复合材料第二章复合原理简介详解演示文稿
合集下载
复合材料----复合材料的复合原理及界面

复合材料
第二章复合材料的复合原理及界面
1、弥散增强和颗粒增强的原理
1)弥散增强:复合材料是由弥散颗粒与基体复合而成,荷载主要由基体承担,弥散微粒阻碍基体的位错运动,微粒阻碍基体位错运动能力越大,增强效果愈大,微粒尺寸越小,体积分数越高,强化效果越好。
2)颗粒增强:复合材料是由尺寸较大(直径大于1 m)颗粒与基体复合而成,载荷主要由基体承担,但增强颗粒也承受载荷并约束基体的变形,颗粒阻止基体位错运动的能力越大,增强效果越好;颗粒尺寸越小,体积分数越高,颗粒对复合材料的增强效果越好。
2、什么是混合法则,其反映什么规律
混合法则(复合材料力学性能同组分之间的关系):σc=σf V f+σm V m,E c=E f V f+E m V m式中σ为应力,E为弹性模量,V 为体积百分比,c、m和f 分别代表复合材料、基体和纤维;反映的规律:纤维基体对复合材料平均性能的贡献正比于它们各自的体积分数。
3、金属基复合材料界面及改性方法有哪些
金属基复合材料界面结合方式:
①化学结合
②物理结合
③扩散结合
④机械结合。
界面改性方法:
①纤维表面改性及涂层处理;
②金属基体合金化;
③优化制备工艺方法和参数。
4、界面反应对金属基复合材料有什么影响
界面反应和反应程度(弱界面反应、中等程度界面反应、强界面反应)决定了界面的结构和性能,其主要行为有:
①增强了金属基体与增强体界面的结合强度;
②产生脆性的界面反应产物;
③造成增强体损伤和改变基体成分。
复合材料的复合理论

另外,复合材料中的裂纹的扩展在颗粒前受阻,发生应力钝 化或扩展路径发生偏转,同样可以消耗较多的断裂能,提高 材料的强度。
2、纤维(包括晶须、短纤维)复合材料增强机制
基体:通过界面将载荷有效地传递到增强相(晶须、纤 维等),不是主承力相。
纤维:承受由基体传递来的有效载荷,主承力相。
假定纤维、基体理想结合,且松泊比相同;在外力作用 下,由于组分模量的不同产生了不同形变(Байду номын сангаас移),在基 体上产生了剪切应变,通过界面将外力传递到纤维上(见 下图)。
Xc = Xm Vm + XfVf 或 Xc = XfVf + Xm1 - Vf) 式中: X:材料的性能,如强度、弹性模量、密度等;V: 材料的体积百分比; 下脚标 c、m、f 分别代表复合材料、 基体和纤维。
2、连续纤维单向增强复合材料(单向层板)
2-1 应力 - 应变关系和弹性模量 在复合材料承受静张应力过程中,应力—应变经历以
复合材料的面内剪切强度:在垂直纤维方向承受剪切时,
剪切力发生在垂直
纤维的截面内,剪切力由基体和纤维共同承担。
复合材料的复合理论
一、复合材料 增强机制 二、复合材料的复合法则 — 混合定律
一、复合材料 增强机制
1、 颗粒增强复合材料增强机制
1)颗粒阻碍基体位错运动强化: 基体是承受外来载荷相;颗粒起着阻碍基体位错运动的作 用,从而降低了位错的流动性。
颗粒起着阻碍基体位错运动作用示意图
颗粒增强复合材料的强度直接与颗粒的硬度成正比,因为 颗粒必须抵抗位错堆集而产生的应力,另外,颗粒相与基 体的结合力同样影响着材料的强度。
下阶段: (1)基体、纤维共同弹性变形;2)基体塑性屈服、 纤维弹性变形;3)基体塑性变形、纤维弹性变形或基体、 纤维共同塑性变形;4)复合材料断裂。 对于复合材料的弹性模量: 阶段1:E = EfVf + Em(1-Vf) 阶段2:E = EfVf + ( dm/dm)(1-Vf)
2、纤维(包括晶须、短纤维)复合材料增强机制
基体:通过界面将载荷有效地传递到增强相(晶须、纤 维等),不是主承力相。
纤维:承受由基体传递来的有效载荷,主承力相。
