备战2021中考数学考点提升训练——专题四十六:不等式与不等式组
2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)1.列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:A型B型销售额时间型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?2.某网店销售甲、乙两种书包,已知甲种书包每个售价比乙种书包每个售价2倍少30元,网购2个甲种书包和3个乙种书包共花费255元(免运费).请解答下列问题:(1)该网店甲、乙两种书包每个售价各是多少元?(列方程组解答此问)(2)根据消费者需求,该网店决定用不超过8900元购进甲、乙两种书包共200个,且甲种书包的数量超过87个,已知甲种书包每个进价为50元,乙种书包每个进价为40元,该网店有哪几种进货方案;(3)在(2)条件下,若该网店推出促销活动:一次性购买同一种书包超过10个,赠送1个相同的书包,该网店这次所购进书包全部售出,共赠送了4个书包,获利1250元,直接写出该网店甲、乙两种书包各赠送几个.3.北流市某初中为了改善教师办公条件,计划采购A、B两种型号空调,已知采购2台A 型空调和1台B型空调需要费用24000元,3台A型空调比4台B型空调的费用多3000元.(1)求A型空调和B型空调每台各需多少元?(2)若学校计划采购A、B两种型号空调共30台,B型空调的台数不多于A型空调台数的2倍,两型号空调的采购总费用不超过218000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?4.养牛场的李大叔分三次购进若干头大牛和小牛,其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如表:大牛(头)小牛(头)总价(元)第一次439900第二次269000第三次678550(1)李大叔以折扣价购买大牛和小牛是第次;(2)每头大牛和小牛的原价分别为多少元?(3)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折扣相同),且总价不低于8100元,那么他共有哪几种购买方案?5.在新冠肺炎疫情期间,为保证孩子们的身心健康发展,各级各类学校都进行了“停课不停学”活动,某校七年级开展了网上教学,并对学生的学习情况进行了调查.经过统计,我们发现:大约有二分之一的孩子是通过电脑进行学习,约四分之一的孩子是利用手机进行学习,约六分之一的孩子是利用P AD等其他电子设备进行学习,而在受访班级中,平均每个班都有不超过4名同学没有进行线上学习;若该校七年级每个班的学生总数都超过了40人,请你分析一下,该所学校七年级每个班学生人数的范围.6.便利店老板从厂家购进A、B两种香醋,A种香醋每瓶进价为5元,B种香醋每瓶进价为6元,共购进70瓶,花了390元,且该店A种香醋售价7元,B种香醋售价9元.(1)该店购进A、B两种香醋各多少瓶?(2)将购进的70瓶香醋全部售完可获利多少元?(3)老板计划再以原来的进价购进A、B两种香醋共150瓶,且投资不超过850元,仍以原来的售价将这150瓶香醋售完,且确保获利不少于398元,请问有哪几种购货方案?7.近日来,长江中下游连降特大暴雨.沿江两岸的群众受灾很严重.“一方有难、八方支援”我校某班准备捐赠一批帐篷和食品包共360个,其中帐篷比食品包多120个.(1)求帐篷和食品包各有多少个?(2)现计划租用甲、乙两种型号的货车共8辆.一次性将这批帐篷和食品包运往受灾地区,已知每辆甲种货车最多可装帐篷40个和食品包10个,每辆乙种货车最多可装帐篷30个和食品包20个.运输部门安排甲、乙两种型号的货车时,有几种方案?请你帮助设计出来.(3)在(2)的条件下.如果甲种型号的货车每辆需付运费1000元,乙种型号的货车每辆需付运费900元.假设你是决策者,应选择哪种方案可使运费最少?最少运费是多少元?8.在六一儿童节到来之际,某校特举行书画大赛活动,准备购买甲、乙两种文具作为奖品,奖励在活动中获得优秀的同学.已知购买2个甲种文具、3个乙种文具共需花费45元;购买3个甲种文具、1个乙种文具共需花费50元.(1)问:购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共100个,投入资金不少于995元又不多于1050元,设购买甲种文具x个,则有多少种购买方案?(3)设学校投入资金w元,在(2)的条件下,哪种购买方案需要的资金最少?最少是多少元?9.随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?10.基金会计划购买A、B两种纪念册共50册,已知B种纪念册的单价比A种的单价少10元,买3册A种纪念册与买4册B种纪念册的总费用310元.(1)求A、B两种纪念册的单价分别是多少元?(2)如果购买的A种纪念册的数量要大于B种纪念册数量的,但又不大于B种纪念册数量的,设购买A种纪念册m册.①有多少种不同的购买方案?②购买时A种纪念册每册降价a元(12≤a≤15),B种纪念册每册降价b元.若满足条件的购买方案所需的总费用一样,求总费用的最小值.参考答案1.解:(1)设每辆A型车的售价为x万元,B型车的售价为y万元,依题意,得:,解得:.答:每辆A型车的售价为18万元,B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得,解得:2≤m≤3.5,∵m为整数,∴m=2或3.∴有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.答:有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.2.解:(1)设甲种书包每个售价x元,乙种书包每个售价y元.根据题意得.解得.答:该网店甲种书包每个售价60元,乙种书包每个售价45元;(2)设购进甲种书包m个,则购进乙种书包(200﹣m)个,根据题意可得50m+40(200﹣m)≤8900.解得m≤90.∵m>87,∴87<m≤90.∵m为整数,∴m=88、89、90,200﹣m=112,111,110.∴该网店有3种进货方案:方案一、购进甲种书包88个,乙种书包112个;方案二、购进甲种书包89个,乙种书包111个;方案三、购进甲种书包90个,乙种书包110个;(3)分三种情况:①购进甲种书包88个,乙种书包112个时:设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,88×(60﹣50)﹣m×50+112×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3,4﹣m=1,故甲书包赠送3个,乙书包赠送1个;②购进甲种书包89个,乙种书包111个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,89×(60﹣50)﹣m×50+111×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3.5,∵m是整数,故此种情况不成立;③购进甲种书包90个,乙种书包110个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,90×(60﹣50)﹣m×50+110×(45﹣40)﹣(4﹣m)×40=1250,解得,m=4,4﹣m=0,故甲书包赠送4个,乙书包赠送0个.3.解:(1)设A型空调每台需x元,B型空调每台需y元,依题意,得:,解得:.答:A型空调每台需9000元,B型空调每台需6000元.(2)设购买A型空调m台,则购买B型空调(30﹣m)台,依题意,得:,解得:10≤m≤12.∵a为正整数,∴a可以取10,11,12,∴共有三种采购方案,方案1:采购A型空调10台,B型空调20台;方案2:采购A型空调11台,B型空调19台;方案3:采购A型空调12台,B型空调18台.(3)方案1所需费用为:9000×10+6000×20=210000(元);方案2所需费用为:9000×11+6000×19=213000(元);方案3所需费用为:9000×12+6000×18=216000(元).∵210000<213000<216000,∴采用方案1,采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.4.解:(1)第三次购买大牛和小牛的数量较多,但花费较少,所以李大叔以折扣价购买大牛和小牛是第三次;13230÷(9900+9000)=13230÷18900=0.7.故是打七折.故答案为:三.(2)设大牛的单价为x元,小牛单价为y元.根据题意得:,解得.故大牛的单价为1800元,小牛单价为900元.(3)设大牛买m头,小牛买(10﹣m)头.根据题意得:900m+450(10﹣m)≥8100,解得:m≥8.所以m=8或9.当m=8时,10﹣m=2;当m=9时,10﹣m=1;所以他共有两种购买方案.方案一:大牛买8头,小牛买2头;方案二:大牛买9头,小牛买1头.5.解:设该所学校七年级每个班学生人数为x,依题意,得:,解得:40<x≤48.答:该所学校七年级每个班学生人数的范围为40<x≤48.6.解:(1)设该店购进A种香醋X瓶,购进B种香醋Y瓶,根据题意得…..(1分)…………..(2分)解得.答:该店购进A种香醋30瓶,购进B种香醋40瓶;(2)(7﹣5)×30+(9﹣6)×40=60+120=180(元).答:70瓶香醋全部售完可获利180元;(3)设该店购进A种香醋a瓶,购进B种香醋(150﹣a)瓶,根据题意得,解得:50≤a≤52,因为a取正整数,所以a取50、51、52.购货方案为:(1)A种香醋购进50瓶,B种香醋购进100瓶.(2)A种香醋购进51瓶,B种香醋购进99瓶.(3)A种香醋购进52瓶,B种香醋购进98瓶.7.解:(1)设帐篷有x个,食品包有y个,依题意,得:,解得:.答:帐篷有240个,食品包有120个.