初一不等式经典例题专题训练,中考基本不等式典型题及答案解析
初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)1. 楠楠老师在解方程2x−13=x +a 2−1去分母时,因为手抖发作,将方程右侧的-1漏乘了,因而求得的方程的解为x =2,请帮助楠楠老师求出正确的解. 答案:x =-3. 解析:漏乘后方程为:2(2X -1)=3(x +a )-1. 4x -2=3x +3a -1. x =3a +1 .∵ x =2.∴ a =13.∴ 原方程去分母后得: 2(2X -1)=3(x +13)-6. 4x -2=3x +1-6. X =-3.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—错解方程.2. 已知关于x 的方程3[x −2(x −a2)]=4x 与3x +a 12−1−5x 8=1有相同的解,求 a 的值及方程的解.答案:a =2711,方程的解为x =8177.解析:把a 当作常数,方程3[x −2(x −a2)]=4x 的解为x =37a .方程3x +a 12−1−5x 8=1的解为x =27−2a 21.故37a =27−2a 21.解得a =2711,所以x =8177.考点:方程与不等式—一元一次方程—同解方程—同解方程求参数.3. 解方程组.(1){m +n3−n−m4=24m +n 3=14 (2){1−0.3(y −2)=x +15y−14=4x +920−1答案:(1){m =185n =−65.(2){x =4y =2.解析:(1)化简方程组得,{7m +n =2412m +n =42,加减消元可解得答案为{m =185n =−65.(2)化简方程组得,{2x +3y =144x −5y =6,加减消元可解得答案为{x =4y =2.考点:方程与不等式—二元一次方程组—解二元一次方程组.4. 回答下列小题.(1)当k = 时,方程组{4x +3y =1kx +(k −1)y =3的解中,x 与y 的值相等.(2)关于x ,y 的方程组{ax +by =2cx −7y =8,甲正确的解得{x =3y =−2,乙因为把c 看错了,解得{x =−2y =2,求a ,b ,c 的值. (3)若方程组{2x +3y =7ax −by =4与方程组{ax +by =64x −5y =3有相同的解,则a ,b 的值为( ).A.{a =2b =1B. {a =2b =−3C. {a =2.5b =1D. {a =4b =−5 答案:(1)11.(2)a =4,b =5,c =-2. (3)C .解析:(1)因为x 和y 的值相等,所以x =y ,代入1式可得x =y =17,再代入2式可得k =11.(2)乙看错了c ,说明乙的解只满足1式;甲是正确的解,说明甲的解满足两个等式.将解代入方程可得{3a −2b =23c +14=8−2a +2b =2,解得a =4,b =5,c =-2.(3)由题中条件:有相同的解可知,这两个方程组可以联立,即{2x +3y =7ax−by =4ax +by =64x−5y =3,由1式和4式可以解得{x =2y =1,代入2式和3式可得{2a −b =42a +b =6. 解得{a =2.5b =1,故选C.考点:方程与不等式—二元一次方程组—同解方程组.5. 台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 解析:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.依题意,列方程组得:{x +y =245x =2y +50.解得{x =180y =65.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 考点:方程与不等式—二元一次方程组—二元一次方程(组)的解.6.如图所示,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 cm2.答案:400.解析:设一个小长方形的长为x,宽为y,则可列方程组{x+y=50x+4y=2x.解得{x=40y=10.则一个小长方形的面积=40cm×10cm=400cm2.考点:方程与不等式—二元一次方程组—二元一次方程(组)的应用.7.高新区某水果店购进800千克水果,进价每千克7元,售价每千克12元,售出总量一半后,发现剩下的水果己经有5﹪受损(受损部分不可出售),为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于2506元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?答案:(1)这笔水果生意的利润为1936元.(2)营业员最多能打8折优惠顾客.解析:(1)根据题意得:400×12+(400-400×5﹪)×0.6×12-800×7=1936(元).答:这笔水果生意的利润为1936元.(2)设余下的水果应按原出售价打x折出售,根据题意列方程:400×12+(400-400×5﹪)×0.1x×12-800×7=2506.解方程得:x=7.25.答:营业员最多能打8折优惠顾客.考点:方程与不等式—一元一次方程—一元一次方程的应用.打折销售问题—经济利润问题.8. 二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(﹪)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(﹪)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示.(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围).