假定纤维、基体理想结合,且松泊比相同;在外力作用 下,由于组分模量的不同产生了不同形变(Байду номын сангаас移),在基 体上产生了剪切应变,通过界面将外力传递到纤维上(见 下图)。
Xc = Xm Vm + XfVf 或 Xc = XfVf + Xm1 - Vf) 式中: X:材料的性能,如强度、弹性模量、密度等;V: 材料的体积百分比; 下脚标 c、m、f 分别代表复合材料、 基体和纤维。
2、连续纤维单向增强复合材料(单向层板)
2-1 应力 - 应变关系和弹性模量 在复合材料承受静张应力过程中,应力—应变经历以
复合材料的面内剪切强度:在垂直纤维方向承受剪切时,
剪切力发生在垂直
纤维的截面内,剪切力由基体和纤维共同承担。
复合材料的复合理论
一、复合材料 增强机制 二、复合材料的复合法则 — 混合定律
一、复合材料 增强机制
1、 颗粒增强复合材料增强机制
1)颗粒阻碍基体位错运动强化: 基体是承受外来载荷相;颗粒起着阻碍基体位错运动的作 用,从而降低了位错的流动性。
颗粒起着阻碍基体位错运动作用示意图
颗粒增强复合材料的强度直接与颗粒的硬度成正比,因为 颗粒必须抵抗位错堆集而产生的应力,另外,颗粒相与基 体的结合力同样影响着材料的强度。
下阶段: (1)基体、纤维共同弹性变形;2)基体塑性屈服、 纤维弹性变形;3)基体塑性变形、纤维弹性变形或基体、 纤维共同塑性变形;4)复合材料断裂。 对于复合材料的弹性模量: 阶段1:E = EfVf + Em(1-Vf) 阶段2:E = EfVf + ( dm/dm)(1-Vf)
2-12复合材料的复合原理及界面

56
弥散增强vs颗粒增强
颗粒尺寸越小,体积分数越高,增强效果越好?
57
Al–10Ti elemental powder mixtures via friction stir processing 离心条件下SiC 颗粒增强铝基 活塞微观组织图
58
小颗粒:尺寸上有优势,但体积分数难以提高, 且在基体上分散困难。
6
必须根据复合材料所需的性能来选择组成复合材料的 基体材料和增强材料。 如所设计的复合材料是用作结构件,则复合的目的就 是要使复合后材料具有最佳的强度、刚度和韧性等。
7
设计结构件复合材料时,首先必须明确其中一种组
元主要起承受载荷的作用,它必须具有高强度和高模量。
这种组元就是所要选择的增强材料;
而其它组元应起传递载荷及协同的作用,而且要把
12
1)颗粒增强复合材料的原则
(1)颗粒应高度弥散均匀分散在基体中 阻碍导致塑性变形的位错运动(金属、陶瓷基体) 或分子链的运动(聚合物基体)。 (2)颗粒的直径大小要合适 因为颗粒直径过大,会引起应力集中或颗粒本身破 碎,从而导致材料强度降低; 颗粒直径太小,则起不到大的强化作用。因此,一
般粒径为几微米到几十微米。
35
实际上,有许多方法可观察到位错:透射电镜、浸
蚀法、缀饰法、X射线衍射法、场离子显微镜等。
36
位错分为两类:刃型位错和螺型位错,由滑移区 与未滑移区的分界线来确定类型。
37
刃型位错
如图:上半部分相对下半部分沿ABCD滑移 了一个原子间距,多余的半原子面与滑移 面交线即为刃型位错。
多余的半原子面不一定是平面,可以是见 曲面。但位错线是一定垂直于滑移方向的,
复合材料PPT课件

前景
随着科技的不断进步和环保意识的提高,未来复合材料将 更加注重环保、可再生、高性能等方向的发展,同时其在 智能制造、新能源等领域的应用也将不断拓展。
02
CATALOGUE
复合材料的组成与结构
基体材料
01
02
03
定义
基体材料是复合材料中连 续相,起粘结、保护增强 材料并传递载荷到增强材 料上的作用。
生物相容性
某些复合材料具有良好的生物相容性 ,可用于医疗器械、人体植入物等领 域。
05
CATALOGUE
复合材料的应用实例
航空航天领域应用
飞机结构