(2)设安排甲种货车m辆,则安排乙种货车(8﹣m)辆,依题意,得:,解得:0≤m≤4.又∵m为非负整数,∴m可以取0,1,2,3,4,相对应的8﹣m为8,7,6,5,4,∴共有5种运输方案,方案1:安排8辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案3:安排2辆甲种货车,6辆乙种货车;方案4:安排3辆甲种货车,5辆乙种货车;方案5:安排4辆甲种货车,4辆乙种货车.(3)设总运费为w元,则w=1000m+900(8﹣m)=100m+7200,∵k=100>0,∴w随m的增大而增大,∴当m=0时,w取得最小值,最小值=100×0+7200=7200.∴选择方案1,可使运费最少,最少运费是7200元.8.解:(1)设购买一个甲种文具a元,一个乙种文具b元,由题意得:,解得.答:购买一个甲种文具需15元,一个乙种文具需5元;(2)根据题意得:995≤15x+5(100﹣x)≤1050,解得49.5≤x≤55,∵x是整数,∴x=50,51,52,53,54,55,∴有6种购买方案;(3)w=15x+5(100﹣x)=10x+500,∵10>0,∴W随x的增大而增大,当x=50时,W=10×50+500=1000(元),最小∴100﹣50=50.答:购买甲种文具50个,乙种文具50个时需要的资金最少,最少是1000元.9.解:(1)设购买A型新能源公交车每辆需x万元,购买B型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需100万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:5≤a≤6.5,因为a是整数,所以a=5,6;则共有两种购买方案:①购买A型公交车5辆,则B型公交车5辆:80×5+100×5=900(万元);②购买A型公交车4辆,则B型公交车6辆:80×4+100×6=920(万元);购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为900万元.10.解:(1)设A种纪念册的单价为x元,B种纪念册的单价为y元,依题意,得:,解得:.答:A种纪念册的单价为50元,B种纪念册的单价为40元.(2)①设购买A种纪念册m册,则购买B种纪念册(50﹣m)册,依题意,得:,解得:<m≤.又∵m为正整数,∴m可取15,16,17,18,∴共有4种不同的购买方案.②设总费用为w元,则w=(50﹣a)m+(40﹣b)(50﹣m)=(10﹣a+b)m+2000﹣50b.∵满足条件的购买方案所需的总费用一样,∴10﹣a+b=0,∴b=a﹣10.∵12≤a≤15,∴2≤b≤5.∵﹣50<0,∴w随b的增大而减小,∴当b=5时,w取得最小值,最小值=2000﹣50×5=1750,即总费用的最小值为1750元.。
2021年中考(通用版)数学一轮复习基础过关:不等式与不等式组

2021年中考(通用版)数学一轮复习《方程与不等式》基础过关不等式与不等式组一.选择题1.若x+2021>y+2021,则()A.x+2<y+2B.x﹣2<y﹣2C.2x<2y D.﹣2x<﹣2y 2.不等式7x+3≥3x﹣1的解集在数轴上表示正确的是()A.B.C.D.3.不等式组的解集为()A.﹣2<x<3B.x>﹣2C.x>3D.2<x<34.如果不等式(3﹣a)x<a﹣3的解集为x>﹣1,则a必须满足的条件是()A.a>0B.a>3C.a≠3D.a<35.不等式4(x﹣2)>2(3x﹣5)的非负整数解的个数为()A.1B.2C.3D.06.某单位为某中学捐赠了一批新桌椅.学校组织七年级300名学生搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.80B.120C.160D.2007.某商店甲商品的单价为8元,乙商品的单价为2元.已知购买乙商品的件数比购买甲商品的件数的2倍少4件,如果购买甲、乙两种商品的总件数不少于32,且购买甲、乙两种商品的总费用不超过148元.设购买甲商品x件,依题意可列不等式组得()A.B.C.D.8.若数a关于x的不等式组恰有三个整数解,且使关于y的分式方程的解为正数,则所有满足条件的整数a的值之和是()A.2B.3C.4D.5二.填空题9.由ac>bc得到a<b的条件是:c0(填“>”,“<”或“=”).10.不等式2x﹣1≤4的最大整数解是.11.点M(x﹣1,﹣3)在第四象限,则x的取值范围是.12.若关于x的一元一次不等式组的解集是x<﹣3,则m的取值范围是.13.若关于x、y的二元一次方程组的解满足x+y<1,则a的取值范围为.14.关于x的不等式组有四个整数解,则a的取值范围是.15.某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出辆自行车.三.解答题16.解不等式与不等式组,并把解集在数轴上表示出来.(1)5x﹣2>3(x+1);(2).17.解不等式组请结合解题过程,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在如图所示的数轴上表示出来:(4)原不等式组的解集为.18.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a元/千克的标价出售该种水果.(1)为避免亏本,求a的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a的最小值.19.某市为创建“全国文明城市”,计划购买甲、乙两种树苗绿化城区,购买50棵甲种树苗和20棵乙种树苗需要5000元,购买30棵甲种树苗和10棵乙种树苗需要2800元.(1)求购买的甲、乙两种树苗每棵各需要多少元.(2)经市绿化部门研究,决定用不超过42000元的费用购买甲、乙两种树苗共500棵,其中乙种树苗的数量不少于甲种树苗数量的,求甲种树苗数量的取值范围.(3)在(2)的条件下,如何购买树苗才能使总费用最低?20.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[﹣2.1]=﹣3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,﹣2.1=[﹣2.1]+0.9.请你解决下列问题:(1)[4.8]=,[﹣6.5]=;(2)如果[x]=3,那么x的取值范围是;(3)如果[5x﹣2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.参考答案一.选择题1.解:由x+2021>y+2021,得x>y.A、由x>y得到:x+2>y+2,本选项不符合题意.B、由x>y得到:x﹣2>y﹣2,本选项不符合题意.C、由x>y得到:2x>2y,本选项不符合题意.D、由x>y得到:﹣2x>﹣2y,本选项符合题意.选:D.2.解:移项,得:7x﹣3x≥﹣1﹣3,合并同类项,得:4x≥﹣4,系数化为1,得:x≥﹣1,选:A.3.解:,由不等式①,得x>﹣2,由不等式②,得x>3,原不等式组的解集是x>3,选:C.4.解:∵不等式(3﹣a)x<a﹣3的解集为x>﹣1,∴3﹣a<0,解得:a>3.选:B.5.解:∵4x﹣8>6x﹣10,∴4x﹣6x>﹣10+8,﹣2x>﹣2,x<1,则不等式的非负整数解为0,选:A.6.解:设可搬桌椅x套,即桌子x把,椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得2x+≤300,解得x≤120.答:最多可搬桌椅120套.选:B.7.解:设购买甲商品x件,则购买乙商品(2x﹣4)件,依题意得:.选:C.8.解:,解不等式﹣1≤(x﹣2),得:x≤2,解不等式3x﹣a≥﹣2(1+x),得:x≥,∵不等式组恰有三个整数解,∴﹣1<≤0,解得﹣3<a≤2,解分式方程得y=2a﹣1,由题意知,解得a>且a≠1,则满足﹣3<a≤2且a>且a≠1的所有整数有2,所以所有满足条件的整数a的值之和是2.选:A.二.填空题9.解:根据不等式的性质3,由ac>bc得到a<b的条件是:c<0.答案为:<.10.解:移项、合并,得:2x≤5,系数化为1,得:x≤2.5,∴不等式的最大整数解为2,答案为2.11.解:∵点M(x﹣1,﹣3)在第四象限,∴x﹣1>0解得x>1,即x的取值范围是x>1.答案为x>1.12.解:解不等式2x﹣1>3x+2,得:x<﹣3,∵不等式组的解集是x<﹣3,∴m≥﹣3.答案为m≥﹣3.13.解:,①+②,得:3x+3y=7+a,∵x+y<1,∴3x+3y<3,则7+a<3,解得a<﹣4,答案为:a<﹣4.14.解:,解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有四个整数解,是9、10、11、12,∴12<2﹣4a≤13,解得:﹣≤a<﹣,答案为:﹣≤a<﹣.15.解:设两个月售出x辆自行车,依题意,得:275x>250×200,解得:x>181,又∵x为正整数,∴x的最小值为182.答案为:182.三.解答题16.解:(1)去括号得:5x﹣2>3x+3,移项得:5x﹣3x>3+2,合并同类项得:2x>5,解得x>2.5,在数轴上表示不等式的解集为:.(2),解不等式①得:x≤4,解不等式②得:x>3,∴不等式组的解集是:3<x≤4,在数轴上表示不等式组的解集为:.17.解:(Ⅰ)解不等式①,得x>﹣1;(Ⅱ)解不等式②,得x≤2;(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:(Ⅳ)原不等式的解集为﹣1<x≤2.答案为:x>﹣1;x≤2;﹣1<x≤2.18.解:(1)设该水果店购进x千克该种水果,则销售收入为(1﹣10%)xa元,进货成本为18x,依题意得:(1﹣10%)xa﹣18x≥0,解得:a≥20.答:a的最小值为20.(2)设该水果店购进x千克该种水果,则销售收入为(70%xa+10×20%x)元,进货成本为18x,依题意得:70%xa+10×20%x﹣18x≥20%×18x,解得:a≥28.答:a的最小值为28.19.解:(1)设购买的甲种树苗的单价为x元,乙种树苗的单价为y元.依题意得:,解这个方程组得:,答:购买的甲种树苗的单价是60元,乙种树苗的单价是100元;(2)设购买的甲种树苗a棵,则购买乙种树苗(500﹣a)棵,由题意得,,解得,200≤a≤400.∴甲种树苗数量a的取值范围是200≤a≤400.(3)设购买的甲种树苗a棵,则购买乙种树苗(500﹣a)棵,总费用为W,∴W=60a+100(500﹣a)=50000﹣40a.∵﹣40<0,∴W值随a值的增大而减小,∵200≤a≤400,∴当a=400时,W取最小值,最小值为50000﹣40×400=34000元.即购买的甲种树苗400棵,购买乙种树苗100棵,总费用最低.20.解:(1)[4.8]=4,[﹣6.5]=﹣7.答案为:4,﹣7.(2)如果[x]=3.那么x的取值范围是3≤x<4.答案为:3≤x<4.(3)如果[5x﹣2]=3x+1,那么3x+1≤5x﹣2<3x+2.解得:≤x<2.∵3x﹣1是整数.∴x=.答案为:.(4)∵x=[x]+a,其中0≤a<1,∴[x]=x﹣a,∵4a=[x]+1,∴4a=x﹣a+1,且4a是整数,∴a=,∵0≤a<1,∴0≤<1,∴0≤x+1<5,∴﹣1≤x<4,∴x=﹣1,0,1,2,3.。