(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米. (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值. 答案:(1)1.甲.2.y =20x. (2)OA 的解析式是y =1003x ,这辆自行车最多可骑行3百万米.(3){a =158b =154.解析:(1)∵ 线段OB 表示的是甲,设OB 的解析式是y =kx.∴ 1.5k =30. ∴ 解得:k =20. ∴ OB 的表达式是y =20x. ∴ 答案是:甲,y =20x .(2)∵ 设直线OA 的表达式为y =mx.∴ 根据题意得:1.5m =50. ∴ 解得:m =1003.∴ 则OA 的解析式是y =1003x .∵ 当y =100时,100=1003x .∴ 解得:x =3.答:这辆自行车最多可骑行3百万米.(3)∵ 根据题意,得:{1003a +20(b −a )=10020a +1003(b −a )=100. ∴ 解这个方程组,得{a =158b =154.考点:方程与不等式—二元一次方程组—解二元一次方程组.函数—一次函数—待定系数法求正比例函数解析式—一次函数的应用—一次函数应用题.9. 若关于x 的一元二次方程(x +1)2=1-k 无实根,则k 的取值范围为 .答案:k >1.解析:若方程(x +1)2=1-k 无实根,则1-k >0.∴k >1.考点:方程与不等式—一元二次方程—一元二次方程的定义—一元二次方程的相关概念.10. 小明在探索一元二次方程2x2-x -2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是( ).A.4B.3C.2D.1答案:D.解析:根据表格中的数据,可知:方程的一个解x的范围是:1<x<2.所以方程的其中一个解的整数部分是1.考点:方程与不等式—一元二次方程—估算一元二次方程的近似解.11.已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)若x=-1是一元二次方程mx2+√2px+n=0的一个根,且Rt△ABC的周长为√2+2,求Rt△ABC的面积.答案:(1)证明见解析.(2)1.解析:(1)∵ m、n、p分别是Rt△ABC的三边长,且m≤n<p.∴ p2=m2+n2.∴ b2-4ac=2p2-4mn=2(m2+n2)-4mn=2(m-n)2≥0.∴关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)∵ x=-1是一元二次方程mx2+√2px+n=0的一个根.∴ m-√2p+n=0 ①.∵ Rt△ABC的周长为2√2+2.∴ m+n+p=2√2+2②.由①、②得:m+n=2√2,p=2.∴(m+n)2=8.∴ m2+2mn+n2=8.又∵ m2+n2=p2=4.∴ 2mn=4.∴1=mn=1.2∴ Rt△ABC的面积是1.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.根与系数的关系—韦达定理应用.三角形—三角形基础—三角形面积及等积变换.12.关于x的方程(k-3)x2+2x+1=0有两个不等的实数根,则k的取值范围为.答案:k<4且k≠3.解析:∵关于x的方程(k-3)x2+2x+1=0有两个不等的实数根.∴ {k−3≠0△=4−4(k−3)>0.∴ k<4且k≠3.考点:方程与不等式—一元二次方程—一元二次方程的定义—根据一元二次方程求参数值.根的判别式—已知一元二次方程根的情况,求参数的取值范围.13.设a、b是方程x2+x-9=0的两个实数根,则a2+2a+b的值为.答案:8.解析:∵ a是方程x2+x-9=0的根.∴ a2+a==9.由根与系数的关系得:a+b=-1.∴ a2+2a+b=(a2+a)+(a+b)=9+(-1)=8.考点:方程与不等式—一元二次方程—根与系数的关系—韦达定理应用.14.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12cm的住房墙.另外三边用25cm长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门.(1)所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?(2)能否围成一个面积为100 m2的矩形猪舍?如能,说明了围法;如不能,请说明理由.答案:(1)矩形猪舍的长为10m,宽为8m.(2)不能围成一个面积为100 m2的矩形猪舍.解析:(1)设矩形猪舍垂直于房墙的一边长为xm,则矩形猪舍的另一边长为(26-2x)m.由题意得:x(26-2x)=80.解得:x1=5,x2=8,当x=5时,26-2x=16>12(舍去).当x=8时,26-2x=10<12.答:矩形猪舍的长为10m,宽为8m.(2)由题意得:x(26-2x)=100.整理得:x2-13x+50=0.∵△=(-13)2-4×1×50=-31<0.∴方程无解.故不能围成一个面积为100 m2的矩形猪舍.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.一元二次方程的应用.15.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为 120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售__________件,每件盈利__________元(用x的代数式表示).(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想每天赢利2000元,可能吗?请说明理由.答案:(1)(20+2x),(40-x).(2)20元或10元.(3)不可能,理由见解析.解析:(1)根据题意得:每天可销售(20+2x);每件盈利(40-x).(2)根据题意得:(40-x)(20+2x)=1200.