复合材料用于制造飞机机翼、机身和尾翼等结构部件,具 有轻质高强、耐腐蚀、耐疲劳等优点,可提高飞行器的性 能和燃油经济性。
航天器结构
复合材料在航天器结构中也有广泛应用,如卫星、火箭和 空间站等,其轻质高强的特性有助于减轻发射重量和提高 有效载荷。
美观、舒适、环保等特点。
03
动力系统
复合材料可用于制造汽车发动机罩、进气歧管等动力系统部件,具有优
异的耐高温性能和力学性能。
建筑领域应用
建筑结构
复合材料可用于制造建筑结构中的梁、板、柱等承重部件,具有轻质高强、耐腐蚀、耐疲 劳等优点,有助于提高建筑物的抗震性能和耐久性。
建筑装饰
复合材料也可用于制造建筑装饰材料,如墙板、吊顶、隔断等,具有美观、环保、易安装 等特点。
某些复合材料在受到冲击时能 够吸收大量能量,表现出良好
的抗冲击性能。
物理性能
低密度
相对于金属材料,复合材料通常具有较低的 密度,有利于实现轻量化设计。
优异的电绝缘性
某些复合材料具有极佳的电绝缘性能,适用 于电气和电子设备。
随着科技的不断进步和环保意识的提高,未来复合材料将 更加注重环保、可再生、高性能等方向的发展,同时其在 智能制造、新能源等领域的应用也将不断拓展。
02
CATALOGUE
复合材料的组成与结构
基体材料
01
02
03
定义
基体材料是复合材料中连 续相,起粘结、保护增强 材料并传递载荷到增强材 料上的作用。
生物相容性
某些复合材料具有良好的生物相容性 ,可用于医疗器械、人体植入物等领 域。
05
CATALOGUE
复合材料的应用实例
航空航天领域应用
飞机结构
复合材料用于制造飞机机翼、机身和尾翼等结构部件,具 有轻质高强、耐腐蚀、耐疲劳等优点,可提高飞行器的性 能和燃油经济性。
航天器结构
复合材料在航天器结构中也有广泛应用,如卫星、火箭和 空间站等,其轻质高强的特性有助于减轻发射重量和提高 有效载荷。
美观、舒适、环保等特点。
03
动力系统
复合材料可用于制造汽车发动机罩、进气歧管等动力系统部件,具有优
异的耐高温性能和力学性能。
建筑领域应用
建筑结构
复合材料可用于制造建筑结构中的梁、板、柱等承重部件,具有轻质高强、耐腐蚀、耐疲 劳等优点,有助于提高建筑物的抗震性能和耐久性。
建筑装饰
复合材料也可用于制造建筑装饰材料,如墙板、吊顶、隔断等,具有美观、环保、易安装 等特点。
某些复合材料在受到冲击时能 够吸收大量能量,表现出良好
的抗冲击性能。
物理性能
低密度
相对于金属材料,复合材料通常具有较低的 密度,有利于实现轻量化设计。
优异的电绝缘性
某些复合材料具有极佳的电绝缘性能,适用 于电气和电子设备。
复合材料的复合原理及界面

1、充分利用不同增强体的性能优势,获得比单一复合更加优异 的综合性能。 2、优势:获得良好单向性能的同时,获得良好的基体性能。不 足:长纤维增强的制备成本高,颗粒增强使成型难度更大。
3
2.6 复合材料界面及其改性
界面的基本概念 复合材料的界面粘结机理 聚合物基复合材料的界面改性 金属基复合材料的界面改性 层状复合材料的界面
4
一、界面的基本概念
复合材料的界面是指基体与增强体之间化学成 分有显著变化的、构成彼此结合的、能起载荷 传递作用的微小区域。 复合材料的界面虽然很小,但它是有尺寸的, 约几个纳米到几个微米,是一个区域,或一个 带、一层,它的厚度呈不均匀分布状态。
5
界面通常可能包含以下几个部分: 1、基体和增强体的部分原始接触面;
界面区域的结构与性质不同于两相中的任一相, 结构上这一界面区由五个亚层组成。
12
图1 界面区域示意图
1一外力场; 2-基体;3-基体表面区;4-相互渗透区;5一增强体表面;6-增强体
13
基体和增强体通过界面结合在一起,构成复合材料
整体,界面结合的状态和强度对复合材料的性能有
重要影响。 对于各种复合材料都要求有合适的界面结合强度。 界面的结合强度一般是以分子间力、表面张力(表面 自由能)等表示的,而实际上有许多因素影响着界面