检测卷4 不等式与不等式组-2021年中考数学专题复习(含解析)

不等式与不等式组一、选择题.1.如图,数轴上表示的一个不等式的解集是( )A.x ≥-2B.x≤-2C.x>-2D.x<-22.若关于不等式2<(1-a)x 的解集为x<a -12,则a 的取值范围是( ) A.a>1 B.a>0 C.a<0 D.a<13.若不等式组⎩⎨⎧<--≤+kx x x 55315无解,则k 的取值范围是( )A.k≤8B.k<8C.k>8D.k≤44.已知关于x 的不等式4x -a≤0的非负整数解是0,1,2,则a 的取值范围是( )A.3≤a<4B.3≤a≤4C.8≤a<12D.8≤a≤125.对于任意实数m ,n ,定义一种运算m※n=mn -m -n+3,例如:2※5=2×5-2-5+3=6.请根据上述定义解决问题:5<2※x<7的整数解为( )A.4B.5C.6D.76.周末,小明带200元去图书大厦,下表记录了他全天的所有支出,其中小零食支出的金额不小心被涂黑了,如果每包小零食的售价为15元,那么小明可能剩下多少元?( )A.5B.10C.15D.307.已知不等式组⎩⎨⎧>-<+121b x a x 的解集是2<x<3,则关于x 的方程ax+b=0的解为( ) A.34=x B.34-=x C.21=x D.21-=x 8.若关于x ,y 的方程组⎩⎨⎧-=++=+ky x k y x 2342,满足1<x+y<2,则k 的取值范围是( )A.0<k<1B.-1<k<0C.1<k<2D.0<k<53 9已知a ,bc ,d 都是正实数,且dc b a <给出下列四个不等式: ①d c c b a a +<+;②b a a d c c +<+;③b a b d c d +<+;※d c d b a b +<+。
2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(一)不等式过关训练➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20202.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<22.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<53.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<125.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是.(二)不等式组过关训练➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=22.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<196.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.219.(2022•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.3610.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤32.若关于x的不等式组的解集是x≤a,则a的取值范围是()二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣364.若关于x的不等式组无解,则a的取值范围是.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.16.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤17.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.18.(2022秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.109.(2022秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()A.7B.8C.9D.1010.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.(三)方程与不等式组综合过关训练➢典例精讲1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.62.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()A.﹣22B.﹣18C.11D.123.(2021秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.304.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10➢课后训练1.(2022秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.102.(2022秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.103.(2021春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为.参考答案与试题解析➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<2020【解答】解:∵不等式(a+2020)x﹣a>2020的解集为x<1,∴a+2020<0,解得,a<﹣2020,故选:B.2.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为x<﹣.【解答】解:∵不等式(a+3b)x>a﹣b的解集是x<﹣,∴a+3b<0,即a<﹣3b,∵,即8a=﹣12b,,∵a+3b<0,2a+3b=0,则a>0,b<0,∴bx﹣a>0的解集为x<﹣.故答案为:x<﹣.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是x >﹣1.【解答】解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个【解答】解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是﹣6≤a<﹣1.【解答】解:解不等式得:x>,∵负整数解是﹣1,﹣2,∴﹣3≤<﹣2.∴﹣6≤a<﹣1.故答案为:﹣6≤a<﹣1.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<2【解答】解:根据题意得:2﹣a<0,解得:a>2.故选:C.2.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<5【解答】解:不等式(2m﹣n)x﹣m>5n,变形得:(2m﹣n)x>5n+m,根据已知解集为x<,得到=,且2m﹣n<0,即2m<n,整理得:4m+20n=26m﹣13n,即33n=22m,整理得:3n=2m,即m=1.5n,n<0,代入所求不等式得:0.5nx>2.5n,解得:x<5.故选:D.3.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为x≤2.【解答】解:不等式移项得:3(a﹣b)x>5b﹣a,由不等式的解集为x<1,得到a﹣b<0,且=1,整理得:a<b,且4a=8b,即a=2b,∴a<0,则不等式ax≥4b变形得:x≤=2,故答案为:x≤2.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【解答】解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.5.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是﹣8<m≤﹣6.【解答】解:∵2x﹣m≥0,∴2x≥m,∴x≥,∵不等式组的负整数解为﹣1,﹣2.﹣3,∴﹣4<≤﹣3,则﹣8<m≤﹣6,故答案为:﹣8<m≤﹣6.➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=2【解答】解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.2.