解得:x1=20,x2=10.答:每件童装降价20元或10元时,平均每天赢利1200元.(3)(40-x)(20+2x)=2000.整理得:x2-30x+600=0.△=62-4ac=(-30)2-4×1×600=900-2400<0.∴方程无解.答:不可能做到平均每天赢利2000元.考点:式—整式—代数式.方程与不等式—一元二次方程—一元二次方程的解.根的判别式—判断一元二次方程根的情况—一元二次方程的应用.16.若a>b,则下列不等式中正确的是.(填序号)① a-2<b-2 ② 5a<5b ③-2a<-2b ④a3<b3答案:③.解析:不等式的两边同时乘以(或除以)同一个负数,不等号改变方向.考点:方程与不等式—不等式与不等式组—不等式的基础—不等式的性质.17.解不等式:2−x+23>x+x−12.答案:x<1.解析:12-2(x+2)>6x+3(x-1).12-2x-4>6x+3x-3.-11x>-11.X<1.考点:方程与不等式—不等式与不等式组—解一元一次不等式.18.解不等式组{2x+4≤5(x+2)x−1<23x,把它的解集在数轴上表示出来,并求它的整数解.答案:原不等式组的整数解为-2,-1,0,1,2.解析:由2x+4≤5(x+2)得x≥-2.由x−1<23x得x<3.不等式组的解集在数轴上表示如下.∴原不等式组的解集为-2≤x<3.∴原不等式组的整数解为-2,-1,0,1,2.考点:方程与不等式—不等式与不等式组—在数轴上表示不等式的解集—一元一次不等式组的整数解.19.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表.已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?答案:(1)方案共三种:分别是A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)A型建8个的方案最省,最低造价52万元.解析:(1)设A型的建造了x个,得不等式组:{15x+20(20−x)≤370 18x+30(20−x)≥498.解得:6≤x≤8.5.三方案:A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)当x=6时,造价2×6+3×14=54.当x=7时,造价2×7+3×13=53.当x=8时,造价2×8+3×12=52.故A型建8个的方案最省,最低造价52万元.考点:方程与不等式—不等式与不等式组—一元一次不等式组的应用—最优化方案.20.服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?答案:(1)甲种服装最多购进75件.(2)当0<a<10时,购进甲种服装75件,乙种服装25件.当a=10时,按哪种方案进货都可以.当10<a<20时,购进甲种服装65件,乙种服装35件.解析:(1)设购进甲种服装x件,由题意可知.80x+60(100-x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75.W=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大.所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件.方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以.方案3:当10<a<20时,10-a<0,w随x的增大而减小.所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:方程与不等式—不等式与不等式组—一元一次不等式的应用—一元一次不等式组的应用—最优化方案.21.解答下列问题:(1)计算:2xx+1−2x+6x2−1÷x+3x2−2x+1.(2)解分式方程:3x+1+1x−1=6x2−1.答案:(1)2x+1.(2)x=2.解析:(1)原式=2xx+1−2(x+3)(x+1)(x−1)÷(x−1)2x+3.=2xx+1−2(x−1)x+1=2x+1.(2)3(x-1)+x+1=6.3x-3+x+1=6.4x=8.x=2.检验:当x=2时,x2+1≠0.故x=2是该分式方程的解.考点:式—分式—分式的加减法—简单异分母分式的加减.方程与不等式—分式方程—解分式方程—常规法解分式方程.22.解下列方程:(1)5x−4x−2=4x+103x−6−1.(2)x−2x+2−x+2x−2=8x2−4.答案:(1)x=2是方程的增根,原方程无解.(2)x=-1.解析:(1)等式两边同乘以3(x-2)得,3(5x-4)=4x+10.解得x=2.检验x=2时,2(x-2)=0.∴ x=2是方程的增根,原方程无解.(2)两边同乘x2-4.得:-8x=8.X=-1.经检验x=-1是原方程的解.考点:方程与不等式—分式方程—解分式方程—常规法解分式方程.分式方程解的情况—分式方程有解—分式方程有增根.23.若分式方程2xx+1−m+1x2+x=x+1x产生增根,则m的值为.答案:-2或1.解析:方程两边都乘x(x+1).得x2-(m+1)=(x+1)2.∵原方程有增根.∴最简公分母x(x+1)=0.解得x=0或-1.当x=0时,m=-2.当x=-1时,m=0.故m的值可能是-2或0.考点:方程与不等式—分式方程—分式方程解的情况—根据增根求参数.24.在“春节”前夕,某花店用13000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?答案:第二批鲜花每盒的进价是 120元.解析:设第二批鲜花每盒的进价是x元.依题意有:6000x =12×13000x+10.解得x=120.经检验:x=120是原方程的解,且符合题意.答:第二批鲜花每盒的进价是120元.考点:方程与不等式—分式方程—分式方程的应用.