7
复合材料界面的作用可以归纳为以下几种效应: 1、传递效应 界面能传递力,即将外力传递给增强 体,起到基体和增强体之间的桥梁作用。 2、阻断效应 结合适当的界面有阻止裂纹扩展、中 断材料破坏、减缓应力集中的作用。 3、不连续效应 在界面上产生物理性能的不连续性 等现象,如抗电性、耐热性、尺寸稳定性等。
9
3
2.6 复合材料界面及其改性
界面的基本概念 复合材料的界面粘结机理 聚合物基复合材料的界面改性 金属基复合材料的界面改性 层状复合材料的界面
4
一、界面的基本概念
复合材料的界面是指基体与增强体之间化学成 分有显著变化的、构成彼此结合的、能起载荷 传递作用的微小区域。 复合材料的界面虽然很小,但它是有尺寸的, 约几个纳米到几个微米,是一个区域,或一个 带、一层,它的厚度呈不均匀分布状态。
5
界面通常可能包含以下几个部分: 1、基体和增强体的部分原始接触面;
界面区域的结构与性质不同于两相中的任一相, 结构上这一界面区由五个亚层组成。
12
图1 界面区域示意图
1一外力场; 2-基体;3-基体表面区;4-相互渗透区;5一增强体表面;6-增强体
13
基体和增强体通过界面结合在一起,构成复合材料
整体,界面结合的状态和强度对复合材料的性能有
重要影响。 对于各种复合材料都要求有合适的界面结合强度。 界面的结合强度一般是以分子间力、表面张力(表面 自由能)等表示的,而实际上有许多因素影响着界面
7
复合材料界面的作用可以归纳为以下几种效应: 1、传递效应 界面能传递力,即将外力传递给增强 体,起到基体和增强体之间的桥梁作用。 2、阻断效应 结合适当的界面有阻止裂纹扩展、中 断材料破坏、减缓应力集中的作用。 3、不连续效应 在界面上产生物理性能的不连续性 等现象,如抗电性、耐热性、尺寸稳定性等。
9
《复合材料原理》PPT课件

的树脂(如乙烯基酯树脂)为基体; 对于碱性介质:宜采用无碱玻璃纤维为增强体和耐碱性
良好的树脂(如胺固化环氧树脂)。
.
15
复合材料特性:
.
16
抗拉强度与密度 之比 比强度高的材料 能承受高的应力
弹性模量与密度之 比 比模量高说明材料 轻而且刚性大
.
17
疲劳破坏的种类不同: 金属: 突发性破坏 疲劳强度极 限是其拉伸强度的30%~50% 聚合物基复合材料: 有预兆破坏 极限为拉伸强度的70%~80%
.
20
(1) 密度低 ; (2) 耐腐蚀; (3) 易氧化、老化; (4) 聚合物的耐热性通常较差; (5) 易燃; (6) 低的摩擦系数; (7) 低的导热性和高的热膨胀性; (8) 极佳的电绝缘性和静电积累; (9) 聚合物可以整体着色而制得带色制品。 (10) 聚合物的一些力学性能随其分子结构的改变而变化。
复合材料原理
.
1
主要内容
1、绪论 2、复合材料的复合效应 3、复合材料的界面状态解析 4、复合体系的界面结合特性 5、复合体系的典型界面反应 6、复合材料的界面处理技术
.
2
7、复合材料物理和化学性能的复合规律 8 、结构复合材复合材料的起源:
.
4
二、复合材料的定义
和聚芳酰胺纤维等高模量纤维为增强剂;
☼ 4、金属、陶瓷基复合材料:上世纪70年代则又出现以
金属、陶瓷等为基体材料的复合材料。
.
7
四、复合材料的分类:
1、无机非金属基复合材料 2、聚合物基复合材料 3、金属基复合材料
基体材料不同
.
8
4.1 复合材料中的材料设计和结构设计
工程应用的角度
结构复合材料
良好的树脂(如胺固化环氧树脂)。
.
15
复合材料特性:
.
16
抗拉强度与密度 之比 比强度高的材料 能承受高的应力
弹性模量与密度之 比 比模量高说明材料 轻而且刚性大
.
17
疲劳破坏的种类不同: 金属: 突发性破坏 疲劳强度极 限是其拉伸强度的30%~50% 聚合物基复合材料: 有预兆破坏 极限为拉伸强度的70%~80%
.