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2【解答】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥【解答】解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8【解答】解:解不等式<﹣1得:x>8,又∵不等式组无解,∴m≤8,故选:A.三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19【解答】解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.6.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.21【解答】解:解不等式组,得﹣1<x≤,∵至多有4个整数解,<4,解得m<7;∴故满足条件的所有非负整数m的值之和为0+1+2+3+4+5+6=21,故选:D.9.(2019•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.36【解答】解:解不等式组,得:﹣<x<,∵不等式组有且仅有2个奇数解,∴-1<≤1,解得:0<m≤8,所以所有满足条件的整数m的值为1,2,3,4,5,6,7,8,和为36.故选:D.10.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是7≤a<9或﹣3≤a<﹣1.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为<x≤4,∵关于x的不等式组的所有整数解的和为7,∴当时,这两个整数解一定是3和4,∴,∴7≤a<9,当时,整数解是﹣2,﹣1,0,1,3和4,∴﹣3,∴﹣3≤a<﹣1,∴a的取值范围是7≤a<9或﹣3≤a<﹣1.故答案为:7≤a<9或﹣3≤a<﹣1.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3【解答】解:解不等式3(x+1)>12,得:x>3,∵不等式组的解集为x>3,∴m≤3,故选:D.2.若关于x的不等式组的解集是x≤a,则a的取值范围是()A.a≤2B.a>﹣2C.a<﹣2D.a≤﹣2【解答】解:解不等式﹣2x﹣1>3,得:x<﹣2,解不等式a﹣x≥0,得:x≤a,∵不等式组的解集为x≤a,∴a<﹣2,故选:C.二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣36【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1>﹣37,解得:a>﹣36.故选:D.4.(2020春•陇西县期末)若关于x的不等式组无解,则a的取值范围是a≥﹣2.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.1【解答】解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.6.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤1【解答】解:,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有三个整数解,∴整数解为1,2,3,∴0≤m<1.故选:C.7.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.1【解答】解:,解①得x≤2a,解②得x>﹣a.则不等式组的解集是﹣a<x≤2a.∵不等式至少有7个整数解,则2a+a>7,解得a>2.整数a的最小值是3.故选:B.8.(2019秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.10【解答】解:不等式组的解为,∵至多5个整数解,∴<5,∴m<,故选:B.9.(2020秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()【解答】解:不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个奇数解,得到奇数解为3,1,∴﹣1≤<1,∴﹣3≤a<5,则满足题意a的值有﹣3,﹣2,﹣1,0,1,2,3,4,5四个,则符合条件的所有整数a的和是9.故选:C.10.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是﹣3<m≤﹣2或2<m≤3.【解答】解:解不等式+3>﹣1,得:x>﹣4.5,∵不等式组的整数解的和为﹣7,∴不等式组的整数解为﹣4、﹣3或﹣4、﹣3、﹣2、﹣1、0、1、2,则﹣3<m≤﹣2或2<m≤3,故答案为:﹣3<m≤﹣2或2<m≤3.➢典例精讲方程与不等式综合含参问题1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.6【解答】解:解方程3﹣2x=3(k﹣2)得x=,∵方程的解为非负整数,∴≥0,即k≤3,即非负整数k=1,3,不等式组整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,当k=0时,x=4.5,不是整数;当x=2时,k=1.5,不是整数,两个k的值不符合题意,舍去;综上,k=1,3,则符合条件的整数k的值的和为4.故选:C.2.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()【解答】解:去分母得:3ax+3=﹣14x﹣6,解得:x=﹣,∵关于x的方程=﹣﹣1有非负数解,∴3a+14<0,∴a<﹣,不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0,∴﹣2≤<﹣1,∴﹣7≤a<﹣3,则满足题意a的值有﹣7,﹣6,﹣5,则符合条件的所有整数a的和是﹣18.故选:B.3.(2019秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30【解答】解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.4.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10【解答】解:解不等式>0,得:x>m,解不等式﹣x<﹣4,得:x>4,∵不等式组的解集为x>4,∴m≤4,解方程组得,∵x,y均为整数,∴m=4或m=10或m=2或m=﹣4,又m≤4,∴m=﹣4或m=4或m=2,则符合条件的所有整数m的和是2,故选:B.➢课后训练1.(2019秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.10【解答】解:解方程x+2a=1得:x=1﹣2a,∵方程的解为负数,∴1﹣2a<0,解得:a>0.5,∵解不等式①得:x<a,解不等式②得:x≥4,又∵不等式组无解,∴a≤4,∴a的取值范围是0.5<a≤4,∴整数和为1+2+3+4=10,故选:D.2.(2020秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.10【解答】解:解不等式≤2x,得:x≥,解不等式2x+7≤4(x+1),得:x≥,∵不等式组的解集为x≥,∴≤,解得m≤5,解方程3y﹣2=,得:y=,∵方程的解为非负整数,∴符合m≤5的m的值为2和5,则符合条件的所有整数m的积为10,故选:D.3.(2019春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为5.【解答】解:,①﹣②得:3y=7﹣m,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到7﹣m与8+m都为3的倍数,∴m=1,4,不等式组整理得:,即﹣1≤t≤m,由不等式组有解,得到m=1,4,综上,符合条件的整数m的值的和为1+4=5.故答案为:5.。
中考专题特训人教版初中数学七年级下册第九章不等式与不等式组综合练习练习题(含详解)

初中数学七年级下册第九章不等式与不等式组综合练习(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、不等式270x-<的最大整数解为()A.2 B.3 C.4 D.52、已知不等式组2<x﹣1<4的解都是关于x的一次不等式3x≤2a﹣1的解,则a的取值范围是()A.a≤5B.a<5 C.a≥8D.a>83、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定4、已知关于x的不等式组34x ax a->-⎧⎨-<⎩的解集中任意一个x的值均不在﹣1≤x≤3的范围内,则a的取值范围是()A.﹣5≤a≤6B.a≥6或a≤﹣5 C.﹣5<a<6 D.a>6或a<﹣55、若不等式组4101x m xx m-+<+⎧⎨+>⎩解集是4x>,则()A.92m≤B.5m≤C.92m=D.5m=6、若a+b+c=0,且|a|>|b|>|c|,则下列结论一定正确的是()A .abc >0B .abc <0C .ac >abD .ac <ab7、如果关于x 的不等式组312364x x x a +⎧≥-⎪⎨⎪+>+⎩有且只有3个奇数解,且关于y 的方程3y +6a =22-y 的解为非负整数,则符合条件的所有整数a 的积为( )A .-3B .3C .-4D .48、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( )A .5B .2C .4D .69、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b10、适合|2a +7|+|2a ﹣1|=8的整数a 的值的个数有( )A .2B .4C .8D .16二、填空题(5小题,每小题4分,共计20分)1、如果a <2,那么不等式组2x a x >⎧⎨>⎩的解集为_______,2x a x <⎧⎨>⎩的解集为_______. 