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独完成此项任务比乙队单独完成此项任务多用10天,且乙队每天的工作效率是甲队每天工作效率的1.5倍.(1)甲、乙两队单独完成此项任务各需要多少天?(2)若甲、乙两队共同工作4天后,乙队因工作需要停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,如果要完成任务,那么甲队再单独施工多少天?答案:(1)甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)甲队再单独施工10天.解析:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天.由题意可得:1x = 1.5x+10.解得:x=20.经检验,x=20是原方程的解.∴x+10=30(天).答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)设甲队再单独施工a天,由题意可得:(130+120)×4+230×a=1.解得:a=10.答:甲队再单独施工10天.考点:方程与不等式—一元一次方程—一元一次方程的应用—工程问题.分式方程—分式方程的应用.。
基本不等式经典例题(含知识点和例题详细解析)

基本不等式专题知识点:1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
专题14 基本不等式(解析版)

专题14 基本不等式1.已知关于x 的不等式b a x <+的解集为{}42<<x x ,则=a b . 【难度】★ 【答案】31-2.若关于实数x 的不等式a x x <++-35无解,则实数a 的取值范围是 . 【难度】★★ 【答案】(]8,∞-【解析】因为35++-x x 表示数轴上的动点x 到数轴上的点3-、5的距离之和,而()835min=++-x x ,所以当8≤a 时,a x x <++-35无解.热身练习3.不等式212+<-x x 的解集为 . 【难度】★【答案】⎪⎭⎫ ⎝⎛-331, 4.若关于x 的不等式21-++≥x x a 存在实数解,则实数a 的取值范围是 . 【难度】★★ 【答案】3≥a 或3-≤a5.若关于x 的不等式164222--≤++x x b ax x 对R x ∈恒成立,则=+b a . 【难度】★★★ 【答案】10-1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.·基本不等式的几何解释:因为()02≥-y x ,令a x =,b y =,代入展开可得2b a ab +≤知识梳理模块一:利用基本不等式求最值·基本不等式的几何解释:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连结AD ,BD .由射影定理或三角形相似可得CD =ab ,由CD 小于或等于圆的半径a +b 2, 可得不等式ab ≤a +b2.当且仅当点C 与圆心重合,即当a =b 时,等号成立.【例1】(1)已知,如果,那么的最小值为__________;(2)已知,如果,那么的最小值为______;(3)若,则的最小值为 ; (4)已知,且,则的最大值为.【难度】★【答案】(1)2 (2)12 (3)22 (4)1162.基本不等式及有关结论(1)基本不等式:如果a >0,b >0,则a +b2a b +∈R 、1ab =a b +a b +∈R 、1a b +=22a b +0x >2x x+,x y R +∈41x y +=x y ⋅_____典例剖析≥ab ,当且仅当a =b 时,等号成立,即正数a 与b 的算术平均数不小于它们的几何平均数.(2)重要不等式:a ∈R ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(3)几个常用的重要结论① b a +ab ≥2(a 与b 同号,当且仅当a =b 时取等号);② a +1a ≥2(a >0,当且仅当a =1时取等号),a +1a ≤-2(a <0,当且仅当a =-1时取等号);③ ab ≤2)2(ba (a ,b ∈R ,当且仅当a =b时取等号);④ 21a +1b≤ab ≤a +b2≤a 2+b22(a ,b >0,当且仅当a =b 时取等号).调和平均数≤几何平均数≤算术平均数≤平方平均数【例2】已知实数a 、b ,判断下列不等式中哪些一定是正确的?(1)abba ≥+2; (2)abb a 222-≥+; (3)ab b a ≥+22; (4)2≥+baa b (5)21≥+a a ; (6) 2≥+abb a (7)222)(2b a b a +≥+)(【难度】★【答案】(2)(3)(6)(7)(1)错误。
证明不等式的基本方法练习题(基础、经典、好用)

证明不等式的基本方法一、选择题1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( )A .s ≥tB .s >tC .s ≤tD .s <t2.设0<x <1,则a =2x ,b =1+x ,c =11-x 中最大的一个是( ) A .a B .b C .c D .无法判断3.设a 、b ∈(0,+∞),且ab -a -b =1,则有( )A .a +b ≥2(2+1)B .a +b ≤2+1C .a +b <2+1D .a +b >2(2+1)4.已知a 、b 、c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为( )A .5B .7C .9D .115.(2012·湖北高考)设a ,b ,c ,x ,y ,z 均为正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +c x +y +z 等于( ) A.14 B.13C.12D.34 二、填空题6.