20
(1) 密度低 ; (2) 耐腐蚀; (3) 易氧化、老化; (4) 聚合物的耐热性通常较差; (5) 易燃; (6) 低的摩擦系数; (7) 低的导热性和高的热膨胀性; (8) 极佳的电绝缘性和静电积累; (9) 聚合物可以整体着色而制得带色制品。 (10) 聚合物的一些力学性能随其分子结构的改变而变化。
复合材料原理
.
1
主要内容
1、绪论 2、复合材料的复合效应 3、复合材料的界面状态解析 4、复合体系的界面结合特性 5、复合体系的典型界面反应 6、复合材料的界面处理技术
.
2
7、复合材料物理和化学性能的复合规律 8 、结构复合材复合材料的起源:
.
4
二、复合材料的定义
和聚芳酰胺纤维等高模量纤维为增强剂;
☼ 4、金属、陶瓷基复合材料:上世纪70年代则又出现以
金属、陶瓷等为基体材料的复合材料。
.
7
四、复合材料的分类:
1、无机非金属基复合材料 2、聚合物基复合材料 3、金属基复合材料
基体材料不同
.
8
4.1 复合材料中的材料设计和结构设计
工程应用的角度
结构复合材料
2复合材料原理解析

(b) 20vol%PMN(×1000)
?
二、复合材料的结构与复合效果
复合材料的结构类型
③2-2型结构:两种组分皆呈层状叠合而成的多层结构。
二、复合材料的结构与复合效果
复合材料的结构类型
④ 2-3 型结构:基体为 3 维连续相,增强体或功能体为 2 维 结构的片状材料。增强体可随机,也可按一定方向取向分 布于基体中。
分散相一般是增强体或功能体。 连续相: 基体一般是连续相。
(d) 40vol%PMN(×1000)
(b) 20vol%PMN(×1000)
二、复合材料的结构与复合效果
复合材料连通性的概念
连通性的概念
①基本思想:复合体系中的任何相,在空间的 0 维、 1 维 、2维或3维方向上是相互连通的。 ② 弥散和孤立颗粒的连通性为 0 ,是 0 维材料;纤维状材 料的连通性为1,是1维材料;相应的片状材料连通性为 2,是2维材料;基体为网络状的3维连通,是3维材料。
一、材料的复合效应
复合材料的复合效应------相乘效应
压电效应 在外加应力作用下,产生电荷,或在电场作用下产生形变 的一种功能材料。
F ----- - +++++
极化方向 ----- +++++ +
正压电效应示意图
逆压电效应示意图
(实线-形变前,虚线-形变后)
一、材料的复合效应
复合材料的复合效应------相乘效应
很清楚,但在实际已发现这种效应的存在。
例:交替叠层膜的硬度大于原单一镀膜的硬度和按线性混 合率的估算值。
二、复合材料的结构与复合效果
复合材料连通性的概念
复合材料的结构类型
材料的复合效果
二、复合材料的结构与复合效果
2-34复合材料的复合原理及界面解析(1)

此时,可以认为纤维应力等于其强度,纤维将发生断 裂,复合材料的强度为: σcu=σfuVf+(σm)εf (1-Vf)
其中(σm)εf是纤维断裂应变为ε时对应的基体的应力。
17
与连续纤维复合材料相似,我们可以得到最小体积 分数和临界体积分数Vmin和Vcrit。
当纤维的体积分数小于Vmin,当所有纤维断裂时复合 材料也不会断裂。
路径与材料的失稳破坏模式。
40
第二章 复合材料的复合原理及界面
2.1 复合原则 2.2 弥散增强及颗粒增强原理 2.3 单向连续纤维增强原理 2.4 短纤维增强原理 2.5 混杂增强原理 2.6 复合材料界面及其改性 2.7 复合材料界面表征
41
思考题:
1、如何使短纤维有序排列? 2、短纤维增强复合材料的优势和不足分别
28
透射电镜分析表明:复合材料界面上可以发现很多的 反应产物 ,除了几个纳米大小的MgO 颗粒和尖晶石 MgAl2O4颗粒外,还有为数不少的 MgP4颗粒。
另外,在界面上还有尺寸较大的Mg2Si 颗粒。 但是,看不出这些界面反应产物之间以及与纤维之间
存在共格关系 ,说明它们之间很可能是以非共格的形 式结合的。
4
2.4 短纤维增强原理