2、把一堆花生分给一群猴子,如果每只猴子分3颗,就剩8颗;如果每只猴子分5颗,那么最后一只猴子分到的花生不足5颗.求猴子的只数与花生的颗数分别为________.3、 “x 的2倍与6的和是负数”用不等式表示为_____.4、全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题.答对一题记4分,答错(或不答)一题记﹣2分.小明参加本次竞赛得分要超过60分,他至少要答对 _____道题.5、不等式组20211x x -<⎧⎨--≤⎩的解集为______.三、解答题(5小题,每小题10分,共计50分)1、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?2、求一元一次不等式组的解集,并把它的解集表示在数轴上.()3241213x x x x ⎧--≥-⎪⎨+>-⎪⎩3、(1)解不等式4x ﹣1>3x ;(2)解不等式组3(1)5(1)21531123x x x x -≤+-⎧⎪-+⎨>-⎪⎩. 4、某商店对A 型号笔记本电脑举行促销活动,有两种优惠方案可供选择.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售. 已知A 型号笔记本电脑的原售价是5000元/台,某公司一次性从该商店购买A 型号笔记本电脑x 台.(1)若方案二比方案一更便宜,根据题意列出关于x 的不等式.(2)若公司买12台笔记本,你会选择哪个方案?请说明理由.5、某商店欲购进A 、B 两种商品,已知购进A 种商品3件和B 种商品4件共需220元;若购进A 种商品5件和B 种商品2件共需250元.(1)求A 、B 两种商品每件的进价分别是多少元?(2)若每件A 种商品售价48元,每件B 种商品售价31元,且商店将购进A 、B 两种商品共50件全部售出后,要获得的利润不少于360元,问A 种商品至少购进多少件?---------参考答案-----------一、单选题1、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】解:270x-<,27x<,72x<,则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.2、C【分析】先求出不等式组2<x﹣1<4的解集,再求出一次不等式3x≤2a﹣1的解集,根据一次不等式解集的分界点在5以及其右边,列不等式求解即可.【详解】解:∵2<x﹣1<4,∴3<x<5,∵一次不等式3x≤2a﹣1,解得213ax-≤,∵满足3<x <5都在213a x -≤范围内, ∴2153a -≥, 解得8a ≥.故选择C .【点睛】 本题考查不等式组的解集与一次不等式的解集关系,利用213a x -≤解集的分界点在5以及5的右边部分得出不等式2153a -≥是解题关键. 3、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数 22x ∴=故选:C .【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.4、B【分析】根据解不等式组,可得不等式组的解集,根据不等式组的解集是与﹣1≤x≤3的关系,可得答案.【详解】解:不等式组34x ax a--⎧⎨-⎩><,得a﹣3<x<a+4,由不等式组34x ax a--⎧⎨-⎩><的解集中任意一个x的值均不在﹣1≤x≤3的范围内,得a+4≤﹣1或a﹣3≥3,解得a≤﹣5或a≥6,故选:B.【点睛】本题考查了不等式的解集,利用解集中任意一个x的值均不在﹣1≤x≤3的范围内得出不等式是解题关键.5、C【分析】首先解出不等式组的解集,然后与x>4比较,即可求出实数m的取值范围.【详解】解:由①得2x>4m-10,即x>2m-5;由②得x>m-1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x >4,x >72,不等式组解集为x >4,符合题意;若m -1=4,则m =5,此时,两个不等式解集为x >5,x >4,不等式组解集为x >5,不符合题意,舍去;故选:C .【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.6、C【分析】 由c 的绝对值最小,分析0c 不符合题意,再由0,a b c ++= 分析可得,,a b c 中至少有一个负数,至多两个负数,再分情况讨论即可得到答案.【详解】 解: a +b +c =0,且|a |>|b |>|c |,当0c 时,则0,a b += 则,ab 不符合题意; 0,c 从而:,,a b c 中至少有一个负数,至多两个负数,当0,0,0,a b c 且|a |>|b |>|c |,0,abc 0,b c,ab ac 此时B ,C 成立,A ,D 不成立,当0,0,0,b c a 且|a |>|b |>|c |,0,0,abc b c,ab ac此时A,C成立,B,D不成立,综上:结论一定正确的是C,故选C【点睛】本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基础知识是解题的关键.7、A【分析】先求解不等式组,根据解得范围确定a的范围,再根据方程解的范围确定a的范围,从而确定a的取值,即可求解.【详解】解:由关于x的不等式组312364xxx a+⎧≥-⎪⎨⎪+>+⎩解得253ax-<≤∵关于x的不等式组有且只有3个奇数解∴2113a--≤<,解得15a-≤<关于y的方程3y+6a=22-y,解得1132a y-=∵关于y的方程3y+6a=22-y的解为非负整数∴1132a-≥,且1132a-为整数解得113a≤且1132a-为整数又∵15a-≤<,且a为整数∴符合条件的a有1-、1、3符合条件的所有整数a的积为(1)133-⨯⨯=-【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.8、C【分析】先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.9、C【分析】根据不等式的性质即可求出答案.【详解】解:A、∵a>b,∴−2021a<−2021b,故A错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.10、B【分析】先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值.【详解】解:(1)当2a+7≥0,2a﹣1≥0时,可得,2a+7+2a﹣1=8,解得,a=12解不等式2a+7≥0,2a﹣1≥0得,a≥﹣72,a≥12,所以a≥12,而a又是整数,故a=12不是方程的一个解;(2)当2a+7≤0,2a﹣1≤0时,可得,﹣2a﹣7﹣2a+1=8,解得,a=﹣7 2解不等式2a+7≤0,2a﹣1≤0得,a≤﹣72,a≤12,所以a≤﹣72,而a又是整数,故a=﹣72不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,2a+7﹣2a+1=8,解得,a可为任何数.解不等式2a+7≥0,2a﹣1≤0得,a ≥﹣72,a ≤12, 所以﹣72≤a ≤12,而a 又是整数,故a 的值有:﹣3,﹣2,﹣1,0.(4)当2a +7≤0,2a ﹣1≥0时,可得,﹣2a ﹣7+2a ﹣1=8,可见此时方程不成立,a 无解.综合以上4点可知a 的值有四个:﹣3,﹣2,﹣1,0.故选:B .【点睛】本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.二、填空题1、x >2 无解【分析】根据同大取大,同小取小,大小小大中间取判断即可;【详解】∵a <2,∴不等式组2x a x >⎧⎨>⎩的解集为x >2; 不等式组2x a x <⎧⎨>⎩中x 不存在,方程组无解;故答案是:x>2;无解.【点睛】本题主要考查了不等式组的解集表示,准确分析判断是解题的关键.2、5只和23颗或6只和26颗.【分析】设猴子的只数为x只,根据题意列出不等式组,求整数解即可.【详解】解:设猴子的只数为x只,根据题意列出不等式组得,0385(1)5x x<+--<,解得,1342x<<,因为x为整数是,所以,5x=或6x=,花生的颗数为颗35823⨯+=或36826⨯+=颗故答案为:5只和23颗或6只和26颗.【点睛】本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组.3、260x+<【分析】根据题意列出不等式即可.【详解】解:“x的2倍与6的和是负数”用不等式表示为260x+<,故答案为:260x+<.【点睛】本题考查了列不等式,读懂题意是解本题的关键.4、19【分析】设小明答对x道题,则答错(或不答)(25-x)道题,利用总得分=4×答对题目数-2×答错(或不答)题目数,结合小明参加本次竞赛得分要超过60分,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:设小明答对x道题,则答错(或不答)(25-x)道题,依题意得:4x-2(25-x)>60,解得:x>553.又∵x为正整数,∴x可以取的最小值为19.故答案为:19.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5、12x-≤<【分析】首先分别解两个不等式,再根据:大大取大,小小取小,大小小大取中间,大大小小取不着,写出公共解集即可.【详解】解不等式20x-<,得:2x<解不等式211x --≤,得1x ≥-∴不等式组的解集为:12x -≤<故答案为:12x -≤<【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.