设a >b >0,m =a -b ,n =a -b ,则m 与n 的大小关系是________.7.以下三个命题:①若|a -b |<1,则|a |<|b |+1;②若a 、b ∈R ,则|a +b |-2|a |≤|a -b |;③若|x |<2,|y |>3,则|x y |<23,其中正确命题的序号是________.8.若x +y +z =1,且x ,y ,z ∈R ,则x 2+y 2+z 2与13的大小关系为________.三、解答题9.设a >0,b >0,a +b =1,求证:1a +1b +1ab ≥8.10.(2013·深圳调研)已知a ,b 为正实数.(1)求证:a 2b +b 2a ≥a +b ;(2)利用(1)的结论求函数y =(1-x )2x +x 21-x(0<x <1)的最小值.11.(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y +xy .(2)1≤a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .解析及答案一、选择题1.【解析】 ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t .【答案】 A2.【解析】 ∵0<x <1,∴1+x >2x =4x >2x , ∴只需比较1+x 与11-x的大小, ∵1+x -11-x =1-x 2-11-x =-x 21-x<0, ∴1+x <11-x. 因此c =11-x 最大. 【答案】 C3.【解析】 ∵ab -a -b =1,∴1+a +b =ab ≤(a +b 2)2.令a +b =t (t >0),则1+t ≤t 24(t >0).解得t ≥2(2+1),则a +b ≥2(2+1).【答案】 A4.【解析】 把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c=3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2+2+2=9.【答案】 C5.【解析】 由题意可得x 2+y 2+z 2=2ax +2by +2cz , 又a 2+b 2+c 2=10相加可得(x -a )2+(y -b )2+(z -c )2=10,所以不妨令⎩⎨⎧x -a =a ,y -b =b ,z -c =c (或⎩⎨⎧x -a =b ,y -b =c ,z -c =a), 则x +y +z =2(a +b +c ),∴a +b +c x +y +z =12. 【答案】 C二、填空题6.【解析】 ∵a >b >0,∴m =a -b >0,n =a -b >0.∵m 2-n 2=(a +b -2ab )-(a -b )=2b -2ab =2b (b -a )<0,∴m 2<n 2,从而m <n .【答案】 m <n7.【解析】 ①|a |-|b |≤|a -b |<1,所以|a |<|b |+1; ②|a +b |-|a -b |≤|(a +b )+(a -b )|=|2a |, 所以|a +b |-2|a |≤|a -b |;③|x |<2,|y |>3,所以1|y |<13,因此|x ||y |<23.∴①②③均正确.【答案】 ①②③8.【解析】 ∵(x +y +z )2=1,∴x 2+y 2+z 2+2(xy +yz +zx )=1,又2(xy +yz +zx )≤2(x 2+y 2+z 2),∴3(x 2+y 2+z 2)≥1,则x 2+y 2+z 2≥13.【答案】 x 2+y 2+z 2≥13三、解答题9.【证明】 ∵a >0,b >0,a +b =1, ∴2ab ≤a +b =1.因此ab≤12,1ab≥4.则1a+1b+1ab=(a+b)(1a+1b)+1ab≥2ab·2 1ab+4=8.故1a+1b+1ab≥8成立.10.【解】(1)证明∵a2b+b2a-(a+b)=a3+b3-a2b-ab2ab=a2(a-b)-b2(a-b)ab=(a-b)2(a+b)ab.又∵a>0,b>0,∴(a-b)2(a+b)ab≥0,当且仅当a=b时等号成立.∴a2b+b2a≥a+b.(2)∵0<x<1,∴1-x>0,由(1)的结论,函数y=(1-x)2x+x21-x≥(1-x)+x=1.当且仅当1-x=x即x=12时等号成立.∴函数y=(1-x)2x+x21-x(0<x<1)的最小值为1.11.【证明】(1)由于x≥1,y≥1,则x+y+1xy≤1x+1y+xy⇔xy(x+y)+1≤y+x+(xy)2,将上式中右式减左式得[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1),由x≥1,y≥1易知(xy-1)(x-1)(y-1)≥0,即原不等式成立.(2)设log a b=x,log b c=y,由对数换底公式得log c a=1xy,log b a=1x,log c b=1y,log a c=xy,则所证不等式可化为x+y+1xy≤1x+1y+xy,由1≤a≤b≤c知x=log a b≥1,y=log b c≥1,由(1)知所证不等式成立.。
初一不等式难题-经典题训练(附答案)