一、短纤维的作用特点及效应 二、高分子基复合材料增强原理 三、金属基复合材料增强原理 四、陶瓷基复合材料增强原理 五、水泥基复合材料增强原理
5
一、短纤维的作用特点及效应
短纤维的含义 应力传递理论 弹性模量、强度与纤维长度的关系
6
1、短纤维的含义
短纤维一般指长径比小于100的各种增强纤维。 作用于复合材料的载荷不直接作用于纤维,而
尺寸和形貌差距大的两种增强体之间的混合更为制备成 分均匀的复合材料带来了一定难度。
其中(σm)εf是纤维断裂应变为ε时对应的基体的应力。
17
与连续纤维复合材料相似,我们可以得到最小体积 分数和临界体积分数Vmin和Vcrit。
当纤维的体积分数小于Vmin,当所有纤维断裂时复合 材料也不会断裂。
路径与材料的失稳破坏模式。
40
第二章 复合材料的复合原理及界面
2.1 复合原则 2.2 弥散增强及颗粒增强原理 2.3 单向连续纤维增强原理 2.4 短纤维增强原理 2.5 混杂增强原理 2.6 复合材料界面及其改性 2.7 复合材料界面表征
41
思考题:
1、如何使短纤维有序排列? 2、短纤维增强复合材料的优势和不足分别
28
透射电镜分析表明:复合材料界面上可以发现很多的 反应产物 ,除了几个纳米大小的MgO 颗粒和尖晶石 MgAl2O4颗粒外,还有为数不少的 MgP4颗粒。
另外,在界面上还有尺寸较大的Mg2Si 颗粒。 但是,看不出这些界面反应产物之间以及与纤维之间
存在共格关系 ,说明它们之间很可能是以非共格的形 式结合的。
4
2.4 短纤维增强原理
一、短纤维的作用特点及效应 二、高分子基复合材料增强原理 三、金属基复合材料增强原理 四、陶瓷基复合材料增强原理 五、水泥基复合材料增强原理
5
一、短纤维的作用特点及效应
短纤维的含义 应力传递理论 弹性模量、强度与纤维长度的关系
6
1、短纤维的含义
短纤维一般指长径比小于100的各种增强纤维。 作用于复合材料的载荷不直接作用于纤维,而
尺寸和形貌差距大的两种增强体之间的混合更为制备成 分均匀的复合材料带来了一定难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
短纤维增强(2)
为了使纤维的承载达到纤维的最大应力值,纤维长 度必须大于临界纤维长度lc或临界长径比(lc/d)
l/lc越大,拉伸强度越大; 2l/lc>>1时,拉伸强度为连续纤维的强度公式; l=lc时,短纤维增强的效果仅有连续纤维的50%; l/lc=10时,短纤维增强的效果可达到连续纤维的95% 所以为了提高复合材料的强度,应尽量使用长纤维。
用金属或高分子聚合物把有耐热性、硬度 高但不耐冲击的金属氧化物、氮化物、碳 化物复合的材料时,由于强化相颗粒较大, 故强化效果并不显著,但这种复材主要不 是提高强度,而是为了改善耐磨性或提高综 合力学性能。
(3)连续纤维增强
通常根据纤维形态可以分为连续纤维、非连续纤 维(短纤维)或晶须(长度约为100--1000μm、直径约 为1--10μm的单晶体)两类. 其增强机理是高强度、高模量的纤维承受载荷, 基体只是作为传递和分散载荷的媒介。
1 、加权特性
N
Pc (Pi ) n Vi
i 1
Pc为复合材料的特性,Pi为构成复合材料的原 材料的特性,Vi为构成复合材料的原材料的体积分 数,n由实验确定,其范围为 -1n1。密度、热膨 胀系数热传导、电导、透磁率等都属于此类。
2、乘积特性
把两种性能可以相互转换的功能材料――热-形变材料(以 X/Y表示)与另一种形变-电导材料(Y/Z)复合,其效果是:
M为基体 F为纤维
连续纤维增强(纤维轴向模量)
c m f
cVc mVm f Vf
Vc Vm Vf=1
(1)式 的两边同时除以
得到
E
EmVm
Ef Vf
(1)
E1 E f V f Em (1V f )
实际中还有不同的 泊松比导致的附加 应力。通过试验分 析,误差小于 1%~2%。测出两种 玻璃纤维增强聚酯 树脂体系的E1、Vf 之间的线型关系