三、解答题1、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【解析】【分析】(1)设购买一副跳棋和一副军棋各需要x 元、y 元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m 副军棋,则购买()80m -副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x 元、y 元,由题意得:2342540x y x y +=⎧⎨+=⎩, 解得610x y =⎧⎨=⎩, ∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m 副军棋,则购买()80m -副跳棋,由题意得:()68010600m m -+≤,即4480600m +≤,解得30m ≤,∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.2、x ≤1,解集在数轴上的表示见解析【解析】【分析】先求出两个一元一次不等式的解集,再求两个解集的公共部分即得不等式组的解集,然后把解集在数轴上表示出来即可.【详解】()3241213x x x x ⎧--≥-⎪⎪⎨+⎪>-⎪⎩①② 解不等式①得:x ≤1,解不等式②得:x <4,∴不等式组的解集为x ≤1.不等式组的解集在数轴表示如下:本题考查了解一元一次不等式组,关键是求出每一个一元一次不等式的解集,注意当不等式两边同除以一个负数时,务必记住:不等号的方向要改变.3、(1)1x>;(2)133x-≤<.【解析】【分析】(1)直接移项化简即可求得(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)4x﹣1>3x;431x x->解得1x>;(2)3(1)5(1)21531123x xx x-≤+-⎧⎪⎨-+>-⎪⎩①②解不等式①得:3x≥-,解不等式②得:13 x<∴不等式组的解集为1 33x-≤<【点睛】本题考查了解不等式和解不等式组,正确的计算以及求不等式组的解集是解题的关键.4、(1)5000×5+5000×80%(x﹣5)<5000×90%x;(2)方案二,理由见解析【解析】(1)根据方案二比方案一更便宜,结合题意列出关于x 的不等式即可;(2)根据公司买12台笔记本,分别计算出方案一和方案二所需钱数比较即可.【详解】解:(1)根据题意可知,按照方案一购买需要 (500090%x ⨯)元;按照方案二购买需要[]50005500080%(5)x ⨯+⨯-元.故可列不等式为:50005500080%(5)500090%x x ⨯+⨯-<⨯.(2)选择方案二,理由:方案一购买12台需要:50001290%54000⨯⨯=(元),方案二购买12台需要:50005500080%(125)53000⨯+⨯⨯-=(元),∵54000>53000,∴选择方案二.【点睛】本题考查了由实际问题抽象出一元一次不等式,解题的关键是:(1)找准不等量关系,正确列出一元一次不等式;(2)根据优惠方案,列式计算.5、(1)A 种商品每件的进价为40元,B 种商品每件的进价为25元;(2)A 种商品至少购进30件.【解析】【分析】(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,根据题中的等量关系列出二元一次方程组求解即可;(2)设购进A 种商品m 件,则购进B 种商品(50-m )件,根据题意列出一元一次不等式求解即可.【详解】解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,依题意,得:3422052250x yx y+=⎧⎨+=⎩,解得:4025xy=⎧⎨=⎩.答:A种商品每件的进价为40元,B种商品每件的进价为25元.(2)设购进A种商品m件,则购进B种商品(50-m)件,依题意,得:(48-40)m+(31-25)(50-m)≥360,解得:m≥30.答:A种商品至少购进30件.【点睛】此题考查了二元一次方程组应用题和一元一次不等式应用题,解题的关键是正确分析题目中的等量关系列出方程或不等式求解.。
备考2021年中考数学复习专题:方程与不等式_二元一次方程组_二元一次方程组的解,填空题专训及答案

5、 (2017浙江.中考模拟) 如果关于x、y的方程组
无解,那么a=________ .
6、 (2016温州.中考真卷) 方程组
的解是________
7、 (2020江西.中考模拟) 若关于x,y的二元一次方程组 8、 (2019枣庄.中考模拟) 已知x,y满足方程组 9、 (2018中.中考模拟) 如果实数x、y满足方程组
的解是
,则ab的值为________.
2、 (2016扬州.中考真卷) 以方程组
的解为坐标的点(x,y)在第________象限.
3、 (2017盘锦.中考模拟) 若方程组
的解是负数,那么a的取值范围是________.
4、 (2017大庆.中考模拟) 已知
是二元一次方程组
的解,则2n﹣m的平方根是________.
备考2021年中考数学复习专题:方程与不等式_二元一次方程组_二元一次方程
组的解,填空题专训及答案
备 考 2021中 考 数 学 复 习 专 题 : 方 程 与 不 等 式 _二 元 一 次 方 程 组 _二 元 一 次 方 程 组 的 解 , 填 空 题 专 训
1、 (2017包头.中考真卷) 若关于x、y的二元一次方程组
1.答案:
2.答案:
3.答案:
4.答案:
5.答案:
6.答案:
7.答案: 8.答案: 9.答案: 10.答案: 11.答案: 12.答案:
13.答案: 14.答案: 15.答案:
16.答案: 17.答案: 18.答案: 19.答案: 20.答案:
的解,则m+3n的立方根为________.
,则a﹣b=________.
,的解是
,则关于a、b的二元一次方程组
2021年数学中考试题汇编不等式与不等式组-自定义类型

2021年数学中考试题汇编不等式与不等式组一、选择题1. (2021·黑龙江省大庆市·历年真题)下列说法正确的是( )A. 若a >b ,则a 2>b 2B. 若a >b ,则ac 2>bc 2C. 若a >b ,则√a <√bD. 若ac 2<bc 2,则a <b2. (2021·浙江省嘉兴市·历年真题)已知点P (a ,b )在直线y =-3x -4上,且2a -5b ≤0,则下列不等式一定成立的是( )A. a b ≤52B. a b ≥52C. b a ≥25D. b a ≤253. (2021·湖南省常德市·历年真题)若a >b ,下列不等式不一定成立的是( )A. a −5>b −5B. −5a <−5bC. a c >bcD. a +c >b +c4. (2021·甘肃省兰州市·历年真题)关于x 的一元一次不等式3x ≤4+x 的解集在数轴上表示为( )A. B.C.D.5. (2021·浙江省湖州市·历年真题)不等式3x -1>5的解集是( )A. x >2B. x <2C. x >43D. x <436. (2021·江苏省南通市·历年真题)若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a 的取值范围是( )A. 7<a <8B. 7<a ≤8C. 7≤a <8D. 7≤a ≤87. (2021·广西壮族自治区南宁市·历年真题)定义一种运算:a *b ={a,a ≥bb,a <b,则不等式(2x +1)*(2-x )>3的解集是( )A. x >1或x <13 B. −1<x <13 C. x >1或x <−1D. x >13或x <−18. (2021·山东省滨州市·历年真题)把不等式组{x −6<2xx+25≥x−14中每个不等式的解集在同一条数轴上表示出来,正确的为( )A.B.C.D.9. (2021·四川省南充市·历年真题)满足x ≤3的最大整数x 是( )A. 1B. 2C. 3D. 410. (2021·贵州省遵义市·历年真题)小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x 支签字笔,则下列不等关系正确的是( )A. 5×2+2x ≥30B. 5×2+2x ≤30C. 2×2+2x ≥30D. 2×2+5x ≤3011. (2021·湖北省荆州市·历年真题)若点P (a +1,2-2a )关于x 轴的对称点在第四象限,则a 的取值范围在数轴上表示为( )A.B.C.D.12. (2021·内蒙古自治区呼和浩特市·历年真题)已知关于x 的不等式组{−2x −3≥1x 4−1≥a−12无实数解,则a 的取值范围是( )A. a ≥−52B. a ≥−2C. a >−52D. a >−213. (2021·湖南省永州市·历年真题)在一元一次不等式组{2x +1>0,x −5⩽0的解集中,整数解的个数是( )A. 4B. 5C. 6D. 714. (2021·台湾省·历年真题)美美和小仪到超市购物,且超市正在举办摸彩活动,单次消费金额每满100元可以拿到1张摸彩券.已知美美一次购买5盒饼干拿到3张摸彩券;小仪一次购买5盒饼干与1个蛋糕拿到4张摸彩券.若每盒饼干的售价为x 元,每个蛋糕的售价为150元,则x 的范围为下列何者?( )A. 50≤x <60B. 60≤x <70C. 70≤x <80D. 80≤x <9015. (2021·四川省攀枝花市·历年真题)某学校准备购进单价分别为5元和7元的A 、B 两种笔记本共50本作为奖品发放给学生,要求A 种笔记本的数量不多于B 种笔记本数量的3倍,不少于B 种笔记本数量的2倍,则不同的购买方案种数为( )A. 1B. 2C. 3D. 4二、填空题16. (2021·四川省自贡市·历年真题)请写出一个满足不等式x +√2>7的整数解______ . 17. (2021·辽宁省丹东市·历年真题)不等式组{2x −1<3x >m 无解,则m 的取值范围______ .18. (2021·黑龙江省哈尔滨市·历年真题)不等式组{3x −7<2x −5≤10的解集是______ .19. (2021·黑龙江省绥化市·历年真题)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元.