初一不等式难题-经典题训练(附答案)1.已知不等式 $3x-a\leq 0$ 的正整数解正好是 1,2,3,则$a$ 的取值范围是多少?2.已知关于 $x$ 的不等式组 $\begin{cases} x-a>\dfrac{1}{5-2x}-1 \\ 5-2x\geq -1 \end{cases}$ 无解,则 $a$ 的取值范围是多少?3.若关于 $x$ 的不等式 $(a-1)x-a+2>0$ 的解集为 $x<2$,则 $a$ 的值为多少?4.若不等式组 $\begin{cases} x-a>2 \\ b-2x>\dfrac{x+4}{x+1} \end{cases}$ 的解集为 $-1<x<1$,则$\dfrac{a+b}{b-2}$ 的值为多少?5.已知关于 $x$ 的不等式组的解集为 $\begin{cases}3x+2a<0 \\ x+a<2 \end{cases}$,若 $x<2$,则 $a$ 的取值范围是多少?6.若方程组 $\begin{cases} 4x+y=k+1 \\ x+4y=3\end{cases}$ 的解满足 $x+y<1$,则 $k$ 的取值范围是多少?7.不等式组 $\begin{cases} x+9m+1 \end{cases}$ 的解集是$x>2$,则 $m$ 的取值范围是多少?8.不等式 $(x+x)(2-x)<0$ 的解集是什么?9.当 $a>3$ 时,不等式 $ax+2<3x+b$ 的解集是 $x<2$,则$b$ 等于多少?10.已知 $a,b$ 为常数,若 $ax+b>0$ 的解集是$x<\dfrac{1}{3}$,则不等式 $bx-a<0$ 的解集是什么?11.不等式组 $\begin{cases} 7x-m\geq 0 \\ 6x-n\leq 0\end{cases}$ 的正整数解仅为 1,2,3,则合适的整数对$(m,n)$ 有多少个?12.已知非负数 $x,y,z$ 满足$\dfrac{x}{2}+\dfrac{3y}{4}+\dfrac{5z}{6}=\dfrac{1}{2}$,设$\omega=3x+4y+5z$,求 $\omega$ 的最大值和最小值。
初中七年级数学不等式应用题专项练习(含答案解析)

初中七年级数学不等式应用题专项练习(含答案解析)1.两名教师和若干名学生要选择旅游公司。
甲公司的优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费。
要求求出学生人数超过多少人时,甲公司比乙公司更优惠。
2.老师说班级一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还有不足6位学生在玩足球。
求班级学生总数。
3.某工程队要招聘甲、乙两种工人150人。
甲、乙两种工种的月工资分别为600元和1000元。
现要求乙种工种的人数不少于甲种工种人数的2倍。
问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?4.某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售。
两个月后自行车的销售款已超过这批自行车的进货款。
问这时至少已售出多少辆自行车?5.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。
如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖。
解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。
6.某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地。
已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出。
求:(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?7.用甲、乙两种原料配制成某种果汁。
已知这两种原料的维生素C的含量及购买这两种原料的价格如表。
现制作这种果汁200kg,要求至少含有52,000单位的维生素C。
试写出所需甲种原料的质量x(kg)应满足的不等式。
2.如果要求购买甲、乙两种原料的费用不超过1800元,那么需要满足以下不等式。
初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题练习(附答案) 【1 】1. 已知不等式3x-a≤0的正整数解正好是1,2,3,则a 的取值规模是_______ 2. 已知关于x 的不等式组0521x a x ->⎧⎨-≥-⎩无解,则a 的取值规模是_________3. 若关于x 的不等式(a-1)x-2a +2>0的解集为x<2,则a 的值为( )A 0B 2C 0或2D -1 4. 若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2006()a b +=_________5. 已知关于x 的不等式组的解集41320x xx a +⎧>+⎪⎨⎪+<⎩为x<2,那么a 的取值规模是_________6. 若方程组的解知足4143x y k x y +=+⎧⎨+=⎩前提01x y <+<,则k 的取值规模是( )A.41k -<<B.40k -<<C.09k <<D.4k >-7. 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值规模是( )A.2m ≤B.2m ≥C.1m ≤D.1m()()20x x x +-<的解集是_________9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是13x <,则的0bx a -<解集是( ) A.3x >-B 3x <- C. 3x > D.3x <7060x m x n -≥⎧⎨-⎩数解仅为1,2,3,那么合适不等式组的整数(m,n)对共有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 知足123234x y z ---==,设345x y z ω=++,求的ω最大值与最小值 12.不等式A 卷1.不等式2(x + 1) -12732-≤-xx 的解集为_____________. 2.同时知足不等式7x + 4≥5x – 8和523xx -<的整解为______________.3.假如不等式33131++>+x mx 的解集为x >5,则m 值为___________. 4.不等式22)(7)1(3)12(k x x x x ++<--+的解集为_____________.5.