对于平行于纤维方向和垂直于纤维方向的单向板,η0分别为 1和0,对于面内随即分布的纤维复合材料η0=3/8,三维随 机分布纤维复合材料η0=1/5
二、 物理性能的复合法则
对于复合材料,最引人注目的是其高比强度、高 比模量等力学性能。但是其物理性能也应该通过 复合化得到提高。 复合法则有两种: 1、加权(平均)特性 2、乘积(传递)特性
弥散增强原理
复合材料的屈服强度
y
(2 3
Gmb
d
Vp
)
弥散质点的尺寸越小,体积分数越大,强化效果 越好。一般Vp=0.01 ~ 0.15,dp=0.001μm ~ 0.1 μm
不同体积分数纳米粒子SiC(0.07 μm)增强 Si3N4(0.5 μm)的性能
0
853
7.4
复合材料第二章复合原理简介 详解演示文稿
优选复合材料第二章复合原理 简介
一、复合材料增强机制
弥散增强 颗粒增强 纤维增强(连续纤维,短纤维)
50μm
弥散增强型 50x
颗粒增强型 50x
50μm
(1)弥散增强
硬质颗粒如Al2O3, TiC,SiC阻碍基体中 的位错运动(金属基) 或分子链运动(高聚物 基) 。增强机理可用 位错绕过理论解释。 载荷主要由基体承担 ,弥散微粒阻碍基体 的位错运动。
纤维对横向强度有减弱的作用。纤维在与其相 邻的基体中产生的应力和应变对基体产生约束, 使复合材料的断裂应变比复合前要低的多(断裂 应力课本P28式2.34)
前提是基体和增强体很好的结合。
4)短纤维增强(1)
作用于复合材料的载荷是作用于基体材料并通 过纤维端部与端部附近的纤维表面将载荷传递 给纤维。当纤维长度超过应力传递所发生的长 度时,端头效应可以忽略,纤维可以被认为是 连续的,但对于短纤维复合材料,端头效应不 可忽略,同时复合材料的性能是纤维长度的函 数。
Ec Em E f
EmE f
Ef
并联模型
Em
串联模型
体积分数fr
在高性能纤维增强复合材料中,纤维模量比 基体树脂模量大的多,在纤维体积含量为50 %~60%的复合材料中,基体对E1的影响很 小,纤维对E2的影响也很小,所以可以得到 近似
E1 E f V f E2 Em / Vm
纤维增强复合材料横向强度
碳纤维
2 600
7
Lc/d
Lc
(mm)
189 0.38
19
38
18 1.75
35 3.5
40 0.52
33 0.23
短纤维增强(3)
当短纤维按不同取向程度取向分布时,短纤维的增强效率 随取向程度的降低而降低。对于取向分布的短纤维复合材 料,可以在混合弹性模量式中增加一个取向效率因子η0
E1 0 E f V f Em (1 V f )
几种典型复合材料的临界长度Lc和长径比Lc/d
Tm 基体 (MN/m2)
纤维
σfTS (MN/m2)
d (μm)
Ag Cu Al 环氧 聚脂 环氧
55 Al2O3晶须 20 800
2
76
钨丝
2 900 2 000
80
硼纤维
2 800
100
40
硼纤维
2 800
100
30 玻璃纤维 2 400
13
40
复合材料纵向断裂强度可以认为与纤维断 裂应变值对应的复合材料应力相等,根据混 合法则,得到复合材料纵向断裂强度,即
eu fuVf ( m ) r (1Vf )
SiC/硼硅玻璃复合材料的强度 随纤维体积含量线性增加
Chapter 9 Composites
14
连续纤维增强(横向模量)
1 Vm Vf EmVf E f (1Vf )
16.7
0.05
887
8.0
17.3
0.10
940
8.5
18.0
0.20
1 055
7.6
21.0
(2)颗粒增强
颗粒的尺寸较大(>1 μm),基体承担主要
的载荷,颗粒阻止位 y
错的运动,并约束基 体的变形
3GmGpbVp1 2 2d (1Vp )c
颗粒的尺寸越小,体积分数越大,强化效果越好。一般 在颗粒增强复合材料中,颗粒直径为 1 ~ 50μm,颗粒间 距为1 ~ 25μm,颗粒的体积分数为0.05 ~ 0.5。
X •Y X YZ Z
由于两组分的协同作用得到了另一种热-电导功能复合材料, 借助类似关系可以通过各种功能材料复合成各种功能复合材料