学校准备购买A ,B 两种奖品共20个,且A 种奖品的数量不小于B 种奖品数量的25,则在购买方案中最少费用是______ 元.20. (2021·吉林省长春市·历年真题)不等式组{2x >−1x ≤1的所有整数解为______ .21. (2021·辽宁省盘锦市·历年真题)从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数,它是偶数的概率是______.22. (2021·湖北省襄阳市·历年真题)不等式组{x +2≥4x −12x >1−x 的解集是______ .23. (2021·湖北省荆州市·历年真题)若关于x 的方程2x+m x−2+x−12−x=3的解是正数,则m 的取值范围为______ .24. (2021·四川省内江市·历年真题)已知非负实数a ,b ,c 满足a−12=b−23=3−c 4,设S =a +2b +3c的最大值为m ,最小值为n ,则nm 的值为______.三、解答题25. (2021·北京市·历年真题)解不等式组:{4x −5>x +13x−42<x.26. (2021·黑龙江省哈尔滨市·历年真题)君辉中学计划为书法小组购买某种品牌的A 、B两种型号的毛笔.若购买3支A 种型号的毛笔和1支B 种型号的毛笔需用22元;若购买2支A种型号的毛笔和3支B种型号的毛笔需用24元.(1)求每支A种型号的毛笔和每支B种型号的毛笔各多少元;(2)君辉中学决定购买以上两种型号的毛笔共80支,总费用不超过420元,那么该中学最多可以购买多少支A种型号的毛笔?27.(2021·辽宁省铁岭市·历年真题)某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.(1)求A型公交车和B型公交车每辆各多少万元?(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?28.(2021·湖南省郴州市·历年真题)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?29.(2021·广西壮族自治区贵港市·历年真题)某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装载1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?(2)经初步估算,公司要运往工厂的这批材料不超过1245箱.计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?30 (2021·内蒙古自治区呼和浩特市·历年真题)为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?参考答案1.【答案】D【解析】解:A.由a>b,得a2>b2,不一定成立,如当a=1,b=-3时,满足条件,但不满足结论,故该选项错误;B.若a>b,则ac2>bc2,不一定成立,如c=0时不满足结论,故该选项错误;C.若a>b,则√a<√b,不成立,当a,b中有负数时,√a与√b无意义,当a,b都是正数时,√a>√b,故该选项错误;D.∵ac2<bc2,c2>0,不等式两边同时除以一个正数,可得a<b成立,故该选项正确. 故选D.2.【答案】D【解析】解:∵点P (a ,b )在直线y =-3x -4上, ∴-3a -4=b , 又2a -5b ≤0, ∴2a -5(-3a -4)≤0, 解得a ≤-2017<0, 当a =-2017时,得b =-817, ∴b ≥-817, ∵2a -5b ≤0, ∴2a ≤5b , ∴b a ≤25. 故选:D .3.【答案】C【解析】解:A .∵a >b ,∴a -5>b -5,故本选项不符合题意; B .∵a >b ,∴-5a <-5b ,故本选项不符合题意; C .∵a >b ,∴当c >0时,ac >bc ;当c <0时,ac <bc ,故本选项符合题意; D .∵a >b ,∴a +c >b +c ,故本选项不符合题意; 故选:C .4.【答案】D【解析】解:3x ≤4+x , 3x -x ≤4, 2x ≤4, x ≤2. 故选:D .解出一元一次不等式的解集,然后选出正确结果.5.【答案】A【解析】解:不等式3x -1>5, 移项合并得:3x >6, 解得:x >2. 故选:A .6.【答案】C【解析】解:{2x +3>12①x −a ≤0②,解不等式①,得x >4.5, 解不等式②,得x ≤a ,所以不等式组的解集是4.5<x ≤a ,∵关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解(整数解是5,6,7),∴7≤a <8, 故选:C .7.【答案】C【解析】解:由新定义得{2x +1≥2−x 2x +1>3或{2x +1<2−x2−x >3,解得x >1或x <-1 故选:C .8.【答案】B【解析】解:{x −6<2x①x+25≥x−14②, 解不等式①,得:x >-6, 解不等式②,得:x ≤13, 故原不等式组的解集是-6<x ≤13, 其解集在数轴上表示如下:,故选:B .9.【答案】C【解析】解:满足x ≤3的最大整数x 是3, 故选:C .根据不等式x ≤3得出选项即可。
2021年 中考数学 专题训练:一元一次不等式(组)(含答案)

2021 中考数学 专题训练:一元一次不等式(组)一、选择题1. (2019•河北)语句“x的18与x 的和不超过5”可以表示为 A .8x +x≤5 B .8x +x≥5 C .85x +≤5 D .8x +x=52. 如果m >n ,那么下列结论错误的是A .m+2>n+2B .m-2>n-2C .2m>2nD .-2m>-2n3. 不等式20x -+≥的解集为A .2x ≥-B .2x ≤-C .2x ≥D .2x ≤4. 已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )5. (2019·威海)解不等式组3422133x x x -≥⎧⎪⎨+>-⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是A .B .C .D .6. (2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是 A .x>4B .x>-1C .-1<x<4D .x<-17. (2019·重庆A卷)若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为A.0 B.1 C.4 D.68. (2019•呼和浩特)若不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,则m的取值范围是A.m>-35B.m<-15C.m<-35D.m>-15二、填空题9. 不等式组的最小整数解是.10. 不等式3x+1>2(x+4)的解集为.11. 若关于x的不等式组2,xx m⎧⎨⎩>>的解集是x>2,则m的取值范围是________.12. 如果不等式组的解集是x<a-4,则a的取值范围是.13. (2019•株洲)若a为有理数,且2-a的值大于1,则a的取值范围为__________.14. 若关于x,y的二元一次方程组31,33x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则实数a的取值范围为______.15. (2019•鄂州)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足x+y≤0,则m的取值范围是__________.16. (2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n-0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x-1)=6,则实数x的取值范围是__________.三、解答题17. 解不等式组:351 342163x xx x-<+⎧⎪--⎨≤⎪⎩,并利用数轴确定不等式组的解集.18. 解不等式组()41713843x xxx⎧+≤+⎪⎨--<⎪⎩,并写出它的所有负整数解.19. 某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒(用含x的代数式表示)?(2)该敬老院至少有多少名老人?最多有多少名老人?20. 某服装店用4500元购进一批衬衫,很快售完.服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?21. (2019•江西)解不等式组:2(1)7122x xxx+>⎧⎪⎨+-≥⎪⎩并在数轴上表示它的解集.22. 为响应国家“足球进校园”的号召,某校购买了50个A类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元.(1)求购买一个A类足球和一个B类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?23. 为了进一步丰富校园活动,学校准备购买一批足球和篮球,已知购买7个足球和5个篮球的费用相同;购买40个足球和20个篮球共需3400元.(1)求每个足球和篮球各多少元?(2)如果学校计划购买足球和篮球共80个,总费用不超过4800元,那么最多能买多少个篮球?24. (2019•哈尔滨)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?2021 中考数学 专题训练:一元一次不等式(组)-答案一、选择题1. 【答案】A【解析】“x 的18与x 的和不超过5”用不等式表示为18x+x≤5.故选A .2. 【答案】D【解析】A .两边都加2,不等号的方向不变,故A 正确;B .两边都减2,不等号的方向不变,故B 正确;C .两边都乘以2,不等号的方向不变,故C 正确;D .两边都乘以–2,不等号的方向改变,故D 错误,故选D .3. 【答案】D【解析】移项得:2x -≥-系数化为1得:2x ≤.