关于x 的不等式(5 – 2m)x > -3的解是正数,那么m 所能取的最小整数是__________.6.关于x 的不等式组⎩⎨⎧<->+25332b x x 的解集为-1<x <1,则ab____________.7.可以或许使不等式(|x| - x )(1 + x ) <0成立的x 的取值规模是_________. 8.不等式2<|x - 4| <3的解集为_____________.9.已知a,b 和c 知足a≤2,b≤2,c≤2,且a + b + c = 6,则abc=______________. 10.已知a,b 是实数,若不等式(2a - b)x + 3a – 4b <0的解是94>x ,则不等式(a – 4b)x + 2a – 3b >0的解是__________. C 卷 一.填空题1.不等式2|43|2+>--x x x 的解集是_____________. 2.不等式|x| + |y| < 100有_________组整数解.3.若x,y,z 为正整数,且知足不等式⎪⎩⎪⎨⎧≥+≥≥1997213z y y z x 则x 的最小值为_______________.4.已知M=1212,12122000199919991998++=++N ,那么M,N 的大小关系是__________.(填“>”或“<”)5.设a, a + 1, a + 2为钝角三角形的三边,那么a 的取值规模是______________. 二.选择题 1.知足不等式4314||3<--x x 的x 的取值规模是()A .x>3B .x<72-C .x>3或x<72- D .无法肯定 2.不等式x – 1 < (x - 1) 2< 3x + 7的整数解的个数()A .等于4B .小于4C .大于5D .等于53.⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++)5()4()3()2()1(52154154354324321321a x x x a x x x a x x x a x x x a x x x个中54321,,,,a a a a a 是常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小次序是() A .54321x x x x x >>>> B .53124x x x x x >>>> C .52413x x x x x >>>> D .24135x x x x x >>>>4.已知关于x 的不等式mx x >-23的解是4<x<n,则实数m,n 的值分离是() A .m = 41, n = 32 B .m = 61, n = 34C .m = 101, n = 38D .m = 81, n = 36三.解答题1.求知足下列前提的最小的准确整数,n :对于n,消失正整数k,使137158<+<k n n 成立. 2.已知a,b,c 是三角形的三边,求证:.2<+++++ba c a cbc b a 3.若不等式组⎪⎩⎪⎨⎧<+++>--05)25(20222k x k x x x 的整数解只有x = -2,求实数k 的取值规模.答案A 卷 1.x≥22.不等式组⎪⎩⎪⎨⎧-<-≥+5238547xx x x 的解集是-6≤x <433,个中整数解为-6,-5,-4,-3,-2,-1,0,1,2, 3.由不等式33131++>+x mx 可得(1 – m )·x < -5,因已知原不等式的解集为x >5,则有(1-m)·5 = -5, ∴m = 2.4.由原不等式得:(7 – 2k)x <2k +6,当k < 27时,解集为k k x 2762-+<;当k >27时,解集为k k x 2762-+>;当k =27时,解集为一切实数. 5.要使关于x 的不等式的解是正数,必须5 – 2m<0,即m>25,故所取的最小整数是3. 6.2x + a >3的解集为 x >23a -; 5x – b < 2 的解集为 x <52b+所以原不等式组的解集为23a - < 52b +.且23a - < 52b+.又题设原不等式的解集为 –1< x <1,所以23a -=-1,52b +=1,再联合23a - < 52b+,解得:a = 5, b = 3,所以ab = 157.当x≥0时,|x| - x = x –x = 0,于是(|x| - x )(1 + x ) = 0,不知足原式,故舍去x≥0当x < 0时,|x| - x = - 2x >0,x 应该要使(|x| - x )(1 + x )<0,知足1 + x < 0,即x < -1,所以x 的取值规模是x < - 1.8.原不等式化为⎩⎨⎧<->-)3(3|4|)1(2|4|x x 由(1)解得或x <2 或x > 6,由(2)解得 1 < x < 7,原不等式的解集为1 < x < 2或6 < x < 7.9.若a,b,c,中某个值小于2,比方a < 2,但b≤2, c≤2,所以a + b + c <6 ,与题设前提a + b + c = 6抵触,所以只能a = 2,同理b = 2, c = 2,所以abc=8. 10.因为解为x >94的一元一次不等式为 – 9 x + 4 < 0与(2a – b )x + 3a – 4b <0比较系数,得⎩⎨⎧=--=-44392b a b a ⎩⎨⎧-=-=78b a 所以第二个不等式为20x + 5 > 0,所以x > 41- C 卷1.原不等式化为|(x + 1) (x - 4) | > x + 2,若(x + 1) (x - 4) ≥0,即x≤-1或x≥4时,有064,24322>--+>--x x x x x∴3131102102+<<-+>-<x x x 或或2.∵|x| + |y| < 100,∴0≤|x|≤99, 0≤|y|≤99,于是x,y 分离可取-99到99之间的199个整数,且x 不等于y,所以可能的情形如下表:所以知足不等式的整数解的组数为:198 + 2 (1 + 3 + … + 99) + 2(100 + 102 + … + 196)19702249)196100(2250)991(2198=⨯+⨯+⨯+⨯+=3.