g(x) |h(x),那么 f(x) | h(x)(整除的传递性)。

第一讲-高等代数选讲之多项式理论

第一讲-高等代数选讲之多项式理论

4、一元多项式环 所有系数在数域P中的一元多项式全体称为数域P 上的一元多项式环,记为 P x ,称P为 P x 的系数域。 5、一元多项式环的有关结论 多项式的加、减、乘运算对P x 封闭,且多项式的 加法、乘法均满足交换律与结合律,乘法对加法满足分 配率,乘法还满足消去律。 6、注意零多项式和零次多项式的区别。 零次多项式:不为零的常数 零多项式:常数零
练习:
当a, b, c取何值时,多项式 f x 与g x 相等?
2
其中f x x 5, g ( x) ax 2 bx 1 cx 2 x 2
P4 例1.2.2 1.2.3

例3设 f ( x)是非零实系数多项式, k 是一个 k f ( f ( x ) f ( x) ,则 f ( x) 为零次 正整数,且 k f ( x ) x 多项式或者 。
其中 c 为任意常数。 (10)多项式 f x 与cf x 有相同的因式与倍式; (11)两个多项式之间的整除关系不因系数域的扩大 而改变。 5、综合除法 设以 g x x a 除 f x an xn an1xn1 a1x a0 , 所得的商 q x bn1xn1 b1x b0 ,及余式 r x c0 , 则 比较 f x q x g x r x 两端同次幂的系数得 bn1 an , bn2 an1 abn1,, b0 a1 ab1, c0 a0 ab0
一元多项式的内容十分丰富,重点是整除与因式分 解的理论,最基本的结论是带余除法定理、最大公因式 存在定理、因式分解唯一性定理。在学习的过程中,如 能把握这两个重点和三大基本定理,就能够整体把握一 元多项式的理论。 对于多元多项式,则要理解 n 元多项式、对称多项 式等有关概念,掌握对称多项式表成初等对称多项式的 多项式的方法。

2.有限域上的不可约多项式有限域上的不可约多项式

2.有限域上的不可约多项式有限域上的不可约多项式
如何判别一个多项式不可约,并没有一个行 之有效的方法 1.在无限数域上的不可约多项式问题 复数域上的任何多项式都是可约的。 实数域上任何多项式,根据复根共轭的性质, 知道实数域上只有2次不可约多项式。 有理数域,存在任意次不可约多项式。
定理1:若n次整系数多项式f(x)∈Z[x]在有理 数域 Q 上可约,则 f(x) 在整数环 Z 上一定可约。 定 理 2( 艾 森 斯 坦 (Eisenstein) 判 别 法 ) : 设 f(x)=a0+a1x+…+anxn 是 整 系 数 多项 式 , 若 能 找到一个素数p,使得 (1)p不能整除an; (2)p|a0,a1,┅,an-1; (3)p2不能整除a0; 那么,f(x)在有理数域上不可约。

5.子群与陪集 概念,定理,陪集的实质 正规子群 6.商群与群同态基本定理 7.环的基本概念 环的零元,环的单位元,交换环 在环中讨论元素可逆 1-un=(1-u)(1+u+u2++un-1) 8.特征数 整环的特征数 9.子环,理想,商环 主理想,主理想环 10.多项式环

11.扩域与单扩域 线性空间与域的关系 素域 12.代数元与代数扩域 极小多项式 13.根域 根域的存在性与唯一性(同构意义下) 14.有限域,形式微商 15.本原元与本原多项式


二、证明及判别、计算 1.群 群? 元素阶与群的阶 陪集与划分,拉格朗日定理应用,特别是补充证明的一些结论。 子群,正规子群的验证和证明 设 是群G上的等价关系 ,并且对于 G的任意三个元素 a,x,x‘, 若axax’则必有x x‘。证明:与G中单位元等价的元素全体 构成G的一个子群。 H={xG|xe} 对任意的xH,xe=xe=xx-1,因此有 ex-1,所以x-1H, 对任意的x,yH,有xe,ye, 即x-1xy=eye=x-1x,因此有xyxe, 所以xyH 用群同态基本定理证明群同构

不可约多项式精品PPT课件

不可约多项式精品PPT课件
总是 f x 的因式。这样的因式称为平凡因式。
我们感兴趣的是,除了平凡因式外,f x
还有没有其他的因式?
一、不可约多项式 1、定义
定义1.5.1 设 f x 是 Px 中次数大于零的多项式,
如果在 Px 中,f x 只有平凡因式,则称 f x 在数域
F上不可约。若 f x 除平凡因式外,在 Px 中还有
解:利用带余除法,知 x 1, x 1 都是 f x 的因式,
即有 x2 1 f x。
在Qx上 f x x2 1 x2 2 x 1 x 1 x2 2
在Rx上 f x x2 1 x2 2 (x 1)(x 1)(x 2)(x 2)
如何知道 x a 是不是 f x 的一个因式?
若 p x f x ,又 p x 不可约。
由性质2, p x, f x 1. pu fv 1, pgu fgv g
px gx.
推论: 若 p x 不可约且 p x f1 x
则 p x 必整除某个 fi x,1 i s.
二、因式分解
fs x.
问题: f x Px, f 0, f x 是否可分解为
不可约多项式的乘积?
定理1.5.1:Px 中任一个nn 0 次多项式 f x
都可以分解成 Px 中不可约多项式的乘积。
证(归纳法): n=1时,命题显然成立。 假设命题对一切小于n的多项式成立,则当
f x n 时,
1、若 f x 不可约成立;
2、若 f x 可约,f x g x h x g n, h n.
由假设知 g x, h x 均可分解为不可约多项式的乘积。
问题:多项式 f x 分解成不可约多项式的乘积
是否唯一?
若 f x p1 x p2 x pr x, 取 c1c2 cr 1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不可约多项式和极小多项式
不可约多项式和极小多项式是数学中的两个重要概念,它们在代数学、数论和计算机科学等领域得到广泛应用。

不可约多项式是指在给定域上不能被分解为两个或多个次数更低的多项式的多项式,而极小多项式则是指在给定线性空间上的一个元素的最小的首一不可约多项式。

在代数学中,不可约多项式是研究域的结构和扩张的基础,而极小多项式则是研究线性变换和矩阵的算法的基础。

在数论中,不可约多项式是研究数域和代数数的基础,而极小多项式则是研究离散对数算法和椭圆曲线加密算法的基础。

在计算机科学中,不可约多项式和极小多项式在编码理论、卷积码、纠错码等方面都有广泛的应用。

因此,不可约多项式和极小多项式的研究不仅是代数学、数论和计算机科学等学科的基础,也是许多实际应用的关键。

- 1 -。

相关文档
最新文档