故选D .4. 【答案】A 解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).又∵M (1-2m ,m -1)关于x轴的对称点在第一象限, ∴⎩⎨⎧ 1-2m >0,1-m >0.解得⎩⎪⎨⎪⎧m <12,m <1. 在数轴上表示为.故选A.5. 【答案】D 【解析】解不等式①得:1x ≤-,解不等式②得:5x <,将两不等式解集表示在数轴上如下:故选D.6. 【答案】A【解析】13224xx->⎧⎨-<⎩①②,由①得:x>4,由②得:x>-1,不等式组的解集为:x>4,故选A.7. 【答案】B【解析】由不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩,解得5x ax≤⎧⎨<⎩,∵解集是x≤a,∴a<5.由关于的分式方程24111y a yy y---=--得得2y-a+y-4=y-1,∴32ay+=,又∵非负整数解,∴a≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1,故选B.8. 【答案】C【解析】解不等式253x+-1≤2-x得:x≤45,∵不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴x<12m-,∴12m->45,解得:m<-35,故选C.二、填空题9. 【答案】x=010. 【答案】x>711. 【答案】m≤212. 【答案】a ≥-3 [解析]因为不等式组的解集为x<a -4,所以3a +2≥a -4,解这个不等式得a ≥-3.13. 【答案】a<1且a 为有理数【解析】根据题意知2-a>1,解得a<1,故答案为:a<1且a 为有理数.14. 【答案】a <415. 【答案】m≤-2【解析】34355x y m x y -=+⎧⎨+=⎩①②,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2.故答案为:m≤-2.16. 【答案】13≤x<15【解析】依题意得:6-0.5≤0.5x -1<6+0.5,解得13≤x<15.故答案为:13≤x<15.三、解答题17. 【答案】351342163x x x x -<+⎧⎪⎨--≤⎪⎩①②,解①得3x <,解②得2x ≥-,所以不等式组的解集为23x -≤<.用数轴表示为:18. 【答案】()41713843x x x x ⎧+≤+⎪⎨--<⎪⎩①②,由①得,x≥–3,由②得,x<2,所以不等式组的解集为:–3≤x<2,∴负整数解为–3,–2,–1.19. 【答案】解:(1)牛奶盒数为(5x +38)盒.(2)根据题意,得⎩⎪⎨⎪⎧ 5x +38-6(x -1)<5,5x +38-6(x -1)≥1.∴不等式组的解集为39<x ≤43.∵x 为整数,∴x 取40,41,42,43.答:该敬老院至少有40名老人,最多有43名老人.20. 【答案】解:(1)设第一次购进这种衬衫x 件,第二次购进这种衬衫12x 件,根据题意得:4500x=210012x+10,解得x =30,(2分)经检验x =30是原方程的解,且符合题意,∴12x =12×30=15.答:第一次购进这种衬衫30件,第二次购进这种衬衫15件.(4分)(2)设第二批衬衫每件销售a 元,根据题意得:30×(200-450030)+15×(a -210015)≥1950,(6分)解得a≥170.答:第二批衬衫每件至少要售170元. (7分)21. 【答案】2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩①②, 解①得:x>-2,解②得:x≤-1,故不等式组的解为:-2<x≤-1,在数轴上表示出不等式组的解集为:.22. 【答案】(1)设购买一个A 类足球需要x 元,购买一个B 类足球需要y 元,依题意,得:5025750030x y y x +=⎧⎨-=⎩, 解得:90120x y =⎧⎨=⎩. 答:购买一个A 类足球需要90元,购买一个B 类足球需要120元.(2)设购买m 个A 类足球,则购买(50)m -个B 类足球, 依题意,得:9012050()4800m m +-≤, 解得:40m ≥.答:本次至少可以购买40个A 类足球.23. 【答案】(1)设每个足球为x 元,每个篮球为y 元,根据题意得:7540203400x y x y =⎧⎨+=⎩, 解得:5070x y =⎧⎨=⎩. 答:每个足球为50元,每个篮球为70元;(2)设买篮球m 个,则买足球(80m -)个,根据题意得: 7050(80)4800m m +-≤,解得:40m ≤.∵m 为整数,∴m 最大取40,答:最多能买40个篮球.24. 【答案】(1)设每副围棋x 元,每副中国象棋y 元,根据题意得: 359883158x y x y +=⎧⎨+=⎩,∴1610xy=⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40-z)副,根据题意得:16z+10(40-z)≤550,∴z≤25,∴最多可以购买25副围棋.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战2021中考数学考点提升训练——专题四十六:不等式与不等式组
一、选择题
1.已知关于x的不等式x>a,如图表示在数轴上,则a的值为()
A.1B.2C.﹣1D.﹣2
2.下列说法不一定成立的是()
A.若a>b,则a+c>b+cB.若a+c>b+c,则a>b
C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b
3.若不等式组的解集为x>3,则a的取值范围是()
A.a>3B.a<3C.a≤3D.a≥3
4.满足不等式3>1﹣x的最小整数x的值为()
A.﹣2B.﹣1C.1D.2
5.若不等式组11324xxxm无解,则m的取值范围为
A.2mB.2mC.2mD.
2m
6.不等式x+2>﹣3的非正整数解是()
A.﹣1,﹣2B.0,﹣1,﹣2,﹣3,﹣4
C.﹣1,﹣2,﹣3D.﹣1,﹣2,﹣3,﹣4
7.x=3是下列哪个不等式的解()
A.x+2<4B.x>3C.2x﹣1<3D.3x+2>10
8.设x为整数,且满足不等式﹣2x+3<4x﹣1和3x﹣2<﹣x+3,则x等于()
A.0B.1C.2D.3
9.若不等式120axx的解集是32x,那么a等于().
A.13B.13C.3D.-3
10.某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,
如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()
A.40%B.33.4%C.33.3%D.30%
11.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,
则最多打几折销售()
A.6折B.7折C.8折D.9折
12.某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书
香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图
书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个
小型图书角需科技类书籍30本,人文类书籍60本.符合题意的组建方案有()种.
A.1种B.2种C.3种D.4种
二、填空题
1.不等式组x+2>3x-12≤4的解集为.
2.叫做一元一次不等式组;叫做一元一次不等式组的解集.
3.已知不等式2x+1≤5,那么x的正整数解是.
4.若关于x的不等式4m﹣3x≤1的解集是x≥﹣3,则m的值是.
5.当a时,不等式(a+2)x>1的解集是x<.
6.如果不等式组x>nx+8<4x-1的解集为x>3,那么n的取值范围是.
7.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结
果是否大于88?”为一次操作,如果操作只进行一次就停止,则x的取值范围是
________.
8.如图所示,点C位于点A、B之间(不与A、B重合),点C表示12x,则x的取值范围
是__________.
9.人类能听到的声音频率f不低于20赫兹,不高于2000赫兹,请写出人类能听到的声音
频率f的取值范围.
10.在“村村通柏油路”建设中,甲工程队每天筑路200米,乙工程队每天筑路150米,
两队共参加了10天建设,铺设路面不少于1850米,则甲队至少参加了天建设.
11.已知线段AB=12cm,点P是线段AB的中点,点C在线段AB上,若AC的长是xcm,且
x满足6cm<x<12cm,则点C
在点和之间.
三、解答题
1.分别就a得不同取值,讨论关于x的不等式12axx的解的情况。
2.当m取何整数时,关于x,y的方程组的解x,y都是正值?
3.如果﹣2a,a,1﹣a三个实数在数轴上所对应的点从左到右依次排列,求a的取值范围.
4.在数轴上表示不等式﹣3≤x<6的解集和x的下列值:﹣4,﹣2,0,,7,并利用数
轴说明x的这些数值中,哪些满足不等式﹣3≤x<6,哪些不满足?
5.(1)一个两位数加上它的一半,所得的数大于45且小于48,求这个两位数;
(2)一个两位数、它的十位上的数字比个位上的数字小3,已知它大于36且小于68,求
这个两位数.
6.一堆有红、白两种颜色的球若干个,已知白球的个数比红球少,但白球的2倍比红球多.若
把每一个白球都记作“2”,每一个红球都记作“3”,则总数为“60”,那么这两种球各
有多少个?
7.温州享有“中国笔都”之称,其产品畅销全球.某制笔企业欲将n件产品运往A,B,C
三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x
件产品运往A地.
(1)当n=200时,
①根据信息填表:
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.