⎪⎩⎪⎨⎧≥+≥≥)2(1997)1(213z y y z x由(1)得y≤2z (3)由(3)(2)得3z ≥ 1997 (4) 因为z 是正整数,所以z≥6661]31997[=+ 由(1)知x≥3z,∴z≥1998,取x = 1998, z = 666, y = 1332知足前提所以x 的最小值是1998. 4.令n =19982,则1412121,42,2222200019981999++÷++=∴==⋅=n n n n N M n n11441144154)12()14)(1(2222>+++=++++=+++=n n n n n n n n n n ∴M>N5.钝角三角形的三边a, a + 1, a + 2知足:⎩⎨⎧>-->⎩⎨⎧+<+++>++03221)2()1(2)1(222a a a a a a a a a 即 ∴31311<<⎩⎨⎧<<->a a a 故二.选择题1.当x≥0且x≠3时,,43533143314||3<--=--=--x x x x x ∴)1(135->-x若x>3,则(1)式成立若0≤x < 3,则5 < 3-x,解得x < -2与0≤x < 3抵触.当x < 0时,,43143314||3<--=--x x x x 解得x < 72-(2)由(1),(2)知x 的取值规模是x >3或x < 72-,故选C2.由,12)1(22+-=-x x x 原不等式等价于,0)6()1(,0)1()2(<-⋅+>-⋅-x x x x 分离解得x < 1或x >2,-1< x < 6,原不等式的整数解为0,3,4,5,故应选A 3.方程组中的方程按次序两两分离相减得5424431332522141,,a a x x a a x x a a x x a a x x -=--=--=--=-因为54321a a a a a >>>>所以24135241,,,x x x x x x x x >>>>,于是有52413x x x x x >>>>故应选C 4.令x =a (a≥0)则原不等式等价于0232<+-a ma 由已知前提知(1)的解为2< a < n因为2和n 是方程0232=+-a ma 的两个根,所以⎪⎪⎩⎪⎪⎨⎧==+m n m n 23212解得m = 36,81=n故应选D 三.解答题1.由已知得8776,7131815,713815<<∴>+>>+>n k n k n k n 即 n , k 为正整数 显然n>8,取n = 9则863754<<k ,没有整数K 的值,依次取n = 10, n = 11, n = 12, n = 14时,分离得870760<<k ,877766<<k ,884772<<k ,891778<<k ,898784<<k ,k 都取不到整数,当n = 15时,8105790<<k ,k 取13即可知足,所以n 的最小值是15. 2.由“三角形双方之和大于第三边”可知,ba cc a b c b a +++,,,是正分数,再应用分数不等式:c b a a a c b a a c b a ++=+++<+2,同理cb a cb ac c b a b c a b ++<+++<+2,2 ∴2)(2222=++++=++++++++<+++++cb ac b a c b a c c b a b c b a a b a c c a b c b a 3.因为x = -2是不等式组的解,把x = - 2代入第2个不等式得 (2x + 5) (x + k) = [2·(-2) + 5]·(-2 + k ) < 0,解得k < 2,所以 – k > -2 > 25-,即第2个不等式的解为25-< x < k,而第1个不等式的解为x < -1或x > 2,这两个不等式仅有整数解x = -2,应知足⎪⎪⎩⎪⎪⎨⎧-<<->⎪⎪⎩⎪⎪⎨⎧-<<--<.252)2(251)1(为整数或为整数x k x x x k x x对于(1)因为x < 2,所以仅有整数解为 x = -2此时为知足标题请求不等式组(2)应无整数解,这时应有-2 < -k≤3, -3≤k < 2 分解(1)(2)有-3≤k < 2。
专题7.3 基本不等式及其应用(优秀经典专题及答案详解)

学习目标:
1.了解基本不等式的证明过程; 2b≤a+b 2
(1)基本不等式成立的条件:a>0,b>0.
(2)等号成立的条件:当且仅当 a=b.
知识点二 几个重要的不等式
(1)a2+b2≥2ab(a,b∈R);(2)b+a≥2(a,b 同号); ab
【答案】①130 ;②15.
【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付 60+80-10=130 元.
(2)设顾客一次购买水果的促销前总价为 y 元,
y 120元时,李明得到的金额为 y 80% ,符合要求.
y 120元时,有 y x80% y70% 恒成立,即8 y x 7 y, x y ,即
【变式 1】(山东潍坊一中 2019 届模拟)已知 x>0,y>0,x+3y+xy=9,则 x+3y 的最小值为________.
【答案】6 【解析】由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy,
x+3y 所以 3xy≤ 2 2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
(1)将 2019 年该产品的利润 y 万元表示为年促销费用 m 万元的函数; (2)该厂家 2019 年的促销费用投入多少万元时,厂家利润最大?
【解析】(1)由题意知,当 m=0 时,x=1(万件),
所以 1=3-k⇒k=2,所以 x=3-m+2 1,
每件产品的销售价格为 1.5×8+16x(元), x
2.连续使用基本不等式